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Introduction

It has been well appreciated that the native state fold of proteins is in some way dependent 
upon the physico-chemical properties of their amino acid sequence, most notably, hydrophobicity 
(1-3). More recently it has been recognized that the actual folding process is of a stochastic nature, 
and also includes the possibility of forming aggregates that ultimately can be physiologically 
harmful. A growing body of evidence suggests that this involves partially or completely unfolded 
proteins (4). Yet, what factors specifically promote the formation of aggregates as opposed to 
native folds under relatively normal conditions remain undecided.  

Recently, we have proposed that some key features of protein hydrophobicity patterns 
analyzed by a nonlinear signal processing technique, recurrence quantification analysis (RQA), 
provide some necessary conditions for aggregation. A significant finding included a 
correspondence between short deterministic patches of hydrophobicity distribution along the 
sequence, what we term laminarity, [LAM, (L)], with 3-D “unstructured” portions of 
acylphosphatase (AcP). It was shown that the “ruggedness” of the hydrophobicity as measured 
by the derivative of hydrophobic change [what we term TREND, (T)], coincided with Dunker’s 
“disorder” index of proteins (5). Beyond this, a counterpoint was defined as the degree of 
laminarity. Specifically, in an analysis of the protein engineering experiments of Chiti et al. (6) 
it was shown that aggregation sensitive zones vs. folding sensitive zones were distinguished by 
the two complementary concepts of trend/laminarity (7). The implication is that these areas may 
be inherently unstable, and somehow involved in the promotion of (at least) partial unfolding 
and aggregation. Indeed, it has been shown that regions tend to be involved in binding/folding 
events (8). The degree at which these conditions exist probabilistically determines the 
propensity for aggregation. What was not determined is the effect of total charge on the 
probabilities. Additionally, we suggested that these features may be related mathematically to 
provide some correlation with aggregation behavior. 

In a follow-up study, Chiti, et al. (9) addressed the question of charge a propos of aggregation 
again using AcP mutants which minimally affected hydrophobicity, -helical and -sheet 
propensities. Thus, using selected mutations and the results of their previous work, these authors 
came to the conclusions that increase of net charge (not solely local) aids in avoiding aggregation. 
In our analysis, we confirm, in part, their observations and make further distinctions on the basis 
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of: 1) RQA variables and 2) a quantitative model of aggregation propensity, taking into account 
hydrophobicity patterns and charge. Surprisingly, the model, even if inspired by a specific 
problem (effects of mutations on aggregation propensity of AcP) is correlated significantly with 
aggregation propensities in a diverse set of proteins, suggesting a phenomenological index. 
Moreover, the formula predicting the effect of mutations on aggregation propensity, is also able to 
locate, at the extreme of a statistical distribution, all the proteins giving rise to highly structured 
DNA-protein assemblies (histones) and RNA binding proteins present in a large set of 1141 
proteins randomly selected from the SWISS-PROT data base. 

Materials and methods 

Data sets 

The data which inspired our model are in a seminal paper by Chiti et al. (6) (hereafter 
referred to as C1), and concern the effect of different mutations on acylphosphatase (AcP) 
aggregation propensity. A second Chiti et al. (9) data set (C2) dealt with the effects of charge. 
The model was also applied to a set of diverse peptides and proteins whose aggregation 
propensity was known by Chiti et al. (10) (C3). This set was composed of data from the 
literature specifying aggregation rates by different techniques, and were normalized by wild 
type aggregation values to allow for comparative analyses.  

The protein population used as a test for the aggregation formula included 1141 proteins 
randomly chosen from the SWISS-PROT repository in order to avoid any selection bias (11) 
and constituting a representative sample of all known eukaryotic sequences. These proteins are 
available at ftp://ftp.ebi.ac.uk/pub/contrib/swissprot/testsets/signal. We utilized a subset made of 
eukaryotic proteins that are not secreted and thus do not have the bias of an N-terminal signal 
peptide, potentially imposing an externally driven correlation of protein sequences. 

Recurrence plots 

Eckmann et al. (12) introduced a tool which can visualize the recurrence of states xi in a 
phase space. Usually, a phase space has a higher dimension than can be readily visualized. 
Higher dimensional phase spaces can only be visualized by projection into the two or three 
dimensional sub-spaces. However, Eckmann’s tool enables one to investigate the m-
dimensional phase space sequence through a two-dimensional representation of its recurrences. 
Such a recurrence of a state at time i at a different time j is pictured within a squared matrix with 
black and white dots, where black dots mark a recurrence, and both axes are the ordered 
sequences. This representation is called recurrence plot (RP). Such an RP can be mathematically 
expressed as:  

 Ri,j =  (  || xi xj||), xi
m, i, j=1,…, N [1] 

where Ri,j is the recurrence, N is the number of considered states xi,  is a threshold distance, m
the embedding dimension, || · || a norm and (·) the Heaviside function. (The threshold 
distance, , determines if a given point is considered recurrent). 

The initial purpose of RPs was the visual inspection of higher dimensional correlations. The 
advantage of RPs is that they can also be applied to rather short, nonlinear, and even nonstationary 
data. The RPs exhibit characteristic large scale and small scale patterns. The former patterns 
were denoted by Eckmann et al. (12) as typology and the latter as texture. The typology offers a 
global impression which can be characterized as homogeneous, periodic, drift and disrupted.
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Recurrence quantifiers in recurrence plots 

Closer inspection of the RPs reveals small scale structures (the texture) which are single
dots, diagonal lines as well as vertical and horizontal lines (the combinations of vertical and 
horizontal lines form rectangular clusters of recurrence points). In particular: 

– Single, isolated recurrence points can occur if states are rare, if they do not persist or 
fluctuate heavily. However, they are not a unique sign of chance or noise.  

– A diagonal line Ri+k,j+k = 1 (for k=1,…, l, where l is the length of the diagonal line) occurs 
when a segment of the numerical series runs parallel to another segment, i.e., the 
sequence visits the same region of the phase space at different intervals. The length of 
this diagonal line is determined by the duration of such similar local evolution of the 
segments. The direction of these diagonal structures is parallel to the Line Of Identity 
(LOI), represented by the main diagonal in RPs, indicating the parallel running of 
sequences for the same evolution.  

– A vertical (horizontal) line Ri,j+k = 1 (for k = 1, …, v, where v is the length of the vertical 
line) marks a length in which a state does not change or changes very slowly. It seems 
that the state is trapped.

Because visual inspection is difficult, and dependent upon the resolution of the output device 
(monitor/printer), a quantification of recurrence plots was developed by Zbilut and Webber (13, 
14) and extended with new measures of complexity by Marwan et al. (15). In the original 
definition of the RPs, the neighborhood is a ball (i.e. L2-norm is used) and its radius is chosen in 
such a way that it contains a fixed amount of states xj (12). (The original Eckmann et al.
algorithm used a nearest neighbor method to choose the recurrences and the resultant RP was 
not symmetrical.) The most commonly used neighborhood is that with a fixed radius . For RPs 
this neighborhood was first used by Zbilut and Webber (14). A fixed radius means that  
Ri, j = Rj, i, resulting in a symmetric RP (see Table 1 for a formulation of the variables).  

These measures can be computed in windows along the main diagonal, which allows for a 
study of their spatial dependence, and can be used to detect state transitions. Another possibility 
is to define these measures for each diagonal parallel to the main diagonal separately (16). 
Windowed versions are also available. 

Recurrence in protein sequences 

The numerical series studied in this work are protein sequences coded by the hydrophobicity 
of the constituent residues. Discrete time and spatial series (like non branching polymers) are 
completely congruent mathematical objects, given they are both linear arrangements of discrete 
subsequent elements with a fixed and well defined ordering. Switching from time series to 
protein primary structures, the dynamical concept of “state” corresponds to a patch of 
consecutive monomeric units of length equal to the embedding dimension.  

Each protein sequence was coded by means of the Miyazawa-Jernigan hydrophobicity scale 
(MJ) of aminoacid residues (17). This scale corresponds to the first eigenvalue of the contact 
energy matrix as reported at: http://us.expasy.org/tools/pscale/Hphob.Miyazawa.html, a choice 
dictated by our previous analysis of a 1141 random sample of protein sequences from the 
SWISS-PROT Database (see above). In that case, we demonstrated that the MJ was the code 
producing the largest separation in distance space for obtained patterns, as compared to a 
random assortment of amino acids. 
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Table 1. RQA Measures 

Measure Definition 

Recurrence, REC Percentage of recurrence points in an RP: 
N
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Determinism, DET Percentage of recurrence points which form diagonal lines:  
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P(l) is the histogram of the lengths l of the diagonal lines.  
Laminarity, LAM Percentage of recurrence points which form vertical lines:  
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P(v) is the histogram of the lengths v of the vertical lines.  
Trapping time, TT Average length of vertical lines:  
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Longest diagonal line, Lmax Length of the longest diagonal line: 
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Longest vertical line, Vmax Length of longest vertical line:  
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Divergence, DIV Inverse of Lmax : 

L
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Related to the largest positive Lyapunov exponent, but does not 
correspond to it. 

Entropy, ENT Shannon entropy of the distribution of the diagonal line lengths p(l): 
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Trend, TREND Paling of the RP towards its edges:  
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The application of RQA implies an a priori setting of the working parameters embedding 
dimension, radius, and line (the minimum number of adjacent recurrent points to be considered 
as deterministic). On the basis of studies of the maximal information content of protein 
sequences (at embedding 3) as well as our previous analyses, the above parameters were set to: 
embedding dimension = 3; radius = 6, and line = 2. The radius was determined by finding the 
shelf singularity of hydrophobicity as defined by the RQA variable DET (17-21). Because of the 
size of the SWISS-PROT Database, the radius was set to obtain approximately 1% REC values, 
which, in practice, ensures achievement of the singularity. 
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Results

Empirical refinements and model validation

In order to develop a general empirical model of aggregation we first focused attention on 
the data of C2 which was used to evaluate the effect of net charge on AcP folding. Our aim was 
to determine a simple functional relationship between RQA variables, charge (Q), and 
aggregation indexes. 

As indicated by Chiti et al. (9), an inverse relationship emerged between aggregation rate 
and net charge. To determine whether such a relationship was also exhibited by any recurrence 
variable, six RQA variables (REC, DET, ENT, MAXL, TREND and LAM) were entered into a 
stepwise regression analysis for aggregation rate (Agg) changes between mutants (mut) and wild 
type (wt) AcP, expressed as )/ln( wtmut . TREND was shown to be the most significant and, 
moreover, TREND explained the majority of variance (p = 0.000001). As a result, TREND was 
chosen to explore the charge/aggregation dependency. 

When a general linear model, based only upon charge and TREND, was applied to 
aggregation data, a statistically significant interaction term between TREND and Q was found 
(r = 0.802, p = 0.0002) suggesting that a straightforward linear model was inappropriate (16). 
Careful consideration of the relationship between TREND and LAM point to the fact that LAM 
is a modifier of TREND, namely that repetitive deterministic patches affect the overall TREND 
calculation. This view is also supported by the finding that short deterministic patches, termed 
“singular,” are an important factor in protein folding. Thus, one possible formulation of these 
considerations could be: 

)*( QTaConstAgg L
. [2] 

LAM, in turn, can be further specified by the Trapping Time (TT), i.e. the average length of 
the laminar segments as a “weighting” term. Thus, the relationship among RQA variables was 
formulated as a tower function, |T|^(L^TT), with LAM being expressed as decimal fraction. This 
function, which conveys the idea of statistical “singularity” and is also mathematically singular, 
insofar as it does not admit continuous derivatives near T = 0, was included in the following 
empirical formula: 

)*( )( QTaConstAgg
TTL . [3] 

The singularity near T = 0 is particularly bad, as 0 < LTT < 1 implies that the derivative blows 
up near this point, rather than simply being undefined. Notice that in expressions [2] and [3] a is 
an adjustable parameter and T the absolute value is taken, without loss of generality. Q is the value 
of the net charge associated with the protein sequence and was calculated from the total number of 
positively and negatively charged residues at neutral pH. This was done in order to avoid 
presumptions of e.g., lower pH as might be obtained in specific experimental conditions, and to 
standardize the calculation. In this respect, it should be noted that the data sets of C1 and C2 were 
obtained with a pH of 5.5 involving primarily a single positive change relative to the histidine 
residue.  

Again, Q was found to be significantly related to the |T|^(L^TT) function via significant 
interaction (r = 0.79; p = .0002; Figure 1). Note that the calculated function is nonlinear, and is 
plotted as a linear graph for convenience. To further validate this function, the original AcP data 
set (C1) was added to the regression evaluation for the entire set of tested mutations in addition 
to mutations known to be significant for aggregation. With this addendum, the results were an r
of 0.798, and p = 0.001 (Figure 2). 
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Figure 1. Calculated vs observed aggregation rates of AcP variants (data set C2) 

Figure 2. Calculated vs observed aggregation rates of AcP variants (data set C2)  
and mutants (data set C1) combined 

Subsequently, the findings were extended to a new set of peptides whose aggregation rates 
are available from the literature (C3). By fitting a model using change scores of hydrophobicity, 

 coil and  sheet free energy, as well as charge to the prediction of aggregation rate they 
obtained an r = 0.860, p < 0.0001. Using Eq. 3, we obtained r = 0.642, p = 0.0003 (Figure 3). 
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Figure 3. Data from C3 data set (see details in the text) 

It is important to note that although our model the r value is less than that obtained by the 
authors for C3; it is calculated solely on the basis of hydrophobicty patterns and calculated net 
charge at neutral pH and, perhaps more importantly, is an ab initio model. This is to emphasize 
that the C3 data used three factors, whereas our model is based on two. In fact it was based on 
an independent data set (the AcP system) totally unrelated to C3 data set made of a diverse set 
of peptides from the literature.  

Mathematical considerations 

The following section outlines mathematical details of the aggregation model. Although not 
essential to understanding the remainder of the paper, these details will be of interest to many 
readers. The crucial point to be made in analyzing the partial derivatives of the recurrence 
model is that the aggregation propensity, F, is non-Lipschitz as a function of the TREND 
variable, T. The significance of this is that the rate of change in aggregation is unbounded as a 
function of T near T = 0. Thus, a small perturbation of T can result in radically different 
aggregation behavior, and inherent randomness in the biological system can cause instability 
and unpredictability. This supports the essential stochastic nature of the process by the inherent 
instability of TREND as suggested by our previous paper. 

The simple function (ignoring the weighting factor), F(Q,T) = |T|L ·|Q| illustrates the 
differentiability of the aggregation model. First, consider the derivative of A(Q) = |Q|. The 
function |Q|/Q is a good way to represent A(Q), because A’(Q) = 1 for Q > 0, and A’(Q) = –1 for 
Q < 0, and the value is undefined at Q = 0. 



Rapporti ISTISAN 05/20

143

The function )(Asign  is identical to A’, on the domain of A’, however )(Asign  is defined 
and equal to zero at Q = 0. This is not true of the derivative of A’. The domain of definition is 
relevant near the axes Q = 0 and T = 0, and we will see it is a somewhat subtle issue.  

Looking at the symbolic derivatives, we have 

QAT
dQ
dF L '

Q
Q

T L

QT
Q

L1
 [4] 

Then
dQ
dF

 is non Lipschitz (no continuous derivatives) as a function of T, and it is 

discontinuous as a function of Q. Because Q Q  remains bounded near Q = 0, the formula 
extends continuously at (0,0), but it is undefined for Q = 0, T  0. Looking at the partial 

derivative with respect to T, we see that 
dT
dF

 is continuous as a function of Q but unbounded as 

a function of T near T = 0 (for 0<L<1):

QTATL
dT
dF L ))('( 1

Q
T
T

TL L )( 1

QT
T
L L

 [5] 

Near T = 0, 
dT
dF

 is non Lipschitz (for any value of Q), and initial value problems for the 

equation:

F
T
L

QdT
dF

dQ
dFF ,1,  [6] 

no longer have unique solutions. This is specifically the case for any trajectory emanating from 
T = 0 (Figure 4). The practical implication is that F = 0 is an improbable state for globular 
proteins.

General applications of the model 

Although these calculations may be significant, actual understanding of the involved 
mechanisms may be deceiving since they reflect “change scores” (22). This is to say that certain 
putatively important contextual variables are ignored in favor of examining the variables of 
interest. In other words, only the change of the mutant amino acid relatively to the wild type as 
characterized by the formula elements is considered. Thus, while the variables of interest may 
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Figure 4. Graphs of the nonlinear function describing the singularities at (0,0),
and related derivatives, for L = 0.5 

be found to have noteworthy effects, ignored variables are not examined, although “controlled,” 
given the fact that they have not changed. Another common application of change scores is the 
basis for “repeated measures” analysis of variance. Clearly, the most obvious ignored variable 
in the present case is peptide length. Consequently, a canonical analysis for the observed 
fluorescence by length and charge, partialing out the effects of Eq. 2 was performed and 
demonstrated a significant effect for peptide length (p = 0.04). These results, however, should 
be taken with caution since there is a restriction in range with 16 of the 27 mutations being 
equal to or less than 42 amino acids in length. 

Thus a naive inclusion of protein length in a function may be premature. However, based on 
strictly formal arguments, one would assume that any net charge effects would be affected by 
Coulomb’s inverse square law; i.e., the “net” electrostatic effects would not be linear, and are 
proportional to 1/Length2. This is not to suggest that this relation is definitive since, as is well 
known, molecular electrostatic forces are confounded by other factors, such as, e.g., van der 
Waals forces; or that there are specific point charge effects. However, in this respect, we were 
guided by the experience of Plaxco et al. (23) and Ivankov et al. (24) who revised their 
observation of contact order being important in protein folding to include protein size/length. 
This is to say that the “net” effects are screened by distance along the chain. Nonetheless, this 
may serve as a first approximation of length effect. To this end, Eq. 3 was normalized for length 
and recurrences by the relation: 

2

)(

*
Length

Q
REC
T

Agg
TTL

 [7] 
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As a first test of this normalization procedure, the C3 data were recalculated according to Eq. 
7. Interestingly, the r dropped to 0.136 (p = NS). As was previously noted, however, 16 of the 
27 mutants are equal to or less than 42 residues in length (n = 16, mean = 34; SD = 10.48). 
Upon restriction of the analysis to these short proteins the r for the original formula remained 
approximately the same (r = 0.63, p = 0.01); however Eq. 7 demonstrated an r at 0.17 (p = NS). 
Upon choosing the remaining proteins (n = 11, mean = 250.18, SD 151.29), the situation was 
reversed: the original formula dropped the r to 0.44 (p = NS); whereas Eq. 7 demonstrated an r
of 0.65 (p = 0.03). Again, because of the restriction in range, these results should be viewed 
cautiously, but they do suggest that there is a slightly different effect for charge of very short 
proteins. Indeed, it may be that net charge is attenuated at very short scales by the stronger 
effect of local charge. 

To get a better sense of the performance of Eq. 7, it was applied to a data set from the 
SWISS-PROT repository (mean length = 347.61, SD = 303.04; none < 50) (see above) in order 
to check its ability to single out peculiar functional classes allowing us to obtain better insight 
into the mathematical modelling of aggregation process. Functionally, the proteins were 
classified as reported in Table 2 (Menne et al. database) (11).

Table 2. Functional classification of proteins used to test Eq. 7 

Protein class (subclass) Number in class Number in subclass 

Nuclear proteins (N) 184  
Histones (h)  55 
Regulative (r)  114 
Other nuclear proteins (a)  15 

Enzymes (E) 296  
Monomeric (m)  144 
Oligomeric (o) (<4 subunits)  105 
Polymeric (p) (  46 
Other enzymes (a)  1 

Ca++/metal – binding (C) 57  
RNA binding (RNA) 68  
Cell-Cycle proteins (CC) 42  
Membrane proteins (M) 153  
Structural proteins (S) 74  
Neurotransmitters/Transport (NT) 5  
Cornifins (K) 5  
Other proteins (A) 257  
Total 1141  

The analysis of the 1141 proteins shows that most values of Eq. 7 are near or at zero; 
however, a considerable number also appear to be widely dispersed. It is difficult to evaluate the 
cases since the taxonomy is based on varying, and/or very general criteria. Thus, many proteins 
could putatively be assigned to several categories (see Table 2). As a consequence, the strategy 
was to single out proteins and classifications which appeared to be unambiguous, ignoring 
details which might be considered unfairly biasing in a post-hoc analysis. 

An immediate result of the computation was the finding that 54 cases exhibited values of exactly 
zero: a highly unlikely result for globular proteins given the nature of the model. Careful 
examination of these cases indicated that all of them were membrane related peptides which interact 
to generate complex structures (transient or stable), many of whom are immobilized in membranes 
(Table 3). It can be argued that having a value of zero is totally consistent (and beneficial) given their 
functions, and their need to have large, multi-domain structures not repelling each other. 
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Table 3. Proteins exhibiting formula values of zero (abbreviations from Table 2) 

Code Length Class Subclass Description 

P52915 406 A  Proteasome subunit 
Q92524 389 A    “ 
P54815 357 M  Integral membrane (mitochondrial) 
P46467 444 A  Intracellular protein transport 
Q09143 622 M  Integral membrane (cationic aminoacid transport) 
P45594 148 S  Actin-binding 
O88813 683 E m Lipid Biosynthesis  
P10107 345 C  Annexin (exocytosis) 
P07150 345 C    “ 
P04272 338 C    “ 
P17785 338 C    “ 
P16587 180 M  ADP-ribosylation factor (subunit) 
P18085 179 M    “ 
P36403 179 M    “ 
Q94231 178 M    “ 
Q19705 200 A    “ 
P91924 182 N  Transcriptional repressor 
P36405 182 A  ADP-ribosylation factor  
P37996 182 A    “ 
P32121 409 C  Beta-adrenergic receptor-binding 
P51164 291 M  Potassium-transport ATP-ase 
Q29473 499 E m Cytochrome P450 
P27003 96 A  Annexin-binding (tetramer)  
P08206 96 A    “ 
P31949 105 C  S-100 protein (dimer) 
P40124 474 M  CAP protein 
Q03503 176 E m Acetyltrasferase 
P32320 146 E o Deaminase 
P41089 223 E m Chalcone isomerase 
O45405 273 M  Hypothetical protein (membrane channel ?) 
Q64448 416 M  Gap-junction protein 
O35089 160 M  Embryo development, membrane (potential) 
Q63532 152 K  Cornifin 
Q14061 62 A  Copper chaperone 
P24878 365 M  Cytochrome b (subunit) 
P22781 480 E  Decarboxylase 
P38866 373 A  Hypothetical protein 
P14942 222 E  Dimer 
P24472 222 E    “ 
P46433 210 E    “ 
P53795 130 A  Hypothetical protein 
Q00288 457 N r Cellular differentiation regulation 
P46871 742 S  Hypothetical protein 
Q05315 141 E m Carbohydrate-binding 
P25791 158 N a Basic protein-binding 
P80367 65 M  Metallothionein 
P04734 64 C    “ 
Q05935 728 N r Transcriptional activator 
Q07016 163 N r Transcription regulation (dimer) 
P08235 984 M  Ribosomal protein 
P11658 292 E p Subunit 
P30044 161 A  Peroxisomal antioxidant enzyme 
P49197 88 R  Ribosomal protein 
P26490 475 E p Subunit 
P51668 147 A  Ubiquitin-conjugating enzyme 
P29595 81 A  Ubiquitin-like (subunit) 



Rapporti ISTISAN 05/20

147

In order to check the consistency of our definition of the equation as “aggregation 
propensity” quantitation, we selected the 22 proteins reported in Table 4 (11), constituting the 
highest 2% of values for Eq. 7, and hence the least “aggregating prone.” Surprisingly, they were 
all made of histones and histone-like proteins, such as RNA-binding proteins. It is worth noting 
that at the extreme of the ranking, namely P42129 and P42132 are two sperm protamins whose 
role is to pack chromatin, i.e., forming particularly dense aggregates. 

Table 4. Proteins exhibiting the highest (2%) values for Eq. 7 (abbreviations from Table 2) 

Code Class Subclass 

P42132 N h 
P42129 N h 
P19757 N h 
P13275 N h 
P40631 N h 
P17502 N h 
Q05831 N h 
P07978 N h 
P06144 N h 
P10922 N h 
P02254 N h 
P02259 N h 
P07305 N h 
P17268 N h 
P40262 N h 
P43278 N h 
Q09821 N H 
P15870 N H 
P14798 R  
P06894 N H 
P15796 N H 
P11020 N H 

Histones and RNA-packing proteins are typically involved in the construction of highly 
specific DNA/RNA protein aggregates. Such supramolecular structures must respond to finely 
tuned signals (e.g. acetylation) inducing a reversible aggregation/disaggregation of DNA 
essential for gene expression regulation. Moreover, histones are probably one of the most 
conserved protein families: there are only very small differences between the same histone 
proteins across different species. This implies these are “almost deterministic” supramolecular 
machines exhibiting different states. Given their important work, protection from unwanted 
aggregation may be crucial. The fact that they are identified as a “minimum” of aggregation 
propensity suggests they are shielded from the possibility of aggregation, and is thus a strong 
proof of the biological plausibility of Eq. 7.  

As a final check to evaluate the significance of Eq. 7 relative to covariation with length, 
charge, TREND, LAM, and TT, an analysis of variance was performed for the identified 
groups. The equation was in all cases significant, as were the covariates (p<.001), except for TT 
(p = NS). 
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Discussion and conclusions

These results support our previous finding that TREND and LAM are important determinants of 
aggregation in conjunction with net molecular charge. What is more surprising is that these variables 
are solely based on the hydrophobicity patterns of protein sequences. Notwithstanding this, for some 
time hydrophobicity has been identified as a major determinant of protein dynamics (e.g. 25, 26), it 
has been difficult, however, to quantitatively describe hydrophobicity patterns able to evoke basic 
principles. The present findings demonstrate the utility of RQA in this effort, as well as the 
importance of a correct formulation of TREND, LAM and charge interplay.  

In the above perspective, Eq. 3 (the basic functional) is unique in that it shows a singularity 
at its zero point (Figure 4). At Q = 0 the derivatives are not continuous for T. In practice, this 
means that zero charge is disallowed, and supports the conjecture of Chiti et al. (9) that charge 
is an important factor to maintain intramolecular repulsive forces, thus avoiding aggregation. In 
the long run, whether a given protein will go to its native fold or an aggregation, may depend 
upon its characterization by TREND and/or LAM. The probabilities themselves are governed by 
the boundary conditions (pH, temperature, etc.). This view is in line with the one adopted by 
Dobson (4) pointing to the stochastic character of aggregation process. Indeed, this is the 
implication of phase diagrams exploring protein aggregation (27).  

We have previously suggested that hydrophobicity segments broken by laminar patches may 
tend to be disordered, and exhibit more conformational variability (flexibility), thus tending to 
avoid aggregation. An explanation for this increased flexibility relates to the fact that the 
|T|^(L^TT) quantifies the differential density of patches. This hypothesis is further supported by 
our earlier work in the analysis of rubredoxins (28). In this study we used RQA to determine 
features differentiating the function of thermophilic vs mesophilic forms. An important finding 
was that in the Rubr Clopa (mesophilic) case, the concentration of deterministic patches 
occurred in unequally distributed areas; whereas in the Rubr Pyrfu case (thermophilic), there is 
no preferentially populated area and is distributed over the whole backbone. A graph of this 
finding using a windowed version of RQA demonstrates this more strikingly (Figure 5). 
Presumably, this is at least one cause for the increased flexibility of the thermophilic rubredoxin 
over the mesophilic (29). 

Figure 5. Comparison of Rubr Clopa (top) with Rubr Pyrfu (bottom) 
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Other putative causes involve the observation that amyloidogenic propensity is associated 
with a defect in hydrogen bonding exposed to water, making them “sticky” (30-32). Thus it may 
be that the singular functions address the amount of molecular “patchiness” which may be an 
inverse indicator of hydrophobic cores. Another view suggests that biopolymers may develop 
instability and collapse due to soliton-like nonlinear excitations at bends, or patches (33). 
Previously (34), we have suggested that such instabilities may occur in the form of molecular 
motions not associated with traditional modes analysis. 

Finally, we note the obvious difference between the C3 formulation with ours is their 
inclusion of the free energy changes based on beta sheet and coil propensities. It may be that our 
quantification of patches of laminarity may be characterizing a similar phenomenon. Beta sheets 
and coils in some sense typify types of “patch.” In our studies, we have noted a correlation; 
however, this is not a perfect one. We are currently pursuing additional investigation into this 
area.

The charge effect in such an explanation takes on a more complex role than that of an 
indicator of general repulsion between molecules. This is to say that if the patches are 
sequestered unequally along the series, the inequality may set up a “screening” effect for net 
charge: the non patchy areas may be related to “blocks” with contrasting solubilities which can, 
depending upon their size, modify the net charge effect. Given a change in pH which alters a 
charge, a protein’s probability to aggregate may become enhanced. This is in line with recent 
results obtained by Burke et al. (35) with huntingtin-exon 1. The final observation is that the 
deterministic patches constitute a static factor involved in folding; whereas the net charge effect 
is a “dynamic” component often modulated by circumstantial factors (boundary conditions) 
such as pH. Thus, clearly, hydrophobic patterning is a necessary condition for understanding 
aggregation propensity, but it is insufficient without consideration of charge. It might be of 
significance to understand the customary milieus of proteins: environments which expose 
proteins to different pHs may carry a greater likelihood of aggregation as opposed to those 
which perform their work in relatively circumscribed settings. 

Irrespective of the cause, the present results suggest that to understand the aggregation 
probability for a given protein sequence, unique hydrophobicity patterns need to be considered. 
This probability may be linked to fixed discrete patches in conjunction with net dynamic 
electrostatic effects.  
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