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Abstract

A statistical model describing the propensity for protein aggregation is presented. Only
amino-acid hydrophobicity values and calculated net charge are used for the model. The com-
bined e4ects of hydrophobic patterns as computed by the signal analysis technique, recurrence
quanti6cation, plus calculated net charge were included in a function emphasizing the e4ect
of singular hydrophobic patches which were found to be statistically signi6cant for predicting
aggregation propensity as quanti6ed by 8uorescence studies obtained from the literature. These
results suggest preliminary evidence for a mesoscopic principle for protein folding/aggregation.
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1. Introduction

It has been noted that the native state fold of proteins is in some way dependent
upon the physico-chemical properties of their amino-acid sequence, most notably, hy-
drophobicity [1,2]. More recently, it has been recognized that the actual folding process
is of a stochastic nature, and also includes the possibility of forming aggregates that
ultimately can be physiologically harmful. A growing body of evidence suggests that
this involves partially or completely unfolded proteins [3]. It is interesting to note
that such observations are gradually providing justi6cation for a synthetic view of
protein dynamics [4], not typically appreciated by more reductionistic approaches. At
the basis of these synthetic views is the emphasis that biopolymer dynamics follow
broad established physical principles. Yet, what factors speci6cally promote the for-
mation of aggregates as opposed to native folds under relatively normal conditions
remain unclear.
Recently, we have proposed that some key features of protein hydrophobicity pat-

terns analyzed by a nonlinear signal processing technique, recurrence quanti6cation
analysis (RQA), provide some necessary conditions for aggregation [5]. A signi6cant
6nding included a correspondence between short deterministic patches of hydropho-
bicity distribution along the amino-acid sequence, what we term laminarity, [LAM,
(L)], with 3D “unstructured” portions of acylphosphatase (AcP) [6]. It was shown that
the “ruggedness” of the hydrophobicity as measured by the derivative of hydropho-
bic change [what we term TREND, (T )], coincided with Dunker’s “disorder” index
[7]. Beyond this, a counterpoint was de6ned as the degree of laminarity. Speci6cally,
in an analysis of protein engineering experiments [8] it was shown that aggregation
sensitive zones vs. folding sensitive zones were distinguished by the two complemen-
tary concepts of trend/laminarity. The implication is that these areas may be inherently
unstable, and somehow involved in the promotion of (at least) partial unfolding and
aggregation. The degree to which these conditions exist probabilistically determines the
propensity for aggregation. What was not determined is the e4ect of total charge on
the probabilities.

2. Recurrence hydrophobicity signal analysis

2.1. Recurrences

Recurrences are not new. PoincarPe is perhaps the most famous for describing them in
the context of dynamical systems as points which visit a small region of phase space.
Also, the statistical literature points out that recurrences are the most basic of relations.
In this respect, it is important to reiterate the fact that calculation of recurrence, unlike
other methods such as Fourier, Wigner–Ville or wavelets, requires no transformation
of the data, and can be used for both linear and nonlinear systems. Because recurrences
are simply tallies, they make no mathematical assumptions. Given a reference point,
X0, and a ball of radius r, a point is said to recur if

Br(X0) = {X : ‖X − X0‖6 r} : (1)



350 J.P. Zbilut et al. / Physica A 343 (2004) 348–358

Fig. 1. Recurrence plot for AcP.

A trajectory of size N falling within Br(X0) is denoted as

S1 = {Xt1 ;Xt2 ; : : : ;Xti : : :} ; (2)

where S is some signal, and t is some time point, and the recurrence de6ned as

T1(i) = ti+1 − ti; i = 1; 2; : : : ; N ; (3)

where T is some recurrence time (not to be confused with T indicating TREND below).
We note that although recurrences are usually calculated for temporal series, it is also
possible to use any ordered series, as is the case here for protein amino-acid sequences.

2.2. Recurrence plots

Given a scalar series {x(i)= 1; 2; 3; : : :} an embedding procedure will form a vector,
Xi = (x(i); x(i+ del); : : : ; x(i+ (m− 1)del)) with m the embedding dimension and del
the delay (not to be confused with a di4erential operator). {Xi = 1; 2; 3; : : : ; N} then
represents the multi dimensional process of the series as a trajectory in m-dimensional
space. Recurrence plots (RP) are symmetrical N×N arrays in which a point is placed at
(i; j) whenever a point Xi on the trajectory is close to another point Xj. The closeness
between Xi and Xj is expressed by calculating the Euclidian distance between these
two normed vectors, i.e., by subtracting one from the other: ‖Xi −Xj‖6 r where r is
a 6xed radius. If the distance falls within this radius, the two vectors are considered
to be recurrent, and graphically this can be indicated by a dot (Fig. 1).
An important feature of such matrixes is the existence of short line segments parallel

to the main diagonal, which correspond to sequences (i; j), (i+1; j+1); : : : ; (i+k; j+k)
such that the piece of X(j);X(j+1); : : : ;X(j+k), is close to X(i);X(i+1); : : : ;X(i+k)
in series which are deterministic. The absence of such patterns suggest randomness [9].
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2.3. Recurrence quantiBcation

Because graphical representation may be diRcult to evaluate, RQA was developed to
provide quanti6cation of important aspects revealed by the plot. Recurrent points which
form diagonal line segments are considered to be deterministic (as distinguished from
random points which form no patterns). Unfortunately, beyond general impressions of
drift and determinism, the plots of themselves provide no quanti6cation. As a result,
an algorithm was developed using several strategies to quantify features of such plots
[10]. Hence, the quanti6cation of recurrences leads to the generation of seven variables
including: REC (percent of plot 6lled with recurrent points); DET (percent of recurrent
points forming diagonal lines, with a minimum of two adjacent points); ENT (Shannon
information entropy of the line length distribution); MAXLINE, length of longest line
segment (the reciprocal of which is an approximation of the largest positive Liapunov
exponent and is a measure of system divergence); and TREND (measure of the paling
of recurrent points away from the central diagonal); LAM (percent of points forming
vertical line structures; and trapping time (TT ), the average length of the vertical line
segments. These seven recurrence variables quantify the deterministic structure and
complexity of the plot.
Speci6cally, for the variables used here

REC =
1
N 2

N∑
i; j=1

Ri;j ; (4)

where R is a recurrent point

DET =

∑N
l=lmin

lP(l)∑N
i; j Ri; j

; (5)

where P(l) is the histogram of lengths l of diagonal line segments

LAM =

∑N
�=�min

�P(�)∑N
�=1 �P(�)

; (6)

where P(�) is the histogram of lengths � of vertical line segments

TT =

∑N
�=�min

�P(�)∑N
�=�min

P(�)
(7)

and

TREND =
∑N−2

i=1 [i − (N − 2)](RECi − 〈RECi〉)∑N−2
i=1 [i − (N − 2)=2]2

: (8)

In order to follow changes of these variables in sequence, a “windowed” version of
RQA can be performed (Fig. 2), such that for a series (s1; s2; : : : ; sn), where (sj = j�s)
and �s= sampling interval. For an N point long series

E1 = (s1; s2; : : : ; sN ) ;

E2 = (s1+w; s2+w; : : : ; sN+w) ;
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Fig. 2. Windowed RP for AcP showing singularities.

E3 = (s1+2w; s2+2w; : : : ; sN+2w) ;

...

Ep = (s1+(p−1)w; s2+(p−1)w; : : : ; sN+(p−1)w) (9)

with w= the o4set, and Ep the number of epochs (windows), Ep, satis6es the relation,
N +(p−1)w6 n. Thus the algorithm is, in principle, similar to the Fourier transforms
devoid of its drawbacks.
Analogous to cross power spectral analysis, cross recurrence analysis is also possible.

For the series Xi=(x(i); x(i+del); : : : ; x(i+(m−1)del)), another series, Yi=(y(i); y(i+
del); : : : ; y(i+(m− 1)del)) can be compared for recurrences by the relation ‖Xi −Yj‖
for a given r. Windowed versions are similarly possible.
The data obtained can also be used to obtain estimations of local Liapunov expo-

nents, information entropy, or simply plotted as Nrecurrences vs. period; i.e., a histogram
of recurrence times. In the case of histograms, strictly periodic points demonstrate in-
strumentally sharp peaks; whereas chaotic or nonlinear systems reveal more or less
wider peaks depending upon the radius chosen and noise e4ects. RQA can also be
combined with other statistical techniques to gain more information. Use of RQA for
protein analysis has been extensive [18,19].

3. Methods

3.1. Data set

The data which inspired our model are in a seminal paper by Chiti et al. [8],
and concern the e4ect of di4erent mutations on acylphosphatase (AcP) aggregation
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Fig. 3. Surface plot of function.

propensity. A second Chiti et al. [11] data set dealt with the e4ects of charge; wherein
it was suggested that the net charge was an important consideration. Speci6cally, the
authors suggested that preservation of charge prevented molecular attraction and vice
versa. We used the data of this paper to evaluate its conclusions vis-a-vis our previous
6ndings.

3.2. Model

The recurrence variables were evaluated statistically and found to 6t a nonlinear
function such that

Agg(rate) = Const:+ a(|T |LTT |Q|) ; (10)

where Const: is a constant, a is an adjustable parameter, T is the TREND, L is the
LAMINARITY, TT the TRAPPING TIME, and Q the net molecular charge. The equa-
tion should to be considered empirical relations, directly derived from the model 6tting
of the e4ect of mutations on the aggregation propensity of a peculiar system; i.e., AcP.
The formula conveys the idea of statistical “singularity” and is also mathematically

singular, insofar as it does not admit continuous derivatives near T = 0 (Fig. 3). The
singularity near T = 0 is particularly bad, as 0¡LTT ¡ 1 implies that the derivative
blows up near this point, rather than simply being unde6ned. The charge e4ect is very
similar in that zero charge is inadmissable.
The simple function F(Q; T )= |T |L|Q| illustrates the di4erentiability of the aggrega-

tion model. First, consider the derivative of A(Q) = |Q|. The function |Q|=Q is a good
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way to represent A′(Q), because A′(Q)= 1 for Q¿ 0, A′(Q)=−1 for Q¡ 0, and the
value is unde6ned at Q = 0. The function sign(A) is identical to A′ on the domain of
A′, however, sign(A) is de6ned and equal to zero at Q = 0. This is not true of the
derivative A′. The domain of de6nition is relevant near the axes Q=0 and T =0, and
we will see it is a somewhat subtle issue.
Looking at the symbolic derivatives, we have

dF=dQ= |T |LA′(Q)

= |T |L |Q|
Q

=
(
1
Q

)
(|T |L|Q|) : (11)

Then dF=dQ is not Lipschitz as a function of T , and it is discontinuous as a function
of Q. Because |Q|=Q remains bounded near Q = 0, the formula extends continuously
at (0; 0), but is unbounded for Q = 0, T 	= 0.
Looking at the partial derivative with respect to T , we see that dF=dT is continuous

as a function of Q but unbounded as a function of T near T = 0 (for 0¡L¡ 1)

dF=dT = (L|T |L−1A′(T ))|Q|

=
(
L|T |L−1 |T |

T

)
|Q|

=
(
L
T

)
(|T |L|Q|) : (12)

Near T = 0, dF=dT is not Lipschitz (for any value of Q), and initial value problems
for the equation

∇F =
(
dF
dQ

;
dF
dT

)
=

(
1
Q
;
s
T

)
F (13)

no longer have unique solutions. This is speci6cally the case for any trajectory ema-
nating from T = 0.
The crucial point to be made in analyzing the partial derivatives of the recurrence

model is that the aggregation propensity, F , is non-Lipschitz as a function of the
TREND variable, T . The signi6cance of this is that the rate of change in aggregation
is unbounded as a function of T near T =0. Thus, a small perturbation of T can result
in radically di4erent aggregation behavior, and inherent randomness in the biological
system can cause instability and unpredictability. This is further ampli6ed by charge,
Q, as it approaches zero.

4. Results and discussion

The data sets of acylphosphatase with their aggregation rates were compared to the
formula, and were found to be signi6cantly related to the function (r=0:79;p=0:0002;
Fig. 4).
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Fig. 4. Regression results.

These results support our previous 6nding that TREND and LAM are important
determinants of aggregation in conjunction with net molecular charge. What is more
surprising is that these variables are solely based on the hydrophobicity patterns of
protein sequences indirectly quantifying the “unstructured” element of protein sequence.
In this perspective, Eq. (10) is unique in that it shows a singularity at its zero point

(Fig. 4). At Q = 0 the derivatives are not continuous for T . In practice, this means
that zero charge is disallowed, and supports the conjecture of Chiti et al. [11] that
charge is an important factor to maintain intramolecular repulsive forces, thus avoiding
aggregation. In the long run, whether a given protein will go to its native fold or an
aggregation, may depend upon its characterization by TREND and/or LAM. The proba-
bilities themselves are governed by environmental conditions (pH, temperature, type of
ionic solvent, etc.). This view is in line with the one adopted by Dobson [3] pointing
to the stochastic character of aggregation process. Indeed, this is the implication of
phase diagrams exploring protein aggregation [12]. Independently, Munishkina et al.
[13] have presented additional evidence for this hypothesis with work on *-synuclein.
We have previously suggested that hydrophobicity segments broken by laminar

patches may tend to be disordered, and exhibit more conformational variability (8exibil-
ity), thus tending to avoid aggregation [5]. An explanation for this increased 8exibility
relates to the fact that |T |LTT , quanti6es the di4erential density of patches. This hypoth-
esis is further supported by our earlier work in the analysis of rubredoxins [14]. In this
study we used RQA to determine features di4erentiating the function of thermophilic
vs. mesophilic forms. An important 6nding was that in the Rubr Clopa (mesophilic)
case, the concentration of deterministic patches occurred in unequally distributed areas;
whereas in the Rubr Pyrfu case (thermophilic), there is no preferentially populated
area and is distributed over the whole backbone. A graph of this 6nding using a
windowed version of RQA demonstrates this more strikingly (Fig. 5). Presumably, this
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Fig. 5. Comparison of Rubr Clopa (top) with Rubr Pyrfu (bottom). Note the uneven distribution of the
function for Rubr Clopa; whereas Robr Pyrfu demonstrates a more “even” distribution.

is at least one cause for the increased 8exibility of the thermophilic rubredoxin over
the mesophilic [15].
The charge e4ect in this context takes on a more complex role than that of an

indicator of general repulsion between molecules. This is to say that if the patches
are sequestered unequally along the series, the inequality may set up a “screening”
e4ect for net charge: the non patchy areas may be related to “blocks” with contrast-
ing solubilities which can, depending upon their size, modify the net charge e4ect.
Given a change in pH which alters a charge, a protein’s probability to aggregate may
become enhanced. This is in line with recent results obtained by Burke et al. with
huntingtin-exon 1 [16]. The 6nal observation is that the deterministic patches constitute
a static factor involved in folding; whereas the net charge e4ect is a “dynamic” compo-
nent often modulated by circumstantial factors (boundary conditions) such as pH. Thus,
clearly, hydrophobic patterning is a necessary condition for understanding aggregation
propensity, but it is insuRcient without consideration of charge. It might be of sig-
ni6cance to understand the customary milieus of proteins: environments which expose
proteins to di4erent pHs may carry a greater likelihood of aggregation as opposed
to those which perform their work in relatively circumscribed settings. Irrespective of
the cause, the present results suggest that to understand the aggregation probability
for a given protein sequence, unique hydrophobicity patterns need to be considered.
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This probability may be linked to 6xed discrete patches in conjunction with net dy-
namic electrostatic e4ects.
A paper by Hans Frauenfelder and Peter Wolynes [4] highlighted the peculiarity

of the sequence/structure relation: the need to have microscopic physics principles, of
“simple” systems like atoms, cooperatively interacting to produce macroscopic princi-
ples which describe qualitatively the complex systems of protein architecture. While
we do have an accurate knowledge of potentials (hydrophobic interactions, hydrogen
bonding, size constraints, etc.) acting at microscopic levels, the “mesoscopic” principles
needed to understand protein folding/aggregation remain essentially unknown [17]. The
present study suggests that such principles are not that remote from our understanding.

References

[1] J.M. Zimmerman, N. Eliezer, R. Simha, The characterization of amino acid sequences in proteins by
statistical methods, J. Theor. Biol. 21 (1968) 170–201.

[2] J. Kyte, R.F. Doolitle, A simple method for displaying the hydropathic character of a protein, J. Mol.
Biol. 157 (1982) 105–132.

[3] C.M. Dobson, Protein folding and disease: a view from the 6rst Horizon Symposium, Nat. Rev. Drug
Discov. 2 (2003) 154–160.

[4] H. Frauenfelder, P. Wolynes, Proteins: where physics of simplicity and complexity meet, Phys. Today
47 (1994) 58–61.

[5] J.P. Zbilut, A. Colosimo, F. Conti, M. Colafranceschi, C. Manetti, M.C. Valerio, C.L. Webber Jr.,
A. Giuliani, Protein aggregation/folding: the role of deterministic singularities of sequence
hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and A+(1-40), Biophys.
J. 85 (2003) 3544–3557.

[6] V.N. Uversky, Natively unfolded proteins: a point where biology waits for physics, Protein Sci. 11
(2002) 739–756.

[7] K. Dunker, C.J. Brown, D. Lawson, L.M. Iakoucheva, Z. Obradovic, Intrinsic disorder and protein
function, Biochemistry 41 (2002) 6573–6582.

[8] F. Chiti, N. Taddei, F. Baroni, C. Capanni, M. Stefani, G. Ramponi, C.M. Dobson, Kinetic partitioning
of protein folding and aggregation, Nat. Struct. Biol. 9 (2002) 137–143.

[9] J.P. Eckmann, S.O. Kamporst, D. Ruelle, Recurrence plots of dynamical systems, Europhys. Lett. 4
(1987) 973–977.

[10] C.L. Webber, J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence
plot strategies, J. Appl. Physiol. 76 (1994) 965–973.

[11] F. Chiti, M. Calamai, N. Taddei, M. Stefani, G. Ramponi, C.M. Dobson, Studies of the aggregation of
mutant proteins in vitro provide insights into the genetics of amyloid diseases, Proc. Natl. Acad. Sci.
USA 99 (2002) 16419–16426.

[12] R.I. Dima, D. Thirumalai, Exploring protein aggregation and self-propagation using lattice models: phase
diagram and kinetics, Protein Sci. 11 (2002) 1036–1049.

[13] L.A. Munishkina, J. Henriques, V.N. Uversky, A.L. Fink, Role of protein–water interaction and
electrostatics in *-synuclein 6bril formation, Biochemistry 43 (2004) 3289–3300.

[14] A. Giuliani, R. Benigni, P. Sirabella, J.P. Zbilut, A. Colosimo, Nonlinear methods in the analysis of
protein sequences: a case study in rubredoxins, Biophys. J. 78 (2000) 136–149.

[15] A. Grottessi, M.-A. Ceruso, A. Colosimo, A. Di Nola, Molecular dynamics study of a hyperthermophilic
and a mesophilic rubredoxin, Proteins: Struct. Funct. Genet. 486 (2002) 287–294.

[16] M.G. Burke, R. Woscholski, S.N. Yaliraki, Di4erential hydrophobicity drives self-assembly in
Huntington’s disease, Proc. Natl. Acad. Sci. USA 100 (2003) 13928–13933.

[17] R.B. Laughlin, D. Pines, G. Schmalian, P. Wolynes, The middle way, Proc. Natl. Acad. Sci. USA 97
(2002) 32–37.



358 J.P. Zbilut et al. / Physica A 343 (2004) 348–358

[18] A. Giuliani, R. Benigni, J. Zbilut, C.L. Webber, P. Sirabella, A. Colosimo, Nonlinear signal analysis
methods in the elucidation of protein sequence/structure relationships, Chem. Rev. 102 (2002)
1471–1492.

[19] J.P. Zbilut, P. Sirabella, A. Giuliani, C. Manetti, A. Colosimo, C.L. Webber, Review of nonlinear
analysis of proteins through recurrence quanti6cation, Cell Biochem. Biophys. 36 (2002) 67–87.


	Singular hydrophobicity patterns and net charge: a mesoscopic principle for protein aggregation/folding
	Introduction
	Recurrence hydrophobicity signal analysis
	Recurrences
	Recurrence plots
	Recurrence quantification

	Methods
	Data set
	Model

	Results and discussion
	References


