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The Wiener–Khinchin theorem states that the power spectrum is the Fourier transform of the
autocovariance function. One form of the autocovariance function can be obtained through recurrence
quantification. We show that the advantage of defining the autocorrelation function with recurrences can
demonstrate higher dimensional dynamics.
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1. Introduction

Recurrence plots (RP) and techniques related to RPs have be-
come popular in the last two decades for its unique abilities
to discern subtle processes, especially in the case where the re-
quirements for classical techniques such as the Fourier transform
(FT) are not met; i.e., stationarity, linearity, and/or where the dy-
namics reside in higher dimensional spaces [1–3,5]. In a previ-
ous letter we demonstrated that a recurrence spectrum can show
sharp frequency components not easily resolved with the FT [4].
A drawback was the “noise” clutter due to the high resolution.
The present Letter shows that this problem can be obviated by
using the two techniques together due to the well-known Wiener–
Khinchin theorem. The theorem states that the power spectral
density of a wide-sense-stationary random process is the Fourier
transform of the corresponding autocovariance function [6].

2. Power spectral estimate by recurrences

The power spectrum of a deterministic, finite length, discrete-
time signal, x(i), is the magnitude squared of the signal’s Fourier
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Using the Wiener–Khinchin theorem, the power spectrum of a
signal equals the Fourier transform of the autocovariance function
Cx of the signal:

Sx(ω) =
∞∑

τ=−∞
Cx(τ )e− jωτ , (2)

where the autocovariance function of a stochastic time series x(n)

is defined as

Cx(τ ) = 1

N

N−1−τ∑
i=0

x(i)x∗(i + τ ). (3)

The calculation of a RP from phase space vectors �x(i) ∈ Rm

(i = 1, . . . , N and m the dimension of the system) is based on
the distance matrix D of the pair-wise distances between all data
points (state space vectors):

D(i, j) = ∥∥�x(i) − �x( j)
∥∥ with �x ∈ Rm. (4)

For single dimensional observations x, we may consider embed-
dings of the time series with embedding dimension m [7]. [For the
following equations until Eq. (8), m = 1.]
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The average of the distance values d(τ ) for a given lag τ de-
fined as

d(τ ) = 1

N

∑
i

D(i, i + τ ), (5)

can be considered as a generalization of the autocovariance. In fact,
the distance matrix can be directly related to the autocovariance
Cx(τ ) [8]. For this purpose we consider the squared distance ma-
trix

D2(i, i + τ ) = ∥∥x(i) − x(i + τ )
∥∥2

= (
x(i) − x(i + τ )

)(
x(i) − x(i + τ )

)
= x2(i) − 2x(i)x(i + τ ) + x2(i + τ ). (6)

Next we calculate d(τ ) from D2 and get

1

N

∑
i

D2(i, i + τ )

= 1

N

(∑
i

x2(i) −
∑

i

2x(i)x(i + τ ) +
∑

i

x2(i + τ )

)

= σ 2 − Cx(τ ) + σ 2

= 2
(
σ 2 − Cx(τ )

)
(7)

and find as the relation between Cx(τ ) and D2

1

2
d2(τ ) − σ 2 = −Cx(τ ), (8)

with σ 2 as the variance of the data. Obviously, the average dis-
tance d(τ ) corresponds to the auto covariance up to a shift by
the variance and the factor 1/2. Note that we have considered the
squared distance matrix. However, the sign flip also remains for
the simple distance matrix, because the distance matrix consists
only of positive values, and, therefore, the quadrature of D has no
effect on the sign.

Considering embedding dimensions m > 1, embedding delay 1,
and using the Euclidean norm, the squared distance matrix D2 is
calculated by

D2(i, i + τ ) = ∥∥�x(i) − �x(i + τ )
∥∥2

=
m∑

k=1

(
xk(i) − xk(i + τ )

)(
xk(i) − xk(i + τ )

)

=
m∑

k=1

(
x2

k (i) − 2xk(i)xk(i + τ ) + x2
k (i + τ )

)

= ∥∥�x(i)
∥∥2 − 2�x∗(i)�x(i + τ ) + ∥∥�x(i + τ )

∥∥2
. (9)

The term �x∗(i)�x(i + τ ) corresponds to the autocovariance of the
segment of the time series for time i, i + 1, . . . , i + (m − 1). More-
over, by summarizing over index i (and for large N), we find that∑

i

�x∗(i)�x(i + τ ) = m
∑

i

x(i)x(i + τ ); (10)

i.e., it corresponds to the autocovariance up to a factor of mN .
However, here we propose to go one step further and to con-

sider only recurrences, defined by applying a threshold to the dis-
tance matrix D. This limits the matrix to periodic orbits:

R = Θ(ε − D); (11)

i.e., R is then the recurrence matrix. Then we consider the proba-
bility that the system recurs after time τ (τ recurrence rate) [5,9]

R R(τ ) = 1

N − τ

N−τ∑
R(i, i + τ ), (12)
i=1
(a)

(b)

(c)

Fig. 1. (a) The BZ reactor (50 000 points). (b) Trajectory near saddle-1. (c) Trajectory
near saddle-2.

and replace Cx(τ ) in Eq. (2) by R R(τ ). In other words, we replace
the expectation values

E
{

x(i) x∗(i + τ )
} −→ E

{
Θ

(
ε − ∥∥�x(i) − �x(i + τ )

∥∥)}
. (13)

The putative advantages of using a recurrence-derived FT in-
cludes not only its relaxed assumptions of stationarity and non-
linearity, but also its use of the embedding theorem to capture
dynamics of higher dimensional spaces. Thus, periodicities are
demonstrated not seen in either the regular FT periodogram, or
the (standard) autocovariance-derived Fourier transform. Addition-
ally, there is the “smoothing” effect inherent in the FT. (Whereas
we use the autocovariance, it should be noted that the autocorre-
lation can also be used, since it is simply the normalization of the
autocovariance by the total autocovariance.)

3. Example

We illustrate the advantage of the proposed recurrence based
Fourier spectrum with an example of high dimensional dynamics.
Lathrop and Kostelich previously studied the attractor of the oscil-
lating Belousov–Zhabotinsky (BZ) chemical reaction [10,11], which
is possibly chaotic. The bromide ion concentration was recorded,
and a phase-space strange attractor was constructed from the
method of time-delays. Their analysis recommended an embedding
of 3, and a delay of 124. Further analysis of 3-dimensional recur-
rences demonstrated saddle orbits of period-1, -2 and -3 (Fig. 1).
The fundamental period was approximately 125 time steps.

To determine if the recurrence plot (RP)-based FT could cap-
ture these periods, a sample of 1 000 points was selected from the
original data, and submitted to the technique. We used the sug-
gested embedding (dimension 3, and delay 124), and a recurrence
threshold ε of 0.75. We also calculated a standard FT spectrum
(rectangular window, no overlapping) and the autocovariance-
based FT.
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Fig. 2. (a) Recurrence plot for 1 000 points of the BZ reactor. (b) Recurrence spec-
trum derived from the Plot.

The RP of the BZ data reveals periodically occurring structures
of different width and length (Fig. 2(a)), depending on the dif-
ferent periodic orbits. These periodically occurring structures are
measured by the recurrence spectrum [Eq. (12)] (Fig. 2(b)). Note
that although the peaks are relatively sharp, they are not smooth
due to the thresholding, ε.

Next we apply the FT on the recurrence spectrum (Fig. 3(c)).
The RP-based FT not only demonstrates the fundamental, but also
the period-2 (near 0.5), as well as a period-3 (near 0.2–0.25). These
peaks have been smoothed by the application of the FT.

By contrast, the standard FT does not demonstrate any sig-
nificant peaks (broad band noise is seen with log scales–not
shown). The autocovariance-based FT does show the fundamen-
tal frequency, plus a period-2 (near 0.5), but is not able to find the
period-3. Only the RP-based FT is able to detect all the period-1,
-2 and -3 orbits in the dynamics of the BZ system.

4. Discussion and conclusion

We have proposed an alternative technique for the detection of
periodicities in dynamical systems based on recurrences. Applying
the FT on the probability that a state recurs after certain time, also
known as the τ -recurrence rate [5], we link recurrence quantifi-
cation with spectral analysis. In the present study we used 1 000
points to limit computational time. When other 1 000 point seg-
ments were chosen, the frequencies shifted due to the sampling of
Fig. 3. Power spectra of 1 000 points of BZ reactor with frequency normalized to
saddle-1 and power normalized to total power. (Top) FT spectrum with rectangular
window. (Middle) Autocovariance based spectrum. (Bottom) RP-based spectrum.

different sections of the attractor (see Fig. 1, also Fig. 4). Thus it is
important to estimate the extent of the attractor, in order to avoid
making the conclusion that the dynamics are nonstationary as a
result of inadequate sampling. (See also [12].)

Another consideration is the choice of embedding dimension.
In the present example the choice was made for m = 3 in keeping
with the analysis of Lathrop and Kostelch. A comprehensive dis-
cussion of the subject is beyond the scope of this Letter, and the
interested reader is referred to [5] for a fuller discussion. However,
we did perform a brief analysis with results in Fig. 5. For embed-
dings 1 to 2 the FT and autocovariance-based FT remain the same,
while the RP-based FT reveals new peaks until reaching the puta-
tively correct embedding of 3. At an embedding of 4, however, the
plot begins to diminish and the peaks are smoothed out. This oc-
curred even with adjusting the value of ε in accordance with the
recognition of the “curse of dimensionality”. (Results not shown.)
This suggests a practical method of determining an appropriate
embedding once a delay via mutual information has been estab-
lished: increasing the embedding beyond the optimal embedding
simply brings in more points whose dynamics begin to obscure the
true close in points, since the points tend to be distributed over
a more narrow range of the interior of an m-dimensional hyper-
sphere. And as m → ∞, the standard deviation of the inter-point
distances approaches 0 [13]. Thus one can increase the embedding
until such a result is encountered. Certainly, additional research is
required to confirm this observation.

One drawback of the technique is that the RP-based FT may
require extended computational time with either long or highly
embedded dynamics. Nonetheless, when oscillatory dynamics are
suspected which move in higher dimensions, it might be useful to
consider the RP-based FT.
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Fig. 4. Result of analyzing three sequential series of 1 000 points (a)–(c) of the BZ attractor. This is due to inadequate sampling of the total extent of the attractor as seen in
Fig. 1.

(a)

(b)

(c)

(d)

Fig. 5. Results for progressive embedding of the time series from 1 to 4 (a)–(d). The correct periods are found for an embedding of 3, but are obscured with an embedding
of 4.
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