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Abstract – Recurrence networks are a novel tool of nonlinear time series analysis allowing the
characterisation of higher-order geometric properties of complex dynamical systems based on
recurrences in phase space, which are a fundamental concept in classical mechanics. In this letter,
we demonstrate that recurrence networks obtained from various deterministic model systems as
well as experimental data naturally display power-law degree distributions with scaling exponents
γ that can be derived exclusively from the systems’ invariant densities. For one-dimensional maps,
we show analytically that γ is not related to the fractal dimension. For continuous systems, we find
two distinct types of behaviour: power-laws with an exponent γ depending on a suitable notion
of local dimension, and such with fixed γ = 1.

Copyright c© EPLA, 2012

Introduction. – Power-law distributions have been
widely observed in diverse fields such as seismology, econ-
omy, ecology and finance in the context of critical phenom-
ena [1–4]. In many cases, the underlying complex systems
can be regarded as networks of mutually interacting
subsystems with a complex structural organisation. Specif-
ically, numerous examples have been found for hierarchical
structures in the connectivity of such complex networks,
i.e., the presence of scale-free distributions P (k)∼ k−γ of
the node degrees [5,6]. Such hierarchical organisation is
particularly well expressed in networks of networks, or
interdependent networks, which constitute an emerging
and important new field of complex-network research [7,8].
The interrelationships between the non-trivial structural
properties of complex networks and the resulting dynam-
ics of the mutually interacting subsystems are a subject of
intensive research [9,10].
Among other developments, one of the main recent

achievements of complex-network theory are various
conceptionally different approaches for statistically

(a)E-mail: yzou@phy.ecnu.edu.cn

characterising dynamical systems by graph-theoretical
methods [11–15]. In this letter, we report and thor-
oughly explain the emergence of power-laws in the
degree distribution of the so-called recurrence networks
(RNs) [15–18] for various paradigmatic model systems as
well as experimental data. RNs encode the underlying
system’s recurrences in phase space and are based on
a fundamental concept in classical physics [19]. Due to
their direct link to dynamical systems theory, RNs are
probably the most widely applicable type of complex
networks inferred from time series introduced so far.
Although the system’s temporal evolution cannot be
reconstructed from the RN, this representation allows for
an analysis of the attractor’s geometry in phase space
using techniques from network theory. Specifically, nodes
represent individual state vectors, and pairs of nodes are
linked when they are mutually closer than some threshold
distance ε > 0 [20] (cf. fig. 1), which is a key parameter
of this method [16]. Thus, the adjacency matrix of a
RN reads Aij =Θ(ε−‖�xi− �xj‖)− δij , where Θ(·) is the
Heaviside function, δij Kronecker’s delta, and (�xi, �xj) the
coordinates of a pair of state vectors (represented by RN
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Fig. 1: (Colour on-line) Construction of a RN: (A) time series
xt, (B) reconstructed two-dimensional phase space trajectory
with state vectors yt = (xt, xt+1) and an exemplary Euclidean
ε-ball around y2 (dashed) for ε= 3. (C) Resulting recurrence
network for the specific chosen ε.

nodes) in phase space. According to this definition, RNs
are random geometric graphs [21] (i.e., undirected spatial
networks [22]), where the spatial distribution of nodes is
completely determined by the probability density function
of the invariant measure of the dynamical system under
study, and links are established according to the distance
in phase space. Consequently, their degree distribution
P (k) directly relates to the system’s invariant density
p(x).
In this work, we demonstrate the emergence of scal-

ing in the degree distributions of RNs and provide some
evidence that this phenomenon is (unlike many other
scaling exponents occurring in the context of dynami-
cal systems) commonly unrelated to the fractal attrac-
tor dimension, except for some interesting special cases.
Instead, the power-laws naturally arise from the variabil-
ity of the invariant density p(x) of the system (i.e., peaks
or singularities of p), as we will show numerically as well
as explain theoretically.

Power-law scaling and singularities of the invari-
ant density. – As initial examples, fig. 2 illustrates the
presence of power-law degree distributions in the RNs
obtained for several prototypical low-dimensional chaotic
systems with a suitable choice of the systems’ charac-
teristic parameters: i) the Rössler system in spiral-chaos
regime: ẋ=−y− z, ẏ= x+0.2y, ż = 0.2+ z(x− 5.7); ii)
the Lorenz system: ẋ= 10(y−x), ẏ= x(r− z)− y, ż =
xy− 8/3z; and iii) the Hénon map: xn+1 = 1− 1.4x2n+ yn,
yn+1 = 0.3xn. For the Rössler and Lorenz systems, a
proper time discretisation has been used as explained in
detail in the figure caption.
In all cases, scaling emerges only if the distance thresh-

old ε is chosen small enough, which corresponds to a small
average degree 〈k〉 and link density ρ= 〈k〉/(N − 1) of the
resulting network (N being the number of nodes). We note
that the respective range of ε should be sufficiently higher
than the threshold for which a giant component exists [23].
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Fig. 2: Cumulative degree distributions F (k) =
∑∞
k′=k P (k

′) of
the RNs obtained for several discrete maps: (A) x-component
of the first return map of the Rössler system (γ = 2.16± 0.03),
(B) map of consecutive local maxima of the z-component of
the Lorenz system with r= 28 (no scaling), (C) as in (B) with
r= 90 (γ = 2.64± 0.18), and (D) Hénon map (γ = 2.88± 0.04).
Estimates of γ > 1 have been obtained from the cumulative
degree distributions F (k)∼ k1−γ (in the following figures, we
show either F (k) or P (k) when sufficiently straight in a log-
log plot) by means of a maximum-likelihood approach [24] as
averages considering 100 different values of ρ for which a power-
law appears. For each ρ, 5 different realisations with random
initial conditions are used. We consider RNs of size N = 2× 105
and the Euclidean norm in all examples discussed in this letter.
Four cases were chosen for illustration corresponding to a
link density of ρ1 = 0.02% (◦), ρ2 = 0.03% (•), ρ3 = 0.05% (�),
and ρ4 = 3% (+). A power-law is hardly detectable for ρ4.
Insets: log-log plot of the correlation sum C(ε) vs. ε, where
the correlation dimension D2 is estimated by linear regression
and agrees well with values from the literature [25–27].

The size of the scaling regime decreases with growing ρ
and becomes hardly detectable for ρ� 1% (fig. 2). The
distance threshold ε also occurs in dimension estimation
where the limit ε→ 0 is taken (e.g., [28]). In contrast, a
RN is based on one finite ε. Our smallest ε are, however,
still large enough to avoid the problem of lack of neigh-
bours [26] since the correlation integral C(ε) still shows
the same dependency on ε as for larger values (see insets
in fig. 2).
A theoretical explanation of the emergence of power-law

distributions of RN-based degree is based on the general
theory of random geometric graphs [21], where nodes are
sampled from some probability density function p(x). For
a RN, the space is the phase space of a dynamical system
and the nodes are states sampled at discrete times. If we
assume that the system is ergodic, the sampled trajectory
is already close to its attractor, and the sampling times
are generic (particularly, the sampling interval is co-prime
to any period lengths of the system), the nodes can
be interpreted as being sampled from the probability
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density function p(x) of the invariant measure µ of the
attractor [29]. The degree distribution of a general random
geometric graph, P (k), is derived from p(x) in the limit of
large network size N as [21]

P (k) =

∫
dx p(x)e−αp(x)(αp(x))k/k! (1)

with α= 〈k〉/ ∫ dx p(x)2 (note that the computation of 〈k〉
involves integration of p(x) over the ε-neighbourhood of
all points x and thus implicitly depends on the specifically
chosen ε as well as the sample sizeN). Hence, the invariant
density of the system exclusively determines the existence
of a power-law in P (k) and its exponent γ.
For systems with a one-dimensional phase space, it can

be shown that under some weak conditions on p(x) it
holds:

P (k)≈ k+1
α

∑
x∈p−1( k+1α ) |p

′(x)|−1. (2)

This implies that if p(x) has a power-law–shaped peak
at some state x0, i.e., p(x)∼ |x−x0|−1/γ for some γ > 0,
the degree distribution P (k) also follows a power-law but
with the reciprocal exponent, P (k)∼ k−γ . Specifically, a
slower decaying invariant density leads to a faster decaying
degree distribution. Note that not all invariant densities
lead to power-laws: If p(x) is Gaussian, we get P (k)≈
2(−2 ln k√2π/α)−1/2 instead of a power-law.
More generally, we can deduce that the presence of

singularities in the invariant density is the key feature
determining whether or not the resulting RN has a power-
law degree distribution. This relationship can be intu-
itively understood: If p(x) has a singularity at some point
x0 in phase space, then a time series of the associated
dynamical system will return very often to the neighbour-
hood of x0. Hence, nodes with a high degree will accu-
mulate close to the singularity. If the resulting invariant
density obeys a power-law decay, eq. (2) implies the emer-
gence of a power-law degree distribution. If there is more
than one singularity of p(x), one can expect the result-
ing degree distribution being related to a weighted sum
of the influences of these points. Vice versa, the presence
of a power-law degree distribution in the RN of a dynam-
ical system requires the existence of a power-law in the
invariant density, i.e., the presence of a singularity. We
therefore conjecture that a local power-law in the invari-
ant density is a necessary and sufficient condition for the
emergence of a scale-free RN. Beyond the explicit results
for one-dimensional systems as discussed above, we further
show below that the emergence of a power-law scaling is
also possible in higher dimensions and conjecture that this
requires the presence of a dynamically invariant object
(e.g., an unstable or hyperbolic fixed point) close to which
the invariant density scales as a power-law at least in one
direction.

Power-law scaling vs. fractal dimension. – As an
example for discrete-time systems leading to power-laws,
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Fig. 3: (Colour on-line) (A): Cumulative degree distribution
F (k) of the RNs for the map (3) with β = 2, 2.5, 3, 4. Note
that we divide the degree k by ε so that the x-axis is
ε-dimensionless. (B) P (k) of the cusp map β = 0.5. The inset
shows the corresponding iterative function f(x). The dashed
line of (B) has a slope of 1. The legend indicates the respective
link densities ρ.

consider the generalised logistic map [30]

f(x) = 1− |2x− 1|β (3)

with β � 12 . For β =
1
2 , 1, 2, this gives the cusp map, tent

map, and standard logistic map, respectively. For general
β > 0, the unit interval [0, 1] is mapped onto itself by
a symmetric function with a maximum of 1 at x= 12 ,
thus having two pre-images for each x< 1. For β > 1,
the associated invariant density p(x) has two peaks at
x= 0 and x= 1 with p(δ) = p(1− δ)∼ δ(1−β)/β for small
δ. Hence, the degree distribution P (k) shows a power-law
with the exponent

γ = β/(β− 1). (4)

Numerical results shown in fig. 3(A) for several different
values of β agree precisely with eq. (4). In contrast,
for β = 1 the nodes are uniformly distributed, and the
degree distribution derived from eq. (1) is Poissonian,
P (k) = e−ααk/k! [31]. For β = 12 , we get p(x) = 2−
2x [32,33], which leads to a specific type of “power-
law” in P (k) with γ =−1 as shown in fig. 3(B). These
results imply that the scaling exponent is not simply
related to the fractal dimension: the attractor has the box-
counting dimension D0 = 1 independently of β, whereas γ
changes with varying β (eq. (4)). However, the correlation
dimension D2 also depends on β (D2 = 1 for β � 2,
and D2 = 2/β if β > 2 [26]), i.e., there is an indirect
relationship between γ and D2 for certain special cases.
The different behaviour of the mentioned dimensions
results from the fact that D0 exclusively considers the
number of boxes required for covering the attractor, but
not their individual probability masses as D2 and other
notions of fractal dimensions do.
Turning to continuous-time systems, we next compare

the above findings with those for some discretised standard
examples. On the one hand, for the Rössler system, we
consider the successive x-values when passing the Poincaré
section at y= 0 with ẏ < 0. As shown in the inset of
fig. 4(A), the resulting first return map has a shape similar
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Fig. 4: (Colour on-line) PDF of (A) the successive x values
passing the plane of y= 0 of the Rössler attractor, (B), (C)
PDF of zmax for the Lorenz system of r= 28 (B) and r= 90
(C), and (D) marginal density of the x component of the Hénon
map. The insets show the associated first return plot. The
dashed curve in (B) shows a fit by a Gaussian distribution.

to the case of β = 1.87 in eq. (3). Hence, we expect a
power-law with the exponent γ ≈ 1.87/(1.87− 1) = 2.15.
The invariant density has several dominant peaks, which
are together responsible for the power-law observed in
fig. 2(A) with γ indeed close to 2.15. In fact, P (k) is
a mixture of individual power-laws corresponding to the
individual peaks of p(x), whose exponents are all roughly
the same. On the other hand, for the Lorenz system,
we obtain a one-dimensional map by studying the local
maxima znmax of z for successive cycles [34], i.e., mapping
znmax to z

n+1
max (inset of fig. 4(B)). For r= 28, this first

return map has a similar shape as eq. (3) for β = 0.5 (inset
of fig. 3(B)), but the corresponding density is bell-shaped
without a peak. Indeed, we do not observe a power-law for
P (k) in this case (fig. 2(B)). However, increasing r changes
the shape of p(x). For example, at r= 90 (fig. 4(C))
the density has peaks at several points, explaining the
observed power-law in fig. 2(C). These results demonstrate
that scaling is only present for a certain range of r values.
Given the rich bifurcation scenario of the Lorenz system
a corresponding detailed study is beyond the scope of
this work, but will be a subject of future research. A
similar behaviour as for the discretised Lorenz system
can be observed for the Hénon map, though the marginal
invariant density of the x-component has a more complex
structure (fig. 4(D)).
While there is no unambiguous relationship between γ

and the fractal dimension already for discrete systems, the
situation becomes even more complicated for continuous-
time systems which are not discretised via a Poincaré
section or otherwise. For two-dimensional flows ẋ=Φ(x)
with only one peak in p(x), the respective type of behav-
iour depends on the eigenvalues of the Jacobian DΦ(x0) at
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Fig. 5: (Colour on-line) (A): P (k) for the RN of the Rössler
system with screw-type chaos [35]. Three different link densities
are chosen for illustration as indicated by the legend, a larger
link density ρ4 does not produce a power-law (inset). The
slope of the dashed line is −1.33. (B): ϑ-capacity dimension
Dϑ0 ≈ 1.30 in three small cuboidal neighbourhoods of different
size (in terms of phase space distance in each coordinate
direction, see the legend).

the fixed point x0 as well as on the shape of p(x). Specif-
ically, in many cases (that shall not be further discussed
here) the existence of a power-law for P (k) cannot be eval-
uated easily, whereas in other cases, one can analytically
derive a power-law with a very small exponent γ = 1. In
turn, the following numerical results suggest that there are
also examples displaying a distinct relationship between γ
and some suitably defined local dimension.
For the Rössler system in the regime of screw-type

chaos with a homoclinic point at the origin fulfilling the
Shilnikov condition [35,36], the invariant density is domi-
nated by its peak at the origin. The degree distribution
P (k) of the corresponding RN shows a power-law with γ ≈
1.33, which agrees fairly well with the ϑ-capacity dimen-
sion Dϑ0 defined in [28] (fig. 5). We also observe similar
scaling laws for both numerical model and experimental
data (output intensities) of a single-mode CO2 laser [37].
The underlying system has a saddle-focus S embedded in
the chaotic attractor (fig. 6(A)) which causes a spiking
dynamics [38,39]. The attractor is dominated by a homo-
clinic orbit emerging from and converging to S. The degree
distributions P (k) resulting from both model and experi-
mental data suggest power-laws with γ ≈ 1.35 (fig. 6(B)),
which qualitatively agrees well with the point-wise dimen-
sion of the attractor around S. Finally, similar results can
be obtained for a predator-prey food-chain model with
four competing species [40], which also displays homoclinic
chaos, where we observe γ ≈ 1.9 in agreement with Dϑ0
(fig. 7). This variety of examples underlines the general
importance and wide applicability of our findings.

Technical aspects. – In general, we have to make two
cautionary notes on the numerical study of scaling laws in
RNs.
First, in the previous continuous-time examples, the

presence of power-laws with the numerically estimated
exponents (see above) cannot be rejected on a 90% signif-
icance level using Kolmogorov-Smirnov tests. However,
the alternative of a power-law with γ = 1 can also not be
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Fig. 6: (Colour on-line) Experimental laser data: (A) Phase
portrait in the subspace (x1, x2, x6), where the saddle-focus
S is at the most dense region. (B) P (k) of RNs from model
data for three different link densities (see the legend); a larger
link density ρ4 does not lead to a power-law (inset). (C) P (k)
of RNs from experimental data (inset: cumulative distribution
F (k)). (D) Point-wise dimension DS1 = 1.35. All dashed lines
have slope −1.35.
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Fig. 7: (Colour on-line) As in fig. 5 for the Lotka-Volterra
system [40] with homoclinic chaos. The slope of the dashed
line in panel (A) is −1.90.

rejected at the same level. Hence, power-laws with quali-
tatively different exponents describe the data comparably
well. It remains an open problem to determine the correct
γ. We note that this is a general problem when evaluating
hypothetical power-laws from finite data [24,41].
Second, experimental data often consist of only one

measured variable. Hence, a reconstruction of the associ-
ated phase space trajectory is necessary prior to RN analy-
sis, e.g., by time-delay embedding [42]. Like estimates of
dynamical invariants or complexity measures [43,44], the
power-law behaviour of P (k) can depend on the particular
observable, because different coordinates of a dynamical
system often have different marginal densities. Specifically,
embedding theorems ensure topological invariance (i.e.,
properties of the dynamical system that do not change
under smooth coordinate transformations are preserved),
but no metric invariance of the attractor’s geometry
including p(x). For example, the logistic map and the
tent map (β = 2, 1 in eq. (3), respectively) are topologi-
cally equivalent under the transformation x �→ sin2(πx/2),

but the different invariant densities with respect to their
original coordinates (that have been used for constructing
the RNs from metric distances in their respective phase
spaces) lead to distinct scaling exponents γ (fig. 3(A)).
In other words, the power-law exponent γ is not invari-
ant with respect to general smooth coordinate transforma-
tions that do not leave the geometric shape of the system’s
invariant density qualitatively the same.

Conclusions. – In summary, we have reported an
interesting novel aspect of the geometrical organisation
underlying the dynamics of many complex systems in
physics and beyond. Specifically, we have provided an
analytical explanation of the emergence of power-laws in
recurrence networks constructed from sampled time series
based on the theory of random geometric graphs. Unlike
for comparable complex-network approaches [11,13], this
scaling is not simply related to the system’s fractal
dimension, but requires the presence of power-law–shaped
singularities of the invariant density and a feasible choice
of the considered spatial scale ε. We emphasise that
dimensions are defined in the limit of ε→ 0 and practically
estimated by a series of ε values, whereas the power-law
exponent γ of the RN appears for each sufficiently small
ε individually. Note that in contrast to the degree, the
transitivity properties of RNs have a direct relationship
with attractor dimension [45].
In comparison with the invariant density itself, fractal

dimensions are a rather specific characteristic. In particu-
lar, they do not simply describe the whole system (as the
invariant density itself does), but quantify density vari-
ations on the attractor viewed at different spatial scales
ε [28,46]. Conversely, the scaling exponent γ directly char-
acterises a power-law decay of the density in phase space
independent of a specific scale. In this spirit, both frac-
tal dimension and scaling exponent γ capture conceptu-
ally different aspects of the geometric organisation of a
dynamical system in its phase space. However, although
there is no general relationship between γ and fractality, in
some special cases the power-law exponent coincides with
some notion of dimension. This has been demonstrated
for several example systems as well as experimental data.
In turn, we have found that in other cases the value of γ
drops to 1. There is a need for further studies involving
both additional model systems and experimental exam-
ples beyond those discussed in this work in order to better
understand this complex relationship between power-law
degree distributions and fractal scaling (i.e. under which
general conditions related to a system’s structural organ-
isation both scaling exponent and fractal dimension coin-
cide), particularly in continuous dynamical systems.
From a conceptual perspective, we would like to remark

that studying a single scalar property like the scaling
exponent of a recurrence network or the fractal dimen-
sion cannot provide a complete view on the structural
organisation of a nonlinear complex system. Specifically,
both characteristics capture distinct and complementary

48001-p5



Y. Zou et al.

features related to the probability density of the invariant
measure. In this spirit, the power-law exponent γ quanti-
fies a fundamental property that has not been explicitly
studied so far. Because its relationship with the features
of possible singularities of the invariant density is intuitive
(i.e. the emergence of power-law degree distributions has
some clear physical meaning), one particular strength of
studying the degree distribution of recurrence networks is
that it potentially allows identifying the presence of such
singularities in complex situations (e.g., for observational
data).
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