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The identification of the coupling direction from measured time series taking place in a group
of interacting components is an important challenge for many experimental studies. We propose
here a method to uncover the coupling configuration using recurrence properties. The approach
hinges on a generalization of conditional probability of recurrence, which was originally intro-
duced to detect and quantify even weak coupling directions between two interacting systems,
to the case of multivariate time series where indirect interactions might be present. We test our
method by an example of three coupled Lorenz systems. Our results confirm that the proposed
method has much potential to identify indirect coupling, which is very relevant for experimental

time series analysis.
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1. Introduction

The extraction of interaction information from
measured time series is an important challenge
in modern nonlinear sciences. The main issue is
to unravel the governing functional interactions
between subsystems contained in a large network.
In most cases, a network has a complex topology
of connectivity with many interacting subsystems
[Albert & Barabasi, 2002; Boccaletti et al., 2006].
Therefore, the process of identifying the network
topology of interactions of such networks is cru-
cial in understanding the mechanism of func-
tional topology, for instance, in brain dynamics

[Zhou et al., 2006], maternal-fetal cardiac systems
[Van Leeuwen et al., 2009] and in climatological
tele-connections [Tsonis & Swanson, 2008; Donges
et al., 2009a]. However, the correct extraction of
connectivity from time series remains a nontrivial
task.

One popular technique applied in the literature,
for instance, in complex climate networks analysis,
is the calculation of cross correlation coefficients of
the time series for every pair of nodes [Yamasaki
et al., 2008; Tsonis & Swanson, 2008]. However,
this method has been proved to be a rather rough
estimation of the coupling strength and in many
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systems, one needs methods taking into account
nonlinear effects [Donges et al., 2009a, 2009b]. More
advanced methods taking into consideration non-
linear dependencies between the different nodes
are often applicable to two or three nodes. Nev-
ertheless, they constitute the first step in a more
thorough analysis of the connectivity structure of
a large network. Inferring the coupling configura-
tion at a local scale can be of substantial help
to explain the global functioning of the network,
e.g. the finding of motifs can be crucial for the
understanding of the whole system [Alon, 2006;
Sporns & Kotter, 2004]. Therefore, in this paper,
we focus on the inference of the coupling configura-
tion of small networks consisting of three nodes.
The understanding of a driver-response rela-
tionship was firstly evaluated in a linear frame-
work by bivariate autoregressive models, by means
of Granger causality [Granger, 1969]. This has
been mainly applied to economy and neurosciences
[Ding et al., 2007]. From the nonlinear perspective,
there are four major approaches in the literature
to address drive-response relationships: state-space
based methods [Quiroga et al., 2000], information
theory based methods [Palus & Vejmelka, 2007;
Schreiber, 2000; Vejmelka & Palus, 2008], phase
dynamics based methods [Rosenblum & Pikovsky,
2001; Rosenblum et al., 2002], and recurrence-based
methods [Romano et al., 2007; Nawrath et al.,
2010]. The state-space based approach hinges on
the assumption of the existence of a smooth map
between the driver X and the response system Y, as
such close states of the driver X imply close states
in the response of Y. In this spirit, several meth-
ods have been proposed by utilizing properties of
nearest neighbors, such as cross predictability and
relative average distance of mutual nearest neigh-
bors [Quiroga et al., 2000]. However, this approach
is usually system-dependent, but fails to yield the
correct coupling in paradigmatic examples as in two
chaotic Rossler systems [Palus & Vejmelka, 2007].
The methods based on information theory need
to calculate the information contained in each sub-
system and quantify the net influence (e.g. trans-
fer information) flow from one system X to the
other system Y. Several applicable algorithms have
been proposed to estimate the transfer informa-
tion flow [Schreiber, 2000]. Recent developments in
calculating transfer information use order patterns
of time series, yielding symbolic transfer entropy
or permutation information [Bahraminasab et al.,
2008; Staniek & Lehnertz, 2008]. However, these

techniques are currently aimed at bivariate situa-
tions. Only recently this method has been extended
to deal with multivariate cases [Frenzel & Pompe,
2007].

Phase dynamics-based methods estimate the
phase components as a first step, but it is not
always possible to assign a phase to a system, in
particular, if the power spectrum does not show a
pronounced frequency peak (i.e. nonphase-coherent
case). A systematic comparison of methods based
on phase dynamics and state-space was carried out
in [Smirnov & Andrzejak, 2005], where the authors
concluded that neither of the methods is better than
the other one. Moreover, some spurious dependen-
cies could be identified for real time series analysis
[Osterhage et al., 2008].

Recently, Romano et al. [2007] introduced a
new method to detect and quantify the asymme-
try of the coupling between two interacting systems
based on their recurrence properties. This method
successfully detects the direction of the coupling
even in weakly as well as structurally different sys-
tems. The main idea hinges on the asymmetry of
the complexity between the driving system X and
the driven system Y. We will shortly review this
technique in Sec. 3. Originally, it has focused on
bivariate situations. It is crucial to extend it to mul-
tivariate time series analysis as this occurs quite
often in many real applications.

Let us start considering the following small net-
work as in Fig. 1, showing six different coupling set-
tings for three unidirectionally interacting nodes.
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Fig. 1. Coupling configuration settings for three systems,
that only unidirectional couplings are considered. (a) Z is
independent of both X and Y. (b) X is the common driver
for both Y and Z. (¢) X is coregulated by Y and Z. (d)
X drives Y, while Y further drives Z. (e) Direct coupling
with X being the common driver and Z being the common
response. (f) Direct coupling in a ring way.



A pairwise analysis (bivariate) is often insufficient
in addressing the possible indirect coupling [e.g. the
coupling between X and Z in Fig. 1(d)]. Hence,
one main objective of this paper is to identify the
indirect coupling by recurrences. More specifically,
we will identify the difference among these six cou-
pling cases by studying the recurrence properties.
The advantage of the extension from two to three
coupled systems is that it makes possible to ana-
lyze data measured from small networks, such as
the EEG recordings on the scalp, so frequently
used in neuroscience and cognitive psychology. In
such experimental situations we have access to time
series from typically of the order of 10 nodes. Fur-
thermore, it is crucial to identify the indirect cou-
pling between X and Z as illustrated by Fig. 1(d)
since it is one of the big challenges for multivariate
analysis. Therefore, we extend the study of Romano
et al. [2007] to three oscillators.

We show numerical studies for the application
to three coupled Lorenz systems with six differ-
ent coupling configurations (Fig. 1). Specifically, we
consider the following system

551 = 0'(582 — 331),
X :{ g =rzy — 19 — 2123 + po1ys + pz1z2, (1)

.7'33 = X1Ty — b:L'3,

U1 =o(y2 —y1),

Y i QU2 =1y — Yo — Y1ys + p12x3 + psez3,  (2)
U3 = y1y2 — bys,
21 =0(22 —21),

Z i { Bg =1z — 20 — 2123 + 1373 + [123Y3, (3)

Z.’3 = 21729 — ng.

We integrate these equations numerically by a
fourth order Runge-Kutta method of step 0.003
but with sampling every 100th point leading to
time step At = 0.3. We use standard parameters
o = 10,7 = 28,b = 8/3 as in the uncoupled case
ti; = 0 so that the oscillators are in a chaotic
regime.

Our procedure to deal with the six coupling set-
tings of Fig. 1 has three steps, which are explained
in different sections: in Sec. 2, we apply a univariate
analysis, namely analyzing each individual system
separately; in Sec. 3, we perform a pairwise analy-
sis, after which only the coupling configuration of
Figs. 1(d) and 1(e) remains unclear. In Sec. 4, the
partial mean conditional probability of recurrence

Inferring Indirect Coupling by Recurrences 1101

is developed to cope with the last two remaining
cases. Some conclusions are drawn in Sec. 6.

2. First Step: Univariate Analysis

Our method hinges on one fundamental tool for
nonlinear time series analysis, namely, recurrence
plots (RPs). Given a trajectory of a dynamical sys-
tem consisting of different values x;, i.e. a sampled
trajectory from system X, where ¢ indicates the
time of observation, the corresponding RP is defined
as [Eckmann et al., 1987; Marwan et al., 2007]

Rij(e) = O(e — lxi — %), (4)

where O(:) is the Heaviside function, ||| is the
distance between two observations in phase space
(which will be measured in terms of the maxi-
mum norm from now on because of computational
efficiency), and e a predefined threshold for the
proximity of two states in phase space, i.e. for distin-
guishing whether or not two observations are neigh-
bors in phase space. By visualizing this matrix with
black (R;; = 1) and white (R; ; = 0) dots, differ-
ent types of dynamics can be identified in terms
of different types of line structures (including sin-
gle points, blocks, and extended diagonal or vertical
lines), which can be quantitatively assessed in terms
of the recurrence quantification analysis [Marwan
et al., 2007].

Here we are particularly interested in the mean
probability of recurrence (recurrence rate), which is
estimated by

1 N
(p(z;)) = RR = = > Rij. (5)
i,7=1

The first step is to study the variations of the
mean probability of recurrences with respect to an
increase of the coupling strength (Fig. 1), sepa-
rately. For instance, in the case of coupling as in
Fig. 1(a), both (p(z)) and (p(z)) remain unchanged
while (p(y)) varies if the coupling strength p is

Table 1. Variation of RR of each individual system. The
symbols “+” correspond to the existence of variation, while
“—” means there are no changes with increase of coupling
strength.
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Fig. 2.

increased. This is because Z is independent of X
and Y and the coupling from X to Y is unidirec-
tional. A similar analysis can be achieved for each
coupling setting of Fig. 1. We summarize the result
in Table 1. We note that, throughout the paper,
the symbols “4” correspond to a change of the
recurrence rate of the component, while “—” means
there are no changes with increase of the cou-
pling strength. Furthermore “(a),...,(f)” denote
the six different coupling configurations, as shown
in Fig. 1.

The numerical simulation for the first step is
shown in Fig. 2, which verifies the results presented
in Table 1. By the first step of the univariate analy-
sis, six different couplings are subdivided into three
categories: (+, —, —), (+,+, —), and (+, +, +). Note
that (4, —, —) denotes the configurations for which
only the RR of one component changes with the
coupling strength no matter which component.
Therefore, the coupling configurations (a) and (c)
are classified in the same group A.

Univariate analysis. Six coupling cases are classified into three groups A, B and C according to our univariate analysis.

Note that in principle one could also use
other measures from Recurrence Quantification
Analysis (RQA) [Marwan et al., 2007] for this first
step analysis. However it is not clear whether their
use would allow identifying the coupling configu-
ration. Moreover, the interpretation of the results
might be difficult and rather empirical. Neverthe-
less, it is important to note that the probability
of recurrence has a deep theoretical meaning as it
is the basis for calculating many dynamical invari-
ants, i.e. correlation dimension Dy [Grassberger &
Procaccia, 1983]. Furthermore, it has a clear rela-
tionship with information theoretic approaches (see

[Palus & Vejmelka, 2007]).

3. Second Step: Pairwise Analysis

In the second step, we perform a pairwise analy-
sis, which was first introduced in [Romano et al.,
2007]. This method is based on a generalization of
the RPs to joint recurrence plots (JRPs), capturing



the interplay between two dynamical systems. JRP
is calculated by

JRPY =0(ex — [|Ixi — x])

i,j=1,...,N.
(6)

The extension to three interacting systems can be
made in full analogy.

In order to identify the coupling direction, one
needs to consider the mean conditional probabilities
of recurrence (MCR) of systems X and Y, which are
defined as follows:

x O(ey — |lyi — vl

N
MCR(Y | X) = NZ_: plyj|x;)

N

> IR
B

j=1 ZR

1=

b?z

—

and

N
1
MCR(X|Y):NZp

N
j=1 Y
> R

where p(y;|x;) is an estimation of the probability
that the trajectory of Y recurs to the neighborhood
of y; under the condition that the trajectory of X
recurs to the neighborhood of x;. In the presence of
the asymmetry of the coupling (e.g. suppose X to
be driver and Y to be response without the loss of
generality), we have the following relationship

MCR(Y | X) < MCR(X |Y). (9)

The interpretation of the inequality (9) is based on
the difference of complexity between X and Y. If X
drives Y, the dimension of Y will be larger than the
dimension of X because the dynamics of Y is deter-
mined by both the states of X and Y, while Y does
not influence X. Note that this only holds provided
the coupling strength is smaller than the thresh-
old for synchronization, as the coupling direction
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might be lost if both systems become completely
synchronized. Increasing the coupling strength from
X to Y, the complexity of Y increases. This results
in a decrease of the recurrence probability p(y;)
that Y recurs to the neighborhood. However, the
complexity of X remains constant with increasing
coupling strength because X is independent of Y
(not vice versa). Hence, the mean recurrence prob-

ability of (p(x;)) > (p(y;)), implying 31 RY, >
ZZ 1RY Therefore, we have MCR(Y | X) < MCR

(XY) it X is the driver. For convenience, we
calculate

AMCR(Y | X) = MCR(Y | X) — MCR(X | Y).

(10)
The existence of coupling is justified by the vari-
ation of A(Y | X), while the directionality (i.e. X
is the driver) is determined by whether this value
is negative, or vice versa, provided the coupling
strength is systematically changed. The contribu-
tion of X to MCR(Y | X) tends to zero if it is inde-
pendent of Y, namely we get

Zp yilx;)

MCR(Y | X) =

1 N
:—E (j):RR. (11)
N‘—1py Y

In other words, the condition that X recurs does
not influence the recurrence probability of Y (the
same holds for MCR(X |Y) = RRy, if X and Y
are independent).

Note that the numerator of Eq. (7) or (8) is
related to the information dimension for a strange
object (in this case, the object is the composition
of X and Y in a joint phase space) [Ott, 1993]. For
the subsystem X, ZZ 1 It;; appearing as denom-
inator of Eq. (7) is used 1o calculate the infor-
mation dimension for system X. In this regard,
MCR(Y | X) [Eq. (7)] is an average ratio between
the pointwise dimension value of (X,Y’) and the
pointwise dimension value of X over the entire
trajectory.

Based on the results obtained in the first step
(Table 1 and Fig. 6), we do the pairwise analysis
for cases A and B, following the notation of Fig. 2
since in case C' we have only one coupling configu-
ration. Furthermore, we characterize the results of
the pairwise analysis using the same notations as
before. For instance, if AMCR(X |Y) changes with
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Fig. 3.

Pairwise comparison for coupling (a, c). The left panel is for coupling configuration (a), the right panel is for coupling

configuration (c). Note that in (a), AMCR(Z|Y) is completely overlapped with the difference between RRy and RRz, which
can be obtained from the first step of the univariate analysis (see Fig. 2).

the coupling strength whereas AMCR(X | Z) and
AMCR(Y | Z) stay constant, we write (4, —, —). In
particular, we have explicit expressions for Eq. (10)

for each coupling:

(A) couplings (a) and (c)

(a) <+, R _)

AMCR(Y | X) > 0,

Note that RRy changes with the coupling
strength, leading to AMCR(Z|Y) < 0.
However, AMCR(Z|Y) simply follows the
same curve of univariate analysis since Y is
independent of Z. In this respect, we denote
it as “—7.

(C) (+v +, *)

AMCR(Y | X) < 0,

AMCR(Z| X) =RRz — RRx ~0, (12) AMCR(Z | X) < 0, (13)
AMCR(Z|Y) = RRy — RRy. AMCR(Z|Y) = RRy — RRy ~ 0.
(+, +, —) (+, +, +)
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Fig. 4.
configurations (d, e).

Pairwise comparison for coupling configurations (b, d, e). The left panel is for (b), the right panel is for coupling



(B) couplings (b), (d) and (e)

(b) (+a +, *)
AMCR(Y | X) > 0,
AMCR(Z | X) > 0, (14)
AMCR(Z|Y) = 0.
(d,e) (+,+,+)

AMCR(Y | X) >0,
AMCR(Z| X) > 0, (15)
AMCR(Z|Y) > 0.

Therefore, after the pairwise analysis, only cases (d)
and (e) remain ambiguous.

The numerical simulations for the pairwise
analysis of the second step are shown in Figs. 3(a),
3(c), 4(b), 4(d) and 4(e), respectively.

4. Third Step: Partial MCR

A recurrence-based bivariate analysis is generally
not conclusive in addressing the existence of indirect
coupling. Hence, we go to the crucial step in
extending the method to deal with the remaining
two coupling cases (d) and (e) after the previous
two steps.

Let us first consider MCR of two variables
used in our previous bivariate analysis, i.e. the
pair of X and Y. We calculate MCR(Y | X) and
MCR(X |Y), respectively. The second step is to
quantify the influence of the third variable Z on
MCR(Y | X) by considering the difference between
MCR(Y | X) and the mean conditional probability
of recurrence that Y recurs given that both X and
Z recur,

AMCR(Y | X)y
= —(MCR(Y | X) - MCR(Y | X, Z)). (16)

Similarly the contribution of Z to the MCR(X |Y)
is calculated by

AMCR(X |Y)y
= —-(MCR(X |Y)-MCR(X |Y,Z2)). (17)
Before synchronization sets in, we have MCR
(Y]X) < MCR(Y|X,Z) due to (p(xj)) >
(p(x;,2;)). Hence, for convenience, the normal-

ization factor (negative symbol) in front of the
right-hand side in Eq. (16) is introduced to keep
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the probability values to be positive. Note that
AMCR(Y | X))z quantifies a subset of MCR(Y | X),
measuring the contribution of Z to the probabili-
ties of recurrence of Y via X. In this regard, we call
AMCR(Y | X)z partial MCR. Moreover, in general
AMCR(Y | X)z is different from AMCR(X |Y)y
because of the asymmetry between MCR(Y | X)
and MCR(X |Y).

Analogously, the contribution of Y to MCR
(Z]X) and MCR(X | Z) is calculated, respectively,
by

AMCR(Z | X)y

= —(MCR(Z| X) - MCR(Z | X,Y)), (18)
AMCR(X | Z)y

= —(MCR(X | Z) - MCR(X | Y, Z)).  (19)

The contribution of X to MCR(Y|Z) and
MCR(Z |Y) is computed by

AMCR(Y | Z)x
=—(MCR(Y | Z) - MCR(Y | X, Z)), (20)

AMCR(Z Y )x
= —(MCR(Z]Y)—-MCR(Z|X,Y)). (21)
Depending on the particular coupling configu-
ration [Figs. 1(a)-1(f)], we obtain explicit expres-
sions for measuring the contribution of one system
to the other two. The details are presented in the
Appendix. In this section, however, we focus on

the remaining two coupling configurations that have
still to be distinguished, namely (d) and (e).

(d) From the viewpoint of Z, the contribution of
indirect coupling from X to Z is smaller than
that of the direct coupling from Y to Z. Hence
MCR(Z|X) < MCR(Z|Y) and considering
Egs. (18) and (21) we have

AMCR(Z|Y)y < AMCR(Z | X)y. (22)

This is validated by showing a similar rela-
tionship from the X perspective, namely,

MCR(X | Z) < MCR(X |Y) implying
AMCR(X |Y)7 < AMCR(X | Z)y. (23)

However, from the mediator Y viewpoint, one
has

AMCR(Y | X)z < AMCR(Y | Z)x, (24)

indicating Y to be a mediator.
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Fig. 5. Partial MCR shows distinct behavior for the coupling configurations (d) and (e).

(e) In this case, from the perspective of system  agree with our theoretical expectation in a reason-
7, the contribution of X to Z is larger than  able range for coupling strengths.
the contribution of Y to Z, which implies
MCR(Z|Y) < MCR(Z | X). This yields, con-
sidering again Egs. (18) and (21), 5. Decision Tree
Following the discussions presented in previous
AMCR(Z | X)y < AMCR(Z|Y)x. (25) sections, we conclude that the six different cou-
pling configurations are clearly identified with our

This relationship is validated from the X per-  three-step procedure (plotted as a decision tree in
spective, MCR(X |Y) <MCR(X | Z), implying  Fig. 6):

AMCR(X | Z)y < AMCR(X |Y)z. (26) First: Univariate analysis, namely the probabil-

ity of recurrences for each individual sys-

Moreover, from the viewpoint of Y, we have tem, identifies the coupling configuration

of (f). Note that couplings (a, ¢) are not

AMCR(Y | Z)x < AMCR(Y | X)z. (27) able to be further classified because of the
relabeling.

The numerical simulations for the partial MCR  Second: Pairwise analysis, allows distinguishing the

analysis for the coupling configurations (d, e) coupling configuration of (a) from (c),

involved in the third step are shown in Fig. 5, which and (b) from (d, e).



Univariate: Bivariate: Partial
RR, AMCR(X]Y)
RR, A MCR(X|Z) MCR
= AMCR(Y|Z)
+
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Fig. 6. Decision tree derived from the theoretical analy-

sis. Our procedure consists of three steps, namely univariate,
pairwise and partial MCR analysis.

Third: Partial MCR, analysis identifies the differ-
ence between coupling (d) and (e).

6. Conclusions

We have proposed a new method to uncover the
coupling structure of a small network, which hinges
on the recurrence properties of the underlying sys-
tems. Due to the dimensional asymmetry between
the driver and the response systems, the mean con-
ditional recurrence probabilities of MCR(Y | X) and
MCR(X |Y) are asymmetric. We have shown that a
generalization to three coupled systems, in particu-
lar including the extraction of indirect coupling, is a
challenging problem that can be tackled by consid-
ering the partial MCR. We have demonstrated our
procedure using three Lorenz oscillators in chaotic
regime in six different coupling configurations.

We plan to apply the proposed method to
experimental data, e.g. climate time series in order
to infer the coupling structure. This will be the sub-
ject of future research. Some issues might appear in
this line of research, which have to be taken into
consideration. Noise is ubiquitous in experimental
time series and requires developing robust measures
to identify the correct coupling configuration. It has
been demonstrated that most recurrence structures
are preserved if the free parameter € [threshold in
the recurrence matrix Eq. (4)] is chosen as € = 50,
where o corresponds to the standard deviation of
the observational noise [Thiel et al., 2002]. For the
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application to a large network of coupled units, the
method has to be adapted to keep a good statisti-
cal power and to reduce the computation time. A
further issue that will be considered in the future is
the presence of asymmetric bidirectional coupling,
as it is rather common in experimental complex
networks.
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Appendix

Partial MCR for all Couplings
of Fig. 1

The detailed analysis for the partial MCR, for the
coupling settings of Fig. 1 is performed in this sec-
tion. We assume that the three systems are iden-
tical in the case of zero coupling and that the
coupling strengths can be changed systematically,
which is often the case for many active experi-
ments. Note that the numerical results are based
on Eq. (1).

(a) Z independent of both X and Y [Fig. 1(a)].
We obtain MCR(Y | (X,Z)) = MCR(Y | X).
This means that the contribution of Z to
MCR(Y | X) can be disregarded. Similarly, we
have MCR(X | (Y, Z)) = MCR(X | Y). Further-
more, MCR(Z | X) = RRz, MCR(Z | X,Y) =
RRz, and MCR(Y | Z) = RRy since Z is inde-
pendent of both X and Y. Explicitly we have
the following equations:

AMCR(X |Y)z =0, (A.1)
AMCR(X | Z)y = —(RRx — MCR(X |Y)),
(A.2)
AMCR(Y | X)z =0, (A.3)
AMCR(Y | Z)x = —(RRy — MCR(Y | X)),
(A.4)
AMCR(Z| X)y =0, (A.5)
AMCR(Z|Y)x = 0. (A.6)

In general Egs. (A.2) and (A.4) are not equal
because of the asymmetry between X and Y.
Figure 7 shows the numerical result.
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Z is independent of both X and Y [Fig. 1(a), p12 = p,p;5 = 0 otherwise]. (a) From the viewpoint of X,

4. (A.1)]. (b) AMCR(Y | X)z = 0, [E

(b) X is a common driver [Fig. 1(b)].
From the viewpoint of X, MCR(X|Y) =
MCR(X | Z), since Y and Z are identical. Hence
we have

AMCR(X |Y)z = AMCR(X | Z)y

L (A7)

It is also obvious to see that Y is indepen-

dent of Z under the condition of X, yield- (c)
ing MCR(Y | Z)
thus,

AMCR(Y | Z) x

—(RRy — MCR(Y | X, 2)),

AMCR(Z|Y)x

—(RRy — MCR(Z| X, Y)).

= RRy, MCR(Z|Y)

= RRZ7

(A.8)

(A.9)

In general before reaching synchronization

we have the mean recurrence probability

relationship (p(x;))
(p(x,y5) > (0(y5,25) = (p(y;)) -

Hence, MCR(Y | X) > MCR(Y

(p(yj) =~

0.1
—— AMCR(X]Y),
—— AMCR(X|2)
?,:J Y
So.05
<
0
0 01 02 03
u
(a)
Fig. 8.

AMCR(Z|Y)x

0.4

|1Z) =

0.1

&
So.05

q. (A.3)]. However, due to the finite length of the time series
0). (c) AMCR(ZY)x

~ 0, AMCR(Z | X) = 0.

which leads to

AMCR(Y | X)z < AMCR(Y | Z)x. (A.10)

The same holds from the viewpoint of Z,
namely,

AMCR(Z| X)y < AMCR(Z|Y)x

Figure 8 shows the numerical results.

X is a common response [Fig. 1(c)].

When X is the common receiver, Y and Z are
independent of each other. Hence, we derive the
same theoretical results as the case that X is
the common driver. Particularly, we have

(A.11)

AMCR(X |Y)z = AMCR(X | Z)y, (A.12)
AMCR(Y | X)z < AMCR(Y | Z)x, (A.13)
AMCR(Z | X)y < AMCR(Z|Y)x. (A.14)

Figure 9 shows the numerical results.

(d) Z indirectly coupled with X, but directly driven
(p(25)), by Y [Fig. 1(d)].
(p(z5)). Because of the asymmetry of MCR(Y | X)
RRy, and MCR(X |Y), one expects the difference
0.1
—— AMCR(Y|X), —— AMCR(Z|X),
— A MCR(Y|2), —— AMCR(Z|Y),
o
€ o0.05
3
0
0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
i n

(b)

()

X is the common driver for both Y and Z [Fig. 1(b), p12 = p13 = p, pi; = 0 otherwise]. (b) From X view-
point, AMCR(Y | X)z < AMCR(Y | Z)x, [Eq. (A.10)]. (c) The same holds for (Eq. (A.11)), verified by AMCR(Z| X)y <

shown in this paper).

. Note that when p > 0.39, Y is synchronized with X suggested by the Lyapunov exponent spectrum (not
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are verified (see the caption of Fig. 8).

between AMCR(Y | X)z and AMCR(X |Y)z.
More specifically, the values of Egs. (16)—(21)
are not zero.

Note that within the coupling setting
[Fig. 1(d)], we have (p(x;)) > (p(y;)) > (p(z;))-
Before synchronization (neither two subsys-
tems are synchronized), (p(x;)) > (p(y;,2;)),
(p(y;)) > (p(x5,25)), and (p(z;)) > (p(x;,¥;))-
Furthermore, the complexity of (X,Z) is
greater than the complexity of the joint space
of (Y,Z). This leads to the joint recurrence
probability of (p(y;,z;)) being greater than

(p(xj,2;)). Hence we have MCR(Z|Y) >
MCR(Z | X), which yields
AMCR(Z|Y)x < AMCR(Z| X)y. (A.15)

From the viewpoint of Z, the relationship of the
inequality of (A.15) suggests that the contribu-
tion of indirect coupling from X to Z is smaller
than that of the direct coupling from Y to Z.
This is validated by showing a similar relation-
ship from the X perspective, namely,

0.2
u

(b)

(e)

0.3

—— AMCR(ZIX),
— AMCR(ZY),
S
g o1
<
0
04 05 0 01 02 03 04 05
u

X is the common receiver for both Y and Z [Fig. 1(c), p21 = p31 = p, pi; = 0 otherwise]. Equations (A.12)—(A.14)

However from the mediator Y viewpoint, it
sends out the coupling information to Z when
receiving the same amount of information from
X. Hence, one has

AMCR(Y | X)z S AMCR(Y | Z2)x, (A.17)
indicating Y to be the mediator. Figure 10
shows the numerical results.

Direct coupling setting: X is the common driver
and Z is the common receiver [Fig. 1(e)].
From the perspective of system X, both Y and
Z have the same contribution to X, namely, we
have

AMCR(X | Z)y < AMCR(X |Y)z. (A.18)

From the viewpoint of Z, it accepts two pack-
ages of information from the driver X. One is
from the direct contribution sent by X to Z; the
other is received via the mediator Y. Z cannot
distinguish where these two packages of infor-
mation come from. Therefore, we have

AMCR(X |Y)z < AMCR(X | Z)y. (A.16) AMCR(Z|X)y < AMCR(Z|Y)x, (A.19)
0.12 0.12 0.12
~ AMCR(X|Y), _ AMCR(Y|X); __ AMCR(ZIX),
x 0.08 —— AMCR(X[Z)y o 0.08 — AMCR(Y|2)x o 0.08 ____ AMCR(Z|Y)x
(@) (@) o
= = =
< 0.04 < 0.04 <0.04
0 0 0
0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3
u u
(a) (b) (c)
Fig. 10. X drives Y, and Y drives Z [Fig. 1(d), p12 = p23 = p, ps5 = 0 otherwise]. (a) AMCR(X |Y)z < AMCR(X | 2)y,

(¢) AMCR(Z|Y)x < AMCR(Z|X)y. (b) However, Y is a mediator, having AMCR(Y | X)z £ AMCR(Y | Z)x.
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(a) (c)
Fig. 11. X drives both Y and Z, and Y drives Z [Fig. 1(e), p12 = p13 = p23 = i, pi; = 0 otherwise]. (a) AMCR(X | Z)y <

AMCR(X |Y)z. (b) AMCR(Y | Z)x < AMCR(Y | X)z holds before synchronization. (¢) A(Z | X)y < A(Z|Y)x.
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Fig. 12.

indicating that the transitivity property of Y
is identified. Before onset of synchronization,
we again have (p(x;)) > (p(y;)) > (p(z))-
Further, the relationship of (p(x;,y;)) >
(p(y;,2;)) holds. Hence, from the viewpoint of
Y, we have

AMCR(Y | Z)x < AMCR(Y | X)z. (A.20)

Figure 11 shows the numerical results.
Direct coupling setting: in a ring way [Fig. 1(f)].
All measures are the same, since each system

0.2
— AMCR(ZIX),
— AMCR(@Z|Y
x CR(Z]Y)x
Q 0.1
S
0
03 04 0.5 0 0.1 02 03 04 05
u

()

X drives Y, Y drives Z, and Z drives X [Fig. 1(f), p12 = po3 = p31 = i, pyj = 0 otherwise] [Eqgs. (A.21)—(A.23)].

shows basically the same recurrence behavior,
namely,

AMCR(X |Y)z = AMCR(X | Z)y, (A.21)
AMCR(Y | X)z = AMCR(Y | Z)x, (A.22)
AMCR(Z | X)y = AMCR(Z |Y)x. (A.23)

Note that this only holds in the case when the
three systems are identical, yielding the same
transitivity ability. Figure 12 shows the numer-
ical results.
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