Potsdam Institute for Climate Impact Research (PIK)
Interdisciplinary Center for Dynamics of Complex Systems (University of Potsdam)
Cardiovascular Physics Group (Humboldt-Universität zu Berlin)
PIK Logo
TOCSY - Toolboxes for Complex Systems
PIK/ Antique/ Blue
Home Home
ACE - Nonlinear Regression Analysis ACE
Adaptive Filtering Procedure Adaptive Filtering
CoinCalc - Event Coincidence Analysis CoinCalc
COPRA - Constructing Proxy Records From Age Models COPRA
Cross Recurrence Plot Toolbox CRP Toolbox
Commandline Recurrence Plots Commandline RPs
Analyse Coupling of Transient Dynamics Coupling Analysis
Identification of Coupling Direction Coupling Direction
Inner Composition Alignment IOTA
Dynamical Invariants by Recurrence Plots K2
Toolbox for the analysis of non-equidistantly sampled time series NEST
DSProlog DSProlog
PECUZAL PECUZAL
Permutation Entropy PETROPY
pyunicorn ‐ UNIfied COmplex Network and Recurrence aNalysis toolbox pyunicorn
Symbolic Dynamics from Recurrence Plots RECGRAM
Recurrence Plots for MATLAB RP
Recurrence Structure Analysis RSA
Wavelet and Coherence Analysis SOWAS
System Identification Tool System Identification
Time Series Graph and Momentary Information Transfer Estimation TiGraMITe

Coupling analysis of transient dynamics

ECGC – Ensemble Conditional Granger Causality

calculates time-resolved conditional Granger causality for ensemble data

ESCT – Ensemble Symbolic Coupling Traces

calculates time-resolved symbolic coupling traces for ensemble data

PESCT – Permutation Ensemble Symbolic Coupling Traces

calculates time-resolved symbolic coupling traces using a permutation approach for ensemble data

(for MATLAB®)


General Notes

The ensemble approach provides a versatile method to extend coupling analysis tools for a time variant coupling analysis capable of dealing with nonstationary time series via significantly reducing the required window lenth for a windowed analysis. Here, three examples, the Ensemble Conditional Granger Causality (ECGC), the Ensemble Symbolic Coupling Traces (ESCT), and the Permutation Ensemble Symbolic Coupling Traces (PESCT), are presented. The EGCG-function returns a struct containing the results of the Granger causality (GC) test plus the results from the Granger-Sargent significance test. With activated graphic output the significant GC indices are shown via a colour-coded matrix (no ensemble) or via n*(n-1)/2 (n is the number of regarded variables) plots comparing the significant GC indices for two variables over time (activated ensemble approach). The ESCT and the PESCT return a plot showing the coupling strength and coupling effect (symmetric/diamteric) for each time-lag. Without the ensemble option a bar diagram is returned. With activated ensemble approach a colour-coded matrix shows the results for each time-lag and time point. For further information, please consider the references given further below and the MATLAB-functions themselves.


Usage

ecgc_res = ecgc(dat,maxlag,ensemble,silent,varargin)
esct_res = esct(dat,wlen,taurange,pval,ensemble,silent)
pesct_res = pesct(dat,wlen,tau,taurange,pval,ensemble,silent)
datdata to analyze ([2,N,M] array) N observations, M realizations
wlendesired word length
taurange  time lags to be considered
maxlag model order for Granger Causality
pvalsignificance threshold
ensembleswitch on/off ensemble approach
silentswitch off/on graphical output


Example

% bivariate AR-model

len = 500; % # time points to be computed by the model 
N = 100; % # time points to be used in the analysis
M = 200; % ensemble size
dat = zeros(2,N,M); % data container
noise = randn(2,len,M); % white noise

for mm = 1:M % ensemble loop
    x = zeros(2,len);
    x(:,1:2) = randn(2,2);
    for ii = 3:len % time loop
        x(1,ii) = 0.3*x(1,ii-1) + 0.7*x(2,ii-1) + 0.01*noise(1,ii,mm);
        x(2,ii) = 0.3*x(2,ii-1) - 0.7*x(1,ii-2) + 0.01*noise(2,ii,mm);
    end
    dat(:,:,mm) = x(:,end-N+1:end);
end
 
ecgc_res = ecgc(dat,10,1,0,0.05);
esct_res = esct(dat,3,-10:10,0.05,1,0);
pesct_res = pesct(dat,4,1,-10:10,0.05,1,0);

References

  • Mueller, A., Riedl, M., Penzel, T., Kurths, J., Wessel, N.: Kardiorespiratorische Koordination und Ensemble-Kopplungsspuren zur ereignisbasierten Charakterisierung kardiovaskulärer Interaktionen während des Schlafes, Somnologie, 18, 243–251, 2014.

  • Mueller, A., Riedl, M., Penzel, T., Bonnemeier, H., Kurths, J., et al.: Coupling analysis of transient cardiovascular dynamics, Biomed. Tech., 58, 131–139, 2013.

  • Seth, A. K.: A MATLAB toolbox for Granger causal connectivity analysis. J. Neurosci. Methods, 186, 262–273, 2010.

  • Wessel, N., Suhrbier, A., Riedl, M., Marwan, N., Malberg, H., et al.: Detection of time-delayed interactions in biosignals using symbolic coupling traces, Europhys. Lett., 87, 10004, 2009.


Download

ecgc.m
esct.m
pesct.m


Author

Andreas Müller



© 2004-2023 SOME RIGHTS RESERVED
University of Potsdam, Interdisciplinary Center for Dynamics of Complex Systems, Germany
Potsdam Institute for Climate Impact Research, Complexity Science, Germany

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.
Imprint, Data policy, Disclaimer, Accessibility statement

Please respect the copyrights! The content is protected by the Creative Commons License. If you use the provided programmes, text or figures, you have to refer to the given publications and this web site (tocsy.pik-potsdam.de) as well.

@MEMBER OF PROJECT HONEY POT
Spam Harvester Protection Network
provided by Unspam