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Abstract

Context Socio-ecological landscapes typically char-

acterized by non-linear dynamics in space and time are

difficult to be analyzed using standard quantitative

methods, due to multiple processes interacting on

different spatial and temporal scales. This poses a

challenge to the identification of appropriate

approaches for analyzing time series that can evaluate

system properties of landscape dynamics in the face of

disturbances, such as uncontrolled fires.

Objective The purpose is the application of non-

linear methods such as recurrence quantification

analysis (RQA) to landscape ecology. The examples

concern the time series of burnt and unburnt Mediter-

ranean rangelands, to highlight potential and limits of

RQA.

Methods We used RQA together with joint recur-

rence analysis (JRA) to compare the evolutionary

behavior of different land uses.

Results Time series of forests and grasslands in

rangelands present both periodic and chaotic compo-

nents with a rather similar behavior after the fire and

clear transitions from less to more regular/pre-

dictable dynamics/succession. Results highlight the
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impacts of fire, the recovery capacity of land covers to

pre-burnt levels, and the decay of synchronization

towards the previous regime associated with vegeta-

tion secondary succession consistent with early suc-

cessional species.

Conclusions RQA and JRA with their set of indices

(recurrence rate: RR, laminarity: LAM, determinism:

DET, and divergence: DIV) can represent new sensi-

tive measures that may monitor the adaptive capacity

and the resilience of landscapes. However, future

applications are needed to standardize the analysis by

strengthening the accuracy of this approach in

describing the ongoing transformations of natural

and man-managed landscapes.

Keywords Recurrence quantification analysis

(RQA) � Non-linear analysis � Enhanced Vegetation

Index (EVI) � Fire disturbance � Predictability �
Secondary succession

Introduction

Traditionally, satellite remote sensing has allowed the

detection of past land-use dynamics and disturbances

at local through regional up to global scales (Goetz

et al. 2005; Röder et al. 2008). Time series of

vegetation indices derived from big data by remote

sensing are broadly recognized as an explicit and

robust indicator to gauge social-ecological processes

such as habitat-land use conversion or crop rotation.

Time series of vegetation are an essential reservoir of

past landscape information because they keep track of

the disturbances that have occurred. Therefore,

through their in-depth investigation, it is possible to

reveal the extent of disturbances and the time to return

to the normal functionality (resilience) of the land-

scape (Zaccarelli et al. 2008).

It is noticed that human activity has shaped and

sculpted the landscape with a distinctive touch,

altering its natural disturbance regime (Moloney and

Levin 1996; Millennium Ecosystem Assessment

2005; Mulder et al. 2015), and contributing to its

complexity (Levin 1998; Milne 1998; Storch and

Gaston 2004). Socio-ecological landscapes show

generally a non-stationary and complex behavior due

to the interaction of multiple processes driven by

nonlinear dynamics in space and time (Proulx and

Parrott 2009). The recognition that socio-ecological

landscapes behave as complex systems is challenging

our ability to derive suitable approaches for analyzing

time series data, and identifying possible landscape

attractors, able to evaluate changes in landscape

dynamics as well as recovery from disturbance. In

this respect, resilience is the capacity of a system to

absorb disturbance and still retaining essentially the

same function, structure, identity, and feedbacks

(Walker et al. 2004); it can be measured by the

probability that a certain system state will persist

(Peterson 2002). Therefore, the identification of

recurrent behavior or irregular cycles, tipping points

and proximity to transition to alternative states, based

on the analysis of time series data (climate conditions,

vegetation variation, anthropic pressures or distur-

bance events), can provide useful indications on past

and current landscape dynamics and resilience

(Walker et al. 2002; Antrop 2005; Zurlini et al.

2006), and on the possible ways the system might

respond in the future (Walker et al. 2002).

The purpose of this research is the application of

non-linear time series techniques, such as Recurrence

Quantification Analysis (RQA), which is highly

effective to detect transitions in the dynamics of any

systems from time series (Marwan et al. 2007), to

investigate the number and duration of recurrences of

spatial–temporal land-cover dynamics in socio-eco-

logical landscapes. In particular, time series of

Enhanced Vegetation Index (EVI), which is an

ecological functional proxy of the above-ground net

primary production (ANPP) (Xiao et al. 2004), are

used to better understand inter-annual variability of

seasonal vegetation dynamics in relation to fire

disturbance, recovery and stability/predictability. In

this work, EVI has been preferred to the NDVI

(Normalized Difference Vegetation Index), because it

is more effective in estimating ANPP in burnt areas

(Xiao et al. 2004).

Finally, an example of application of RQA to burnt

and unburnt areas in Mediterranean rangelands is

presented with the aim to highlight the potential and

limits of the methodology in detecting: (1) the impacts

of fire and the recovery capacity of land covers to pre-

burnt levels; and (2) the changes in functional

variability associated with vegetation succession con-

sistent with early successional species.
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The theoretical approach of RQA to landscape

stability analysis

The RP-RQA approach has been recognized as an

efficient strategy for both visualizing and quantifying

temporal dynamics. This approach is advantageous

compared to other methods for calculating attractor

dimensions in systems subjected to external driving

forces (Casdagli 1997) because: (1) it provides robust

recurrence estimates in the presence of stochastic

noise (Thiel et al. 2002; von Bloh et al. 2005); and (2)

it works quite well with nonstationary and even short

time series often typical of experimental data (Trulla

et al. 1996; Zbilut et al. 2000; Marwan et al. 2002;

Guimarães-Filho et al. 2010; Donges et al. 2011;

Marwan et al. 2015). For these reasons, the practical

and powerful use of RQA in the study of complex,

time-varying dynamical systems has been demon-

strated by multidisciplinary applications, such as for

cardiovascular health diagnosis, behavioral, cognitive

and neurological studies, studying fluid and plasma

dynamics, analyzing optical effects, or palaeoclimate

change detection (Marwan et al. 2007; Marwan 2008;

Proulx et al. 2009), but the method is still relatively

unapplied in landscape ecology. However, the basic

idea beyond the recurrence analysis is to consider the

dynamics of a landscape system by its states in the

phase space. In this manner, a recurrence is deemed as

all those times when the state trajectory of the

dynamical landscape visits roughly the same area in

the phase space and therefore it recurs, driven by an

attractor.

In landscape ecology, time series of natural or

human-dominated processes can have a distinct

recurrent behavior, i.e. periodicities (as seasonal or

Milankovitch cycles), but also irregular cyclicities

(e.g. El Niño Southern Oscillation). Moreover, the

recurrence of states is a fundamental property of

deterministic dynamical systems and is typical for

non-linear or chaotic systems (Marwan et al. 2007).

However, given the often-complex shapes of recurrent

cycles, enhanced methods for time series analysis,

such as quantifying non-linear dynamics (Marwan

2008) to foster predictability and to identify dynamical

transitions (Scheffer et al. 2009) are needed. Such

cyclic patterns can provide useful indications on the

resilience capacity of landscapes in a retrospective

way, exploring the ability of the system to absorb

larger shocks occurred in the past without changing its

fundamental functions (Zurlini et al. 2006, 2007).

Theoretically, recurrence quantification analysis

(RQA) (Marwan et al. 2007) is based on the recurrence

plot (RP) that represents an advanced technique of

nonlinear data analysis. It is a graphic display of a

square matrix, in which the matrix elements corre-

spond to the times at which a state of a dynamical

landscape recurs (columns and rows correspond then

to a certain pair of times).

Marwan et al. (2007) gave a detailed description of

the principle and the algorithm of RPs and RQA.

Hence, we give only a brief overview of RPs and RQA

in this section.

A landscape state consists of one or more state

variables describing all the important properties of a

dynamical system, therefore, the state is mathemati-

cally a vector x~i ¼ ðui; uiþs; . . .; uiþðm�1ÞsÞ with

embedding dimension m and time delay s. The

temporal evolution of the state is expressed by the

phase space trajectory of the dynamical system.

The RP is a graphical representation of this

recurrence matrix, where black points represent those

time points where the spatial distance between two

states x~i and x~j is falling below the threshold e and,

therefore, the system recurs (Eckmann et al. 1987;

Marwan et al. 2007, 2015).

Formally, the RP is based on the recurrence matrix:

Ri;j ¼ 1 if X~i � X~j

�
�

�
�� e

0 otherwise

�

withX~i 2 Rm and i; j ¼ 1; . . .;N

ð1Þ

where N is the number of measured states x~i, i.e., the

length of the time series reduced by the number

(m - 1)s, e is a threshold distance, and k�k is a norm,

i.e., the spatial distance between two points x~i and x~j in

the phase space trajectory. The choice of m is usually

based on counting false nearest neighbors when

increasing m, and choosing the value of m where the

number of false nearest neighbors goes to zero

(Marwan et al. 2007; Marwan 2010). The delay s
must be selected to minimize the autocorrelations

between the time series points, e.g., by using mutual

information. e is a crucial parameter and special

attention has to be put on its choice, because if it is

chosen too small or too large, it is possible that there

are no recurrence points, or every point is a neighbor

of every other point, respectively (Marwan et al.
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2007). As systems often do not recur exactly but just

approximately to a formerly visited state, therefore

following three methods, mean or maximum phase

space diameter, recurrence point density, and standard

deviation of the observational noise, the appropriate

threshold e can be selected (Marwan et al. 2007).

For illustrative purposes, the RPs of three typical

synthetic time series (A, B, C) are presented (Fig. 1).

The trajectory with regular oscillations (Fig. 1c) is the

least common in nature, and the possibility given by

RQA to analyze more complex but recurrent oscilla-

tion trends represents the strength of the RQA

approach.

Diagonal lines in the RP indicate that the temporal

evolution of states is similar at different times and,

thus, can point to deterministic processes; vertical or

horizontal lines in the RP indicate that some states do

not change or change very slowly for some time and

can suggest laminar or persistent states (Fig. 1).

The RQA is using line structures within the RP to

derive several measures of dynamical transitions

(Marwan et al. 2007):

• Recurrence rate (RR): the percentage of recurrence

points in the RP:

RR ¼ 1

N2

XN

i;j¼1

Rij ð2Þ

• Determinism (DET): the percentage of temporally

aggregated recurrence points which form diagonal

lines in the RP:

DET ¼ x ¼
PN

l¼lmin lPðlÞ
PN

l¼1 lPðlÞ
ð3Þ

where P(l) is the histogram of the length l of the

diagonal lines. Processes with stochastic behavior

will render a DET value close to 0, while it will be

close to 1 for purely periodic processes.

• Laminarity (LAM): the percentage of temporally

aggregated recurrence points which form vertical

lines in the RP:

LAM ¼
PN

v¼vmin vP vð Þ
PN

v¼1 vP vð Þ
ð4Þ

where P(v) is the histogram of the length v of

vertical lines.

High values of LAM are an indication of dynamics

that are trapped more often to certain states.

RR and DET can be interpreted in terms of

predictability as well as LAM that can be inter-

preted in terms of no change of the system.

Fig. 1 Recurrence Plots (RPs) of three typical synthetic time

series. a the homogeneous RPs’ structure of stochastic series

mainly characterized by single points. b RPs’ structure of a

sinusoidal sequence (with white noise). cRPs’ structure of a sine
function (i.e., a circle in phase space) (modified by Zhao et al.

2015)
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• Divergence (DIV): the inverse of the longest

diagonal line. It is an indicator of the divergence

rate (chaoticity) of the dynamics.

DIV ¼ 1

Lmax
ð5Þ

where Lmax is the longest diagonal line:

Lmax = max({li; i = 1,….,Nl}).

The higher the DIV, the more chaotic (less stable) is

the system under study, since Lmax depends on the

type of its dynamics (Marwan 2010) with effects on its

complexity.

In DET and DIV formulas the trivial longest

diagonal (when i = j) are excluded from the

calculation.

The embedding dimension, i.e., the minimum

dimension of the space in which the trajectory does

not cross itself, and the time delay for reconstructing

the phase space trajectory are derived from time series

like those of EVI.

In addition, we used the joint recurrence analysis

(JRA) (Marwan et al. 2007) to compare the evolu-

tionary behavior of different time series profiles in

their respective phase spaces separately and look for

the times of phase synchronization when both of them

recur simultaneously, i.e. when a joint recurrence

occurs. By means of this approach, the individual

phase spaces of both systems are preserved.

Formally, the joint recurrence plot (JRP) is the

element-wise product of two (or more) recurrence

matrices, derived separately from single time series

(Romano et al. 2004; Marwan et al. 2007). Thus, for

instance, for the time series of two different land

covers like grasslands and forests:

JRi;j ¼ Rforests
i;j � Rgrasslands

i;j ð6Þ

where Rforests
i;j and R

grasslands
i;j are the entries at (i, j) in the

recurrence matrices of forests and grasslands. The

JRA reveals all those times when a recurrence in a

dynamic system occurs simultaneously (phase syn-

chronization) with a recurrence in the second dynamic

system. The JRA has the advantage to compare

original data coming from different observations that

can have different variability. It has been successfully

used for the detection of phase synchronization and

general synchronization as well as for the detection of

coupling directions (Marwan et al. 2007; Ramos et al.

2017).

Example of the application of RQA

to Mediterranean rangelands

The step-by-step procedure of RQA application to

Mediterranean rangelands within the municipality of

Vieste, inside the Gargano National Park, SE Italy, is

reported in Fig. 2. Rangelands are lands supporting

vegetation that can be grazed by domestic livestock

and is not dedicated to others uses. It can be dominated

by herbaceous vegetation, dense woody vegetation, or

any of the intermediate gradations between the two

(Kolars 1966; Naveh and Dan 1973; Avi and No’am

1998). In particular, Mediterranean rangelands are

characterized by pinewood (Pinus halepensis Mill)

mixed with Mediterranean xeric grasslands (Thero-

Brachypodietea) (Biondi et al. 2010), and in the study

area they have been disturbed by a large fire in July

2007. Pine forests are autochthonous and naturally

occurring in the area where there is no harvest of trees

and a long history of grazing and local fires. The area

belongs to a typical Mediterranean semi-arid region

(Pueyo and Alados 2007). Unfavorable biophysical

factors include erratic precipitation (mainly during the

winter), high summer temperature with frequent

drought events, poor and erodible soils, extensive

deforestation with frequent fires and land abandon-

ment (Ladisa et al. 2012). After the fire event, the

vegetation grew spontaneously (i.e. secondary suc-

cession) as the study area was not subjected to

interventions of environmental restoration.

We applied recurrence quantification analysis

(Marwan et al. 2007) to the time series of EVI,

extracted from MODIS imagery from 2000 to 2014,

totaling 323 16-day composite MODIS images (Terra

MOD13Q,1), where one point of time is equal to

16 days, with 250 m resolution (USGS 2014). Ten

MODIS pixels, covering an overall area of approxi-

mately 60 ha, have been analyzed: five pixels (30 ha)

have been characterized by pinewood vegetation when

the relative cover was higher than 70%, and five pixels

(30 ha) by grassland vegetation. The ten pixels refer to

the rangeland area affected by the fire in 2007, through

a video interpretation of historical ortho-images of

2006 based on the Corine Land Cover Map of the

Apulia Region (http://www.sit.puglia.it).

In this example of RQA application, the embedding

dimension and the time delay for reconstructing the

phase space trajectory, were derived from the EVI

time series of two different land covers, e.g., forests
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and grasslands. The choice of m = 3 and s = 1 are

based on standard methods. For m, the false-nearest

neighbors method is used choosing the value for

m where the number of false nearest neighbors

vanishes. The value for time delay s is selected with

the mutual information method to minimize autocor-

relations between points of the time series (Marwan

et al., 2007). For the recurrence threshold, we used an

empirically derived fixed threshold with the maximum

norm e = 0.1, however, the value selected does not

significantly affect RQA measures (Marwan et al.

2015).

In the first step of RQA procedure (Fig. 2), to better

understand the inter-annual variability of land cover

types in the investigated area, we applied RQA to the

EVI time series of burnt forests and grasslands as well

as to the time series of adjacent unburnt reference

areas with similar vegetation composition. RPs were

derived from the mean EVI profiles of burnt forests

and grasslands. RR, DET, LAM and DIV were

calculated for each single pixel of forests and grass-

lands belonging to the burnt area considering the time

series from 2000 to 2014. Each measurement was then

spatially averaged, thus providing an average value of

RR, DET, LAM and DIV. Comparisons betweenmean

values were conducted through simple T-tests.

In the second step (Fig. 2), to compare patterns

before and after the phase transition due to the

burning, the EVI time series of forests and grasslands

of burnt areas were divided into two sub-series: before

(from February 2000 to July 2007) and after (from

January 2009 to February 2014) the fire event

excluding the transition phase. For each pixel of the

satellite image we calculated the RQA measurements

and their average values for both land covers to

provide insights on the different dynamic behavior

between burnt and unburnt areas.

The third final step (Fig. 2) aimed at comparing the

secondary successions of grasslands and forests during

the transition phase (from July 2007 to January 2009)

in their respective phase spaces separately, and at

analyzing if and when both of them recur simultane-

ously (joint recurrence). Therefore, transition phases

from forests to grasslands and from old to new states of

bFig. 2 The step-by-step procedure of RQA application to

Mediterranean rangelands within the municipality of Vieste,

Gargano National Park, SE Italy
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grasslands caused by the fire were highlighted using

joint recurrence analysis (JRA) to compare synchro-

nization of system properties for burnt and unburnt

forests and grasslands. The JRA was performed to

study large-scale temporal trends of the joint recur-

rence and was also applied on pixels of similar land

covers from adjacent unburnt areas. For this purpose,

we applied sliding time windows of 2 and 3 years to

the original time series. RP, DET and LAM were also

calculated from the JRP. All the analyses were carried

out in MATLAB using the CRP Toolbox available at

http://tocsy.pik-potsdam.de/CRPtoolbox/.

Results

Overall, the EVI time series for burnt and unburnt

forests and grasslands of the investigated area are

characterized by both periodic and chaotic compo-

nents (Figs. 3, 4). For burnt areas, the phase transition

related to the fire event and the subsequent recovery

process are evident. After the fire in July 2007, the

periodic component prevails for both forests and

grasslands (Fig. 3a, b) likely because of the binding of

primary productivity of post-fire land cover to sea-

sonal climatic variations.

Fig. 3 Mean time series of the Enhanced Vegetation Index

(EVI) for burnt forests (a) and grasslands (b) from 2000 to 2014

in the Gargano National Park rangelands showing the fire event

and the recovery processes. Standard error bars are shown.

Recurrence plot (years vs. years) of forests (c) and grasslands

(d) time series for the burnt areas in the Gargano National Park.

Phase transitions between July 2007 and January 2009 are

identified by ‘‘disruptions’’ (white bands)
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Correspondingly, patterns in the RPs for burnt

forests and grasslands reveal phase transitions

between July 2007 and January 2009 (Fig. 3c, d)

identified by ‘‘disruptions’’ (white bands) in all RPs in

correspondence to the fire event. For the two land uses

different patterns are found, however, the periodic

patterns in the RPs before and after the destructive

event are mainly related to the seasonal variability. In

addition, as expected, the RPs of forests and grass-

lands show more similar patterns after the fire event.

The relevant recurrence measures for forests and

grasslands in burnt areas are given in Tables 1 and 2

for the two sub-series before and after the fire, while

Table 3 reports the overall time series. All RQA

parameters for forests and grasslands are statistically

different before and after the fire, except for DIV in

grasslands (Table 1). In particular, LAM is higher and

DIV is lower after the fire, therefore, forests and

grasslands can be assumed to have a more pre-

dictable and less chaotic behavior after the fire. Before

the fire, forests and grasslands have different values

for DET and LAM but with higher values for

grasslands (Table 2).

Interestingly, after the fire, RR, DET, LAM and

DIV for forests and grasslands are not significantly

different (Table 2). There is also a marked increase in

DET and LAM for forests and grasslands and a slight

decrease in DIV compared to the situation before the

fire. Therefore, forests and grasslands have a rather

similar behavior after the fire event, with a clear

transition from more complex to more regular dynam-

ics and hence to a better predictable succession.

Fig. 4 Mean time series of the Enhanced Vegetation Index

(EVI) for unburnt forests (a) and grasslands (b) from 2000 to

2014 in the Gargano National Park rangelands. Standard error

bars are shown. Recurrence plot (years vs. years) for time series

of unburnt forests (c) and grasslands (d) adjacent to the burnt

areas in the Gargano National Park
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For the overall time series (Table 3), RR and DIV

for forests and grasslands are not significantly differ-

ent, whereas DET and LAM show significant differ-

ences. In the case of grasslands DET and LAM are

higher than forests, indicating that grasslands present

more predictable dynamics and lower variability than

forests.

Considering the overall time series of unburnt

grassland and forest (Fig. 4), RPs of forests (Fig. 4c)

and grasslands (Fig. 4d) are relatively homogeneous

throughout the temporal profile while the RP of

grasslands (Fig. 4d) shows a more regular pattern.

Only in the case of forests there is a small disruption

between 2007 and 2008 (Fig. 4c). This probably might

be due to the general extreme dry conditions that

occurred in 2007 with a drastic positive feedback on

the fire intensity with possible local effects on EVI

values. This climatic stress is, however, without long-

term effects on the functional activity of ANPP for

forests, which recovers suddenly with the same pattern

as before 2007. Calculation of RQA parameters for the

total time series for adjacent unburnt areas (Table 4)

shows that grasslands have higher DET and LAM but

lower DIV than forests.

By applying JRA, the joint collapse of both

systems can be identified in correspondence of the

burning (Fig. 5a). Joint-LAM and Joint-DET for

Table 1 Mean recurrence rate (RR), determinism (DET), laminarity (LAM) and divergence (DIV) before and after the fire within

the same land cover pixels

Parameters Forest pixels Grassland pixels

Before fire After fire T-Test Before fire After fire T-Test

Mean SD Mean SD Mean SD Mean SD

RR 0.2954 0.0001 0.2947 0.0002 * 0.2954 0.0001 0.2948 0.0001 *

DET 0.515 0.010 0.720 0.028 * 0.600 0.037 0.721 0.045 *

LAM 0.599 0.046 0.823 0.022 * 0.719 0.038 0.824 0.036 *

DIV 0.110 0.014 0.072 0.073 * 0.102 0.014 0.082 0.021 n.s.

*P-value\ 0.05

Table 2 Mean determinism (DET), laminarity (LAM) and divergence (DIV) before and after the fire between the two land cover

pixels

Parameters Before fire After fire

Forests Grasslands T-Test Forests Grasslands T-Test

Mean SD Mean SD Mean SD Mean SD

RR 0.2954 0.0001 0.2954 0.0001 n.s. 0.2947 0.0002 0.2948 0.0001 n.s.

DET 0.515 0.010 0.600 0.037 * 0.720 0.028 0.721 0.045 n.s.

LAM 0.599 0.046 0.719 0.038 * 0.823 0.022 0.824 0.036 n.s.

DIV 0.110 0.014 0.102 0.014 n.s. 0.072 0.073 0.082 0.021 n.s.

*P-value\ 0.05

Table 3 Mean recurrence rate (RR), determinism (DET),

laminarity (LAM) and divergence (DIV) for the overall time

series of both burnt land covers

Parameters Forests Grasslands T-test

Mean SD Mean SD

RR 0.2977 0.0001 0.2972 0.0002 n.s.

DET 0.913 0.006 0.926 0.008 *

LAM 0.818 0.019 0.864 0.016 *

DIV 0.0299 0.005 0.029 0.004 n.s.

*P-value\ 0.05
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burnt areas reveal transitions from less to higher

synchronization of forests and grasslands in corre-

spondence to the fire event followed by a gradual

decrease towards the previous synchronization

regime. Joint-DET (Fig. 5b, d) and Joint-LAM

(Fig. 5c, e) decade similarly after the fire. We also

applied JRA to time series of forests and grasslands

from adjacent unburnt reference areas. In this case,

JRA shows no evidence of collapse/transition

(Fig. 6a), as well as the profiles of Joint-DET

(Fig. 6b, d) and Joint-LAM (Fig. 6c, e) that do not

show relevant variation, indicating that each land

cover maintains its proper functional dynamical

traits.

Discussion

The frequency of fires in Mediterranean rangelands

has historically promoted the adaptation of evergreen

trees like Pinus halepensis and grasses like Hypar-

rhenia hirta and Brachypodium ramosum whose

resilience to fire depends on adaptive protective

mechanisms as well as life-history and recovery traits

(e.g., Noble and Slatyer 1980; Keeley 1986; Quinn

1994).

Recurrence analysis represents an exploratory

approach to provide useful information to unveil the

dynamics of the landscape after a fire. Transitions

observed in RPs (Fig. 3) are due to the destruction of

the original vegetation cover during the fire in both

forests and grasslands. There is a clear simplification

of vegetation structures as well as of landscape

dynamics that is more regular and predictable after

the burning (i.e., higher DET and LAM) and less

chaotic (lower DIV).

In particular, the analyzed RPs of forests and

grasslands are based on structural transitions that

underlie functional transitions, given that EVI repre-

sents an ecological functional proxy of the above-

ground net primary production (ANPP). The RQA

discloses functional transitions of ANPP because

RQA measurements are significantly different

between unburnt and burnt pixels in both land-covers,

Table 4 Mean recurrence rate (RR), determinism (DET),

laminarity (LAM) and divergence (DIV) for the overall time

series of unburnt land covers of reference adjacent to the burnt

areas

Parameters Forests Grasslands T-test

Mean SD Mean SD

RR 0.2977 0.0001 0.2977 0.0001 n.s.

DET 0.900 0.006 0.923 0.003 *

LAM 0.746 0.008 0.893 0.006 *

DIV 0.039 0.004 0.019 0.002 *

*P-value\ 0.05

Fig. 5 Joint Recurrence Analysis (JRA) for the time series of burnt forests and grasslands. Joint recurrence plot (a); time series for 2

and 3 year moving window for Joint-DET (b, d) and Joint-LAM (c, e). Joint phase transitions are identified by white bands (a)
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but without significant differences between burnt

grasslands and forests. Comparing EVI profiles before

and after the burning for forests and grasslands, and

following few field surveys, forest vegetation is

replaced by new grassland vegetation with coniferous

seedlings (a kind of ecological memory of forests),

while grasslands preserve the same structure after the

burning with similar xeric vegetation because of the

resistance to fire of the structuring (herbs and grass)

species. RR, DET, LAM and DIV for forests and

grasslands are not significantly different after the fire

event (Table 2), since understory vegetation abun-

dance usually increase rapidly after fire in response to

abundant resources and an influx of disturbance

adapted species in early successional forest areas

(Hart and Chen 2007). Due to frequent local fires in

suchMediterranean rangelands countering the onset of

shrubs and promoting grazing, no phase transition of

forest to scrubland or grassland to scrubland occurred

that could greatly reduce ANPP, representing a

supporting ecosystem service (Millennium Ecosystem

Assessment 2005). This represents a guarantee of the

overall delivery of ecosystem services in the landscape

(Petrosillo et al. 2013).

JRA can provide useful insights on landscape

evolutionary behavior during the transition phase,

even if the temporal extent of the analysis could be too

short for an exhaustive knowledge of the dynamics of

vegetation covers after the burning (secondary suc-

cession). High values of Joint-DET and Joint-LAM at

the time of fire indicate high synchronization of

system properties in terms of predictability/stability.

After the burning, such synchronization gradually

decays towards the previous synchronization regime

of vegetation covers.

Nonlinear analysis of spatial–temporal dynamics of

socio-ecological landscapes helps gauge landscape

adaptability (Walker and Salt 2006), that is the

capacity of any landscape to activate balancing feed-

back loops to adjust its responses to changing external

drivers and internal processes and continue developing

within the current stability domain or basin of

attraction (Berkes et al. 2003). A three-dimensional

reconstruction of NDVI signal in phase space for

Forest (2000–2012) shows that phase space trajecto-

ries have been visiting for 12 years approximately the

same area all the times showing a high recurrence

(adaptability) (Fig. 7).

Other valuable non-linear methods like Entropy-

based indices like Shannon’s H or contagion are

among the most commonly used metrics in landscape

ecology to analyze time series in order to represent

landscape dynamics (Zaccarelli et al. 2013). Entropy

and information theory have been extensively applied

Fig. 6 Joint Recurrence Analysis (JRA) for the time series of unburnt forests and grasslands adjacent to the burnt areas. Joint

recurrence plot (a); time series for 2 and 3 year moving window for Joint-DET (b, d) and Joint-LAM (c, e)

123

Landscape Ecol (2018) 33:1617–1631 1627

Author's personal copy



in ecology (Ulanowicz 2001), including environmen-

tal assessments (Ekström 2003; Magurran 2004),

dynamics (Avery 2003), and species coexistence

(Chen et al. 2005; Parrott 2005). In particular, the

‘‘normalized spectral entropy’’ (Hsn) is an entropy-

related index able to describe the degree of regularity

(orderliness) within an ecological time series based on

a power spectrum obtained by its Fourier transforma-

tion (Zaccarelli et al. 2013). Normalized spectral

entropy can also provide indices related to the degree

of temporal disorder. The main difference between

normalized spectral entropy and RQA is that the first

approach focuses on probabilities and not the timing of

events, while the second has its focus on the timing.

However, spectral entropy involves some types of

transformation of the original time series designed to

isolate dominant components of periodic variation of

imagery across the multi-temporal spectral space. The

RQA reduces the time series to a matrix t x t that

contains all the information of the original series

without transformations or simplifications of the

reality as in the case of spectral entropy through time

series Fourier transformation. In addition, the com-

parisons among different time series or multitemporal

scale analysis performed by JRA are not possible with

the normalized spectral entropy approach.

The present application of RQA to landscape

ecology shows the strength of this method in terms

of graphical rendering of the recurrence and joint

recurrence, together with advanced numerical param-

eters that offer insights on the behavior of the

landscape. However, further researches are needed

on several case studies to additionally test the

potentiality for RP and JRP in describing landscape

dynamics together with the ability to respond to

disturbances.

Finally, the limiting aspects of RQA could be that it

is very demanding for the time series data, and the

threshold e is empirically set. However, for the

purpose of studying dynamical transitions, threshold

selection is not of fundamental importance since the

relative change of RQA measures does not substan-

tially depend on it (Marwan 2010; Marwan et al.

2015).

Conclusions

Socio-ecological landscapes typically characterized

by non-linear dynamics in space and time that are

difficult to be analyzed using standard quantitative

methods (Parrot 2010). Our ability to evaluate with

accuracy the complexity of natural and human-

controlled processes from reliable dynamical mea-

sures is crucial from the perspective of landscape

management and restoration in the face of climate

change. We have shown the efficacy of recurrence

quantification analysis (RQA) and joint recurrence

analysis (JRA) to track depletion and regrowth of

vegetation cover in Mediterranean rangelands, and to

assess spatial and temporal variability changes both

before and after the disturbance represented by a fire

event. The RQA and JRA can visualize and quantify

temporal dynamics and gauge phase transition like

those observed from forests to grasslands providing

accurate and novel quantitative insights also on

secondary succession. It is potentially capable of

describing both gradual and abrupt transitions in land

covers and provides an effective alternative way to

study several aspects linked to landscape level prop-

erties like the resilience and adaptive capacity for

specific disturbances.

Recent research has focused on developing meth-

ods to characterize the temporal, spatial or structural

signatures of complex systems along a gradient of

order to disorder. In particular, ordered systems can be

characterized by periodic cycles with high predictably

in time and in space (Fig. 1c). On the other hand,

Fig. 7 Three-dimensional reconstruction of Normalized Dif-

ference Vegetation Index signal in phase space for the land

cover class of Forest (2000–2012) by the method of time delays,

with phase space trajectories visiting approximately the same

area all the times (modified form Zurlini et al. 2014a)
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disordered systems show random dynamics and spatial

structure (Fig. 1a, b). Generally, when time series

result relatively predictable, the adaptive responses of

socio-ecological landscape have been effective either

because of human and/or natural balancing feedback

loops that result in landscape trajectories within

current preferred bounds. Thus, the more adaptive

capacity within a landscape, the greater the likelihood

that the landscape will be resilient to induced stress

(Zurlini et al. 2014b). In this context, RQA and JRA

with their set of indices (RR, LAM, DET, and DIV)

can represent new sensitive measures that may mon-

itor the adaptive capacity and the resilience of

landscapes (Parrot 2010). Even if both methods are

very demanding for data, in the last decade, automated

ecological monitoring systems have been progres-

sively installed (e.g., the FluxNET network—https://

fluxnet.ornl.gov/), national and international networks

for long-term ecological research have been estab-

lished (e.g., ILTER—https://www.ilter.network/,

Müller et al. 2016) and the number of ecological time

series databases with public access has increased. All

these advancements should greatly contribute to the

application of complexity measure in general, and the

use of RQA in particular, especially in the perspective

of climate change assessment and ecosystem’s service

evaluation.

However, although we can understand ecological

regime shifts retrospectively, it is difficult to predict

them in advance. Forecastable landscape attributes are

those for which uncertainty (chaoticity) can be

reduced to the point where a forecast contains a

valuable amount of information. To evaluate that

amount, RQA could represent a very useful tool.

Future applications are needed to better identify the

RQA parameter sets useful for standardizing the

analysis by strengthening the accuracy of this

approach in describing the ongoing transformations

of natural and man-managed landscapes.
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Guimarães-Filho ZO, Caldas IL, Viana RL, Nascimento IC,

Kuznetsov YK, Kurths J (2010) Recurrence quantification

analysis of turbulent fluctuations in the plasma edge of

Tokamak Chauffage Alfvén Brésilien tokamak. Phys

Plasmas 17:012303

Hart SA, Chen HYH (2007) Understory vegetation dynamics of

north American boreal forests. Crit Rev Plant Sci

25:381–397

Keeley JE (1986) Resilience of mediterranean shrub commu-

nities to fire. In: Dell B, Hopkins ALM, Lamont BB (eds)

Resilience in mediterranean-type ecosystems. Springer,

Dordrecht, pp 95–112

Kolars J (1966) Locational aspects of cultural ecology—the case

of the goat in non-western agriculture. Geogr Rev

56:577–584

Ladisa G, Todorovic M, Trisorio Liuzzi G (2012) A GIS-based

approach for desertification risk assessment in Apulia

region, SE Italy. Phys Chem Earth 49:103–113

Levin SA (1998) Ecosystems and the biosphere as complex

adaptive systems. Ecosystems 1:431–436

Magurran AE (2004)Measuring biological diversity. Blackwell,

Oxford

Marwan N (2008) A historical review of recurrence plots. Eur

Phys J Spec Top 164:3–12

Marwan N (2010) How to avoid potential pitfalls in recurrence

plot based data analysis. Int J Bifurcat Chaos 21:1003

123

Landscape Ecol (2018) 33:1617–1631 1629

Author's personal copy

https://fluxnet.ornl.gov/
https://fluxnet.ornl.gov/
https://www.ilter.network/


Marwan N, Kurths J, Foerster S (2015) Analysing spatially

extended high-dimensional dynamics by recurrence plots.

Phys Lett A 379:894–900

Marwan N, Romano MC, Thiel M, Kurths J (2007) Recurrence

plots for the analysis of complex systems. Phys Rep

438:237–329

Marwan N, Thiel M, Nowaczyk NR (2002) Cross recurrence

plot based synchronization of time series. Nonlinear Proc

Geoph 9(3/4):325–331

Millennium Ecosystem Assessment (2005) Ecosystems and

human well-being: current state and trends. Island Press,

Washington, DC

Milne BT (1998) Motivation and benefits of complex systems

approaches in ecology. Ecosystems 1:449–456

Moloney KA, Levin SA (1996) The effects of disturbance

architecture on landscape level population dynamics.

Ecology 77:375–394

Mulder C, Bennett EM, Bohan DA, Bonkowski M, Carpenter

SR, Chalmers R, Cramer W, Durance I, Eisenhauer N,

Fontaine C, Haughton AJ, Hettelingh J-P, Hines J, Ibanez

S, Jeppesen E, Krumins JA, Ma A,Mancinelli G, Massol F,
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