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ABSTRACT

Aims. Sunspot distribution in the northern and southern solar hemispheres exibit striking synchronous behaviour on the scale of a
Schwabe cycle. However, sometimes the bilateral symmetry of the Butterfly diagram relative to the solar equatorial plane breaks
down. The investigation of this phenomenon is important to explaining the almost-periodic behaviour of solar cycles.
Methods. We use cross-recurrence plots for the study of the time-varying phase asymmetry of the northern and southern hemisphere
and compare our results with the latitudinal distribution of the sunspots.
Results. We observe a long-term persistence of phase leading in one of the hemispheres, which lasts almost 4 solar cycles and
probably corresponds to the Gleissberg cycle. Long-term variations in the hemispheric-leading do not demonstrate clear periodicity
but are strongly anti-correlated with the long-term variations in the magnetic equator.
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1. Introduction

Carrington (1858) discovered that the sunspot mean latitude
gradually decreases from the onset to the end of a solar cycle.
This effect was later confirmed by Spörer (1894) using other so-
lar cycles, and the established rule was subsequently referred to
by his name. The latitude-time diagram of sunspot occurrence
forms butterfly-like patterns during the course of the solar cycle
(Maunder 1904). Maunder (1922) stated: “Since the origin of
the solar spots lies within the Sun, and the northern and southern
spots show difference in their behaviour, we must conclude that
the Sun is not symmetrical in the constitution of its interior. If
then we assume, as the basis of any investigation, that the Sun
is symmetrical in its internal constitution, we are making an as-
sumption contrary to the evidence supplied by the behaviour of
its surface”.

Since 1955, the north-south asymmetry has been investi-
gated by introducing the normalised index NA (e.g., Newton
& Milsom 1955; Knaack et al. 2004; Ballester et al. 2005;
Carbonell et al. 2007; Li et al. 2009). The NA measure “loses all
information about the latitude variations of sunspots” (Pulkkinen
et al. 1999) and hides phase hemispheric relationships (Zolotova
& Ponyavin 2006), because of the definition of NA as instanta-
neous amplitude dominance of the northern over southern hemi-
sphere and vice versa.

Waldmeier (1957) suggested a 80-year period for the hemi-
spheric asymmetry of sunspot activity, phase shift, and height
variations at solar maxima. However, his scheme cannot explain
the strong asymmetry detected between the cycles 19 and 20
(Waldmeier 1971). Outstanding asymmetry observed during the
Maunder minimum also disagrees with Waldmeier suggestions.

Variations in sunspot latitudes from 1853 to 1996 were in-
vestigated by Pulkkinen et al. (1999). They defined the so-called
magnetic equator to be the sum of the mean latitudes 〈λ〉 of

sunspots in the northern and southern hemispheres 〈λ(N)〉n +
〈λ(S )〉n (the southern component is negative, n is the time
epoch). A systematic variation with a period of about 90 years
and an amplitude of 1.3 degrees was detected.

Cross-recurrence plots (CRPs) can be used to study run-time
differences (such as locally varying phase shifts) between time
series (Marwan et al. 2002). Applying CRPs to the raw monthly
sunspot area time series, we have shown that run-time differ-
ences between northern and southern sunspot appearances ex-
hibit non-random quasi-regular behaviour (Zolotova & Ponyavin
2006). This approach allows us to determine the asymmetry in
the northern and southern sunspot activities as an effect of a
synchronisation between hemispheres. It was shown that this
synchronisation can be detected on the solar cycle time scale
(Zolotova & Ponyavin 2007b). Significant continuous long-term
variability in the interhemispheric phase shift was confirmed us-
ing wavelet decomposition (Donner & Thiel 2007). They sug-
gested that phenomenon of the north-south asymmetry should
not be explained as a phenomenon of phase synchronisation, be-
cause hemispheric sunspot activities probably represent just two
observables of the same complex system.

However, we suggest that sunspots, as tracers of the toroidal
magnetic field, evolve independently in both hemispheres, while
the large-scale poloidal magnetic field is the common “synchro-
niser” for the entire Sun. This autonomous evolution in strong
small-scale magnetic fields and weak hemispheric coupling be-
tween them do not contradict the dynamo theory. Large asymme-
try during the Maunder minimum, when sunspots appeared com-
monly only in the southern hemisphere (Ribes & Nesme-Ribes
1993; Sokoloff & Nesme-Ribes 1994), is also indirectly indica-
tive of an independent increase in toroidal flux tubes in both
hemispheres. If the north and south represents two observables
of the same complex system then the butterfly diagram should
always have two wings (not only one).
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A hemispheric coupling can be produced by a poloidal large-
scale magnetic field formed in the convective zone and/or transe-
quatorial loops in the solar corona as a visible signature of the
dynamo process (Jiang et al. 2007). Hemispheric coupling can
be continuous or intermittent in time. The last case can result in
a strong phase asymmetry.

In this paper, we apply cross-recurrence plots to anal-
yse long-term asymmetries between the northern and southern
sunspot distributions. We study the variation in the north-south
temporal asymmetry and compare it with the long-term variation
in mean sunspot latitudes. Furthermore, we discuss the strong
north-south asymmetry at the time of Grand minima and just at
the beginning of the 24th solar cycle.

2. Methodology

The recurrence plot was introduced as a tool for visualisation
of recurrent states of dynamical systems (Eckmann et al. 1987;
Marwan et al. 2007a). Further developments in this method
promise new approaches to the analysis of spatio-temporal sys-
tems (Vasconcelos et al. 2006; Marwan et al. 2007b). Its bi-
variate extension, the cross-recurrence plot (CRP), was later
used to study run-time differences between two similar systems
(Marwan et al. 2002). A CRP analyses the parallel occurrence of
states as described by the time series xi and yi and is defined by
the cross-recurrence matrix CR

CRi, j = Θ(εi − ‖xi − y j‖), i, j = 1, . . . ,N, (1)

where N is the length of the time series x and y, ‖ · ‖ is a norm,
and Θ is the Heaviside function (Marwan et al. 2007a). The re-
currence threshold εi can be either fixed or can vary for each in-
dex i in such a way that the number of recurrence points (neigh-
bours) for each state xi is the same. This latter condition causes
obviously a CRP with a predefined number of recurrence points
(recurrence point density), given by the number of neighbours of
each state.

In the special case of x = y, the CRP corresponds to the
common recurrence plot R, which contains the line of identity
Ri,i = 1, expressing the trivial recurrence of a state to itself at the
same time. Applying a transformation of the timescale (e.g., a
phase shift) to the second time series y, the line of identity be-
comes bowed or shifted (Marwan et al. 2002; Marwan & Kurths
2005). We call this line a line of synchronisation (LOS), because
we can use it to rescale the timescale of the second time series
and determine the closest match (synchronisation) of the two
time series. We, therefore, note that this synchronisation has a
different meaning than the phase synchronisation as a physical
phenomenon. It is also important to point out that CRPs require
time series of the same observable and similar amplitude varia-
tions in both x and y. However, a CRP can be useful for detect-
ing differences in timescales between two different data series or
dynamical systems, as shown for geophysical measurements of
lake sediments (Marwan et al. 2002; Marwan & Kurths 2005)
or phase differences in the occurence of sunspots (Zolotova &
Ponyavin 2006). CRPs were initially introduced to study dy-
namical systems of higher dimensions, i.e., by considering phase
space vectors x ∈ Rm, but can be analogously applied to the anal-
ysis of spatio-temporal data (Vasconcelos et al. 2006; Marwan
et al. 2007a,b), as in the case of sunspot activity data.

The construction of the LOS with the CRP can be performed
in different ways. However, an important requirement is that for
each point on the x-axis of the CRP a corresponding point on
the y-axis must be found. Additional criteria to obtain a good

LOS are that the amount of targeted recurrence points by the
LOS should converge to the maximum and the amount of gaps
in the LOS should converge to the minimum. To achieve this
aim, we used a simple two-step algorithm proposed in Marwan
et al. (2002), available in the CRP Toolbox for Matlabr©. This al-
gorithm provided a trade-off between efficiency and correctness
(there may be more optimised algorithms available from other
sources).

The algorithm for constructing the LOS T (i) consists of the
following steps:

(1) Initial step: Find a recurrence point next to the axes ori-
gin (0, 0), lying either on the x-axis or on the y-axis. The
preferred direction is the x-axis (if in x and y-direction, the
distance to the next recurrence point is equal). Thus, we have
the two cases
(a) Start point on x-axis: The starting point is at (i0, 0). The

first points of the LOS are T (0, . . . , i0) = 0.
(b) Start point on y-axis: The starting points is at (0, j0). The

first point of the LOS is therefore T (0) = j0.
(2) Next recurrence point: Find the next recurrence point at (i, j)

after a previously determined LOS point (ĩ, j̃) by looking for
recurrence points in a squared window of size w = 2, lo-
cated with its origin at (ĩ, j̃). If the edge of the window meets
a recurrence point (i, j) = (ĩ + Δi, j̃ + Δ j), we follow with
step (3), else we iteratively increase the size of the window
w = w + 1 until a recurrence point is found or the end of the
CRP is reached (i.e. ĩ + w = N or j̃ + w = N). Note that it is
not necessary that Δi ≡ Δ j.

(3) Next LOS point:
(a) We consider a window of size dx × dy with its origin at

the identified recurrence point (i, j). The parameters dx
and dy are rubber parameters useful for correcting the
LOS if extended clusters of recurrence points occur de-
flecting the LOS to their edge (for dx = dy the preferen-
tial direction of the LOS will be 45◦). Determine the local
centre of mass of this window with coordinates sx and sy
(sx = 0 corresponds to i and sy = 0 to j, respectively).
Note that we have to limit i + dx ≤ N and j + dy ≤ N.

(b) Find the indices kx and ky of the first non-recurrence
points CRi+kx, j = 0 and CRi, j+ky = 0, where kx ∈ [0, sx]
and ky ∈ [0, sy] (i.e., within a column and a row starting
from (i, j)). If a non-recurrence point is not found, we set
for this index the centre of mass (kx = sx or ky = sy).
Note that we have to limit i + kx ≤ N and j + ky ≤ N.

(c) We consider the point (i + kx/2, j + ky/2) as a point on
the LOS. We model the LOS between this point and the
former point (ĩ, j̃) using linear interpolation (fractional
coordinates are floor-rounded).

(d) Set the last point (i + kx/2, j + ky/2) as the new starting
point (ĩ, j̃) and repeat with step (3), until i = N or j = N.

In the case of sparse CRPs, a manual positioning/correction of
the starting point may be necessary. Because we are interested
only in the relative deviation of the LOS, we subtracted the
monotonically increasing line of identity (i.e., a series running
from 1874 to 2008).

3. Data and results

We used the Royal Greenwich Observatory USAF/NOAA data
of sunspot area and their latitudes separately for the northern
and southern hemispheres. In contrast to our previous analysis
(Zolotova & Ponyavin 2006, 2007b) in which raw (unsmoothed)
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Fig. 1. Fragment of the cross-recurrence plot of smoothed monthly
sunspot area for the cycle 17. LOS is presented by black (significant)
and pink (insignificant) points. The leading of southern hemisphere
changes to the northern leading near 1937.

data were analysed, we used filtered (smoothed) data. Smoothing
of the data allows an accurate detection of the LOS in the CRP.
To achieve this, the monthly sunspot area data was filtered us-
ing an optimal 20-month moving average. The length of the
moving average filter was empirically determined as a trade-
off by ensuring as much detail as possible and at the same time
a smooth LOS without large jumps. To be able to identify the
slight wandering of the magnetic equator, the latitude data for
each Carrington rotation was filtered using a 10-month moving
average.

The CRP of the northern and southern hemispheres sunspot
area data was calculated using a varying recurrence threshold ε,
preserving a recurrence point density of 10%. For the construc-
tion of the LOS, rubber parameters dx = 30 and dy = 30 were
used.

In general, a CRP can contain extended clusters of recur-
rence points for which the states of the considered systems
change slowly. Solar cycle extremes (minima and maxima)
cause regions of uncertainties (extended clusters of recurrence
points) in the description of the timescale mismatch between
both systems. In contrast, ascending and descending phases of
the solar activity exhibit rather clear segments on the LOS, in
which we are able to detect the phase differences between the
northern and southern hemisphere. To reduce these uncertainties
in the following analysis, we consider only these particular seg-
ments of the LOS, whose underlying recurrence structure does
not exceed a width of a half year (i.e., 6 points). As an example,
we may consider the 17th solar cycle (Fig. 1). Until 1935, the
solar minimum caused an extended cluster of recurrence points.
The following ascending phase in the both hemispheres is more-
or-less free from ambiguities and is found to contain a phase
shift. After 1937, the solar maximum again causes an extended
cluster of recurrence points. For clearness, we label the LOS as
uncertain (pink colour). In the following, we consider only the

remaining clearly defined segments of the LOS (black points,
Fig. 2b).

The change in sign of the LOS indicates the change of
the leading role in the hemispheres (LOS > 0 – north lead-
ing, LOS < 0 – south leading). A general change from mainly
positive values to mainly negative values appears between 1925
and 1930, whereas a change from negative to mainly positive
values appears between 1965 and 1970 (Fig. 2b, vertical gray
lines). Thus, from the beginning of the 12th to the maximum of
the 16th cycle, the northern hemisphere dominates in leading,
after which, until the minimum before the cycle 20, the south-
ern hemisphere leads, and then until the present, the northern
hemisphere leads again. These findings coincide with the identi-
fied phase difference between the activities in both hemispheres
as studied by Donner & Thiel (2007). However, the timescale
differences derived by the LOS increased to a maximum of
25 months, whereas, because of averaging effects, the phase dif-
ference derived by Donner and Thiel did not exceed 10 months.
For instance, the north-south lag in the beginning of cycle 20
is about 13 months (Zolotova & Ponyavin 2007a). The mea-
sured long-term variation in the hemispheric leaderships can be
confirmed by cross-correlations, local phase relationship from
cross-wavelet analysis (Zolotova & Ponyavin 2007b), and by
joint-recurrence plots. However, all these methods have the dis-
advantage that they need to consider sequences of data points,
causing an averaging of the property being measured. Using the
CRP approach, we are able to compare the timescales of the two
data series on a point-by-point basis.

We next compared the LOS with the magnetic equator
derived by Pulkkinen et al. (1999) between 1853 and 1996
(Fig. 2a). To extend the time span to the present day, we used
a running mean of daily sunspot latitude data for the entire Sun
(equivalent to the magnetic equator definition) from 1980 to July
2008 (200 days moving average; Fig. 2a, blue line). Gaps corre-
spond to the absence of sunspots during solar minima. By fitting
a sine to the magnetic equator, Pulkkinen et al. (1999) found
three sign changes. Two of them coincide with the already men-
tioned epoch (1925–1930 and 1965–1970), but with negative
values before 1925–1930 and positive values before 1965–1970.
They found an additional change in 1875. Obviously, the lat-
itudinal distribution of sunspots (magnetic equator) is in an-
tiphase with the long-term leadership variation in the sunspot
occurrences.

Since our time series starts in the middle of 1874, we are un-
able to detect a change in the hemispheric leadership during the
minimum of the 12th cycle. In reattempting a change detection,
it would be useful to consider, e.g., Carrington’s and Spörer’s
data.

Another test of the obtained results that we have obtained, is
a comparison with the separate mean sunspot latitudes of north-
ern and southern hemisphere. We used the Greenwich data (as
used for the Butterfly diagram) and for each Carrington rotation
calculated the mean latitude separately for each hemisphere. The
10-point (Carrington rotation) moving average clearly indicates
that up to the maximum of the solar cycle 16, the north leads
in time, but with a preference for sunspots to emerge at higher
latitudes in the south (Fig. 2c). After this epoch and until the
minimum of cycle 20, the situation is reversed (south is leading
but sunspots belonging to higher latitudes occur in the Northern
hemisphere). After cycle 20, the state is restored back to a situa-
tion that appeared between cycle 12 and 16.

The differences between these mean sunspot latitudes of
northern and southern hemisphere (Fig. 2d) clearly reproduce
variations in the magnetic equator. The results also coincide
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Fig. 2. a) Magnetic equator according to Pulkkinen et al. (1999) – black colour, the mean sunspot latitude extended by us – blue colour. Gaps
corresponds to days without sunspots. b) LOS: rejected deviations are pink. c) Smoothed mean sunspot latitudes for the north (black) and south
(red). d) Their difference is shown by red. All symbols are the same apart from for raw data – grey. e) Yearly smoothed sunspot area. The north
dominates the amplitude measurement – black, south – red.

with the weighted magnetic equator derived by Pulkkinen et al.
(1999) for unsmoothed (grey) and smoothed data (red).

4. Conclusion and discussion

We have performed a cross-recurrence plot analysis of sunspot
activity data and have found a long-term persistence in phase
leading of one of the hemispheres, which is close to the
Gleissberg cycle (Gleissberg 1967). Thus, the wings of the
butterfly diagram exhibit a long-term asymmetrical evolution.
According to the analysed sunspot area data, two significant
changes in the predominant hemispheric leading have been de-
tected since 1874. The first change occurred near 1928 (16th cy-
cle maximum), the second in late 1968 (minimum between the

cycles 19 and 20). Phase-leading was found to be in antiphase
with the mean latitudes of sunspots in the two hemispheres.

Pulkkinen et al. (1999) found regular magnetic equator vari-
ations of periods of about 90 years and an amplitude of 1.31 ±
0.13 degrees. Later, Pelt et al. (2000) defined the solar cycle as
a spatiotemporal rather than a purely temporal entity. They pre-
sented evidence of a Gleissberg cycle in long-term changes in
both length and symmetry of the Schwabe cycle.

We have extrapolated the position of the magnetic equator
using data from 1980 until July 2008 (Fig. 2a, blue dashed line).
In general, we found that its position has shifted southwards, and
we may expect a next zero crossing just after 2020. However,
time intervals between zero crossings are not equal to each other.
The northern hemisphere leads by about 50–55 years, whereas

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811430&pdf_id=2
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the southern hemisphere leads by only 40–45 years. This vari-
ability in the period is similar to the occurrence rate of Grand
minima and maxima, which is driven not by long-term cyclic
variability, but rather by a stochastic or chaotic process (Usoskin
et al. 2007). However, historical activity data are still of too short
duration to resolve this problem.

The new solar cycle 24 started on January 4th 2008 in the
North, since the northern hemisphere leads in time and domi-
nates in power. The unusually long solar cycle 23 exhibits in the
last part of the current minimum a significant north-south asym-
metry of the sunspot area, reaching 500 units of millions of a
hemisphere for unsmoothed and 250 for smoothed data (Fig. 2e,
blue circle). For the whole interval of the Greenwich records, the
asymmetry during the solar minima does not reach such a stable
large amplitude. We expect that some more dramatic change in
the solar dynamics may occur in the near future.

During the Maunder minimum (1645–1715), it is interest-
ing that the butterfly symmetry was broken, and a significant
amplitude difference between the hemispheres became evident.
Sunspots were observed only in the Southern hemisphere (Ribes
& Nesme-Ribes 1993; Sokoloff& Nesme-Ribes 1994). We pro-
pose that a similar amplitude and/or phase asymmetry occured
during the Dalton minimum (1795–1823). Suppressed and de-
layed activity in the driven hemisphere was possibly responsi-
ble for the unusual length of the 4th solar cycle and subsequent
Grand minimum (Zolotova & Ponyavin 2007a).

According to the topological kinematic model of the solar
dynamo, the differential rotation is the major cause of trans-
forming the poloidal field into toroidal flux tubes that emerge
in the form of bipolar sunspots (Babcock 1961; Leighton 1969).
The difference in the appearance of sunspots in both hemi-
spheres depends apparently on the north-south asymmetry of
rotation. Variations in the north-south asymmetry in the solar
rotation seem to be observed at the Sun on a long timescale
(see, e.g., Pulkkinnen & Tuominen 1998) and can be associ-
ated with a long-term systematic asynchrony and asymmetry of
the hemispheres. Further studies are necessary to establish such
relationships.
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