
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

A Complex Network-Based Broad Learning System
for Detecting Driver Fatigue From EEG Signals

Yuxuan Yang, Zhongke Gao , Senior Member, IEEE, Yanli Li, Qing Cai, Norbert Marwan, and Jürgen Kurths

Abstract—Driver fatigue detection is of great significance for
guaranteeing traffic safety and further reducing economic as well
as societal loss. In this article, a novel complex network (CN)
based broad learning system (CNBLS) is proposed to realize
an electroencephalogram (EEG)-based fatigue detection. First,
a simulated driving experiment was conducted to obtain EEG
recordings in alert and fatigue state. Then, the CN theory
is applied to facilitate the broad learning system (BLS) for
realizing an EEG-based fatigue detection. The results demon-
strate that the proposed CNBLS can accurately differentiate
the fatigue state from an alert state with high stability. In
addition, the performances of the four existing methods are
compared with the results of the proposed method. The results
indicate that the proposed method outperforms these exist-
ing methods. In comparison to directly using EEG signals as
the input of BLS, CNBLS can sharply improve the detec-
tion results. These results demonstrate that it is feasible to
apply BLS in classifying EEG signals by means of CN the-
ory. Also, the proposed method enriches the EEG analysis
methods.

Index Terms—Broad learning system (BLS), complex network
(CN) analysis, driver fatigue detection, electroencephalogram
(EEG) signals.

I. INTRODUCTION

AMENTAL fatigue state is a psychobiological state which
results from a prolonged intensive cognitive work [1].

Mental fatigue may lead to the absence of concentration, the
decline of work efficiency and sometimes impairs the physi-
cal performance in humans to some extent [2]. As a kind of
cognitive activities, the driving process demands for the high
concentration of our brains. Drivers under the fatigue state are
prone to lose fast and accurate emergency response capacity
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and good judgment, which is a huge threat for the road safety.
Many vehicle crashes and traffic injuries were reported in asso-
ciation with driver fatigue [3]. Therefore, in order to lessen
the economic and societal loss, it is an extreme necessity to
develop a driver fatigue detection method.

Until now, various indicators of humans have been used to
monitor mental fatigue, including facial expressions [4], [5],
and several physiological variables like heart rate variabil-
ity [6], electroencephalogram (EEG) [7]–[9], electromyogram
(EMG), and electrocardiogram (ECG) [10], [11]. Among
them, EEG brain signals are widely used because they are
closely linked to physical and mental activities [12]. Besides,
the rising of varied portable and low-cost acquisition appara-
tuses for EEG signals makes the EEG-based driver fatigue
detection accessible. So in this article, we put our con-
cern on the EEG-based driver fatigue recognition task. In
this area, numerous works have been accomplished to detect
the fatigue state. The work of [13] proposed an EEG-based
drowsiness-estimation system where independent component
analysis (ICA), power spectrum analysis, correlation evalua-
tion, and linear regression model were applied collectively.
In [14], four frequency features were used to train the support
vector machine (SVM) to automatically analyze EEG signals
during car driving. The study of [15] extracted wavelet entropy
(WE) from EEG signals to be fed into SVM for classifying
the fatigue state and normal state.

In recent years, deep learning (DL) techniques experi-
ence a soaring development and have been applied in varied
image analysis areas, including human pose recovery [16],
single image super-resolution [17], and brain tumor segmenta-
tion [18], to name a few. Except for the image processing field,
diverse physiological signals analysis works have also been
benefited a lot from the development of DL. In [19], a time-
frequency convolutional neural network (CNN) was designed
for emotion recognition task from EEG signals. The work
of [20] put forward a deep CNN-based method for identifying
patients with paroxysmal atrial fibrillation (PAF) from ECG
signals. In [21], a deep belief network (DBN) was proposed
to classify emotion states from EEG recordings. In the EEG-
based driver fatigue detection field, DL techniques have also
received widespread attention, like channel-wise CNN [22]
and EEG-based spatio–temporal CNN [23].

The stacking of multilayer nonlinear units makes an access
for DL to automatically learn representative features from
input data [24], [25]. However, many DL structures frequently
suffer from time-consuming training process because vast
hyper-parameters and complicated structures are involved.
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Recently, a novel broad learning system (BLS) was provided
from the work of [26], which is an alternative pattern of learn-
ing in deep structure and can avoid the above problems of the
DL model. This system is derived from a random vector func-
tional link neural network (RVFLNN) [27], [28] which has no
requirement to a long training process and enables to dynam-
ically update the output weights. Basic BLS is composed of
three steps. First, the input data is mapped as mapped fea-
tures and stored in feature nodes; second, the feature nodes
are transferred into enhancement nodes for broad expansion;
finally, all the feature nodes and enhancement nodes are con-
nected to the output and the connection weights are calculated
by ridge regression of the pseudoinverse. The broadness of
BLS is realized by the expansion of both feature nodes and
enhancement nodes. The network weights computation in BLS
is solved by ridge regression meaning fewer iterations are
required to train BLS. Moreover, BLS needs fewer training
samples, which benefits from fewer network parameters in
BLS [29]. Nowadays, BLS is still in infancy. Most of the
existing works of BLS are still concentrating on the image
research area [30], [31]. Whether it can be used to the signal
classification area is an appealing subject.

Recently, the complex network (CN) theory has received
extensive attentions, due to its capacity of characterizing the
topologies of complex systems [32]–[35]. A classical CN is
composed of numerous nodes and edges which is decided
by the interrelationships between nodes. In this way, a com-
plex system with numbers of interconnected units is then
mapped into a network and a corresponding network matrix
can be received. As the brain is also an acknowledged complex
system [36], CN theory has also received an extensive con-
cern in brain research, like Alzheimers disease [37], biometric
system research [38], and sleep deprivation research [39].
Among these existing CNs, the recurrence network is a
method which could detect the recurrence properties of a
complex system [40], and recurrence network-based methods
have been employed to study real-world systems like the car-
diorespiratory system [41], climate [42], and multiphase flow
systems [43]. In addition, for EEG-based fatigue research,
multivariate weighted recurrence networks (MWRNs) were
developed aiming at characterizing the difference of the
brain cognitive process between mental fatigue and normal
states [44]. In MWRN, each channel represents one node
and the interchannel relationship is characterized by an index
which enables to detect the phase and generalized synchro-
nization even in nonstationary time series [45]. Thus, EEG
signals can be mapped into a network and the elements in the
network matrix are carrying the information of raw signals.
The network matrix resembles an image, which is the tradi-
tional input of BLS. Therefore, we propose a CN-based BLS
(CNBLS) for providing a solution for the application of BLS
to the EEG-based driver fatigue detection task.

This article is organized as follows. In Section II, a driver
fatigue experiment is introduced and EEG signals both in alert
state and fatigue state are collected and preprocessed for the
following analysis. In Section III, we offer a detailed descrip-
tion of the construction of MWRN, the principle of BLS, and
the overall framework of CNBLS. In Section IV, the test results

Fig. 1. Simulating experimental setup for obtaining EEG signals under alert
and fatigue driving states.

are provided and four existing methods are compared with our
CNBLS. Finally, the conclusions and an outlook for future
applications of the novel model in other EEG recognition
studies are given in Section V.

II. EXPERIMENTS

A. Subjects and Experiment Procedure

The EEG acquisition experiments were conducted in
the Laboratory of CNs and Intelligent Systems at Tianjin
University, China. The experimental process was approved by
the ethics committee of General Hospital Affiliated to Tianjin
Medical University in China.

In this article, 11 right-handed, healthy and without
psychiatric-related disorders students (seven males and four
females, mean age 23.5 ± 1.7 years), recruited from Tianjin
University, participated in the experiment. For the subjects,
the intake of anti-fatigue drinks and drowsiness-causing pills
was not allowed and enough rest with over 7 h was required
two days before the experiment. In addition, the experiment
was conducted in an indoor driving simulator, but the sub-
jects had no experience in them. Therefore, all the subjects
were required to have some practices until they were skilled.
Besides, before the experiment, all the subjects were given
written consent where information like the design and purpose
of the experiment were given.

The adopted driving simulator was equipped with a steering
wheel, a clutch, a brake pedal, and an accelerator. The driving
scene was set at a flat highway with few bends and views, and
the day was selected on a sunny day. Furthermore, a webcam
360D618 was added for monitoring the facial state of the sub-
jects and a projector as well as a stereo cabinet were applied
for better visual perception. The experimental scene is shown
in Fig. 1.
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Fig. 2. Flow chart of the proposed CNBLS.

Each experiment begun at 14:00 and lasted about 90 min
because, at this period, subjects were shown to be easier to
fall into the fatigue state. In addition, subjects were suggested
to stop the experiment at any time if any discomfort appeared
or they were too sleepy. All subjects were suggested to avoid
unnecessary body movement during data collection. During
driving, they were advised to drive at a constant speed and
avoid traffic collision as far as possible.

The 9-point Karolinska sleepiness scale (KSS) [46], which
gives an evaluation from 1 (extremely alert) to 9 (very
sleepy), was applied for subjective assessment of fatigue level.
According to KSS, drivers state was classified into three parts,
namely, alert, mild fatigue, and fatigue state. All subjects
began their data acquisition after a KSS survey for ensuring
their alertness. Then they kept driving until reporting their
mild fatigue, which commonly lasted about 30 min as an alert
state. Next, after a 10-min driving for transition, they went
into another 30-min driving which was considered as fatigue
state. After finishing the whole driving task, they were asked
to do a post-experiment survey.

As the experiment procedure was a little boring and repet-
itive, the drivers’ fatigue level was supposed to increase over
time. Actual facial state, an essential physiological measure-
ments of fatigue states, combined with subjective assessment,
demonstrated the gradually increased fatigue.

B. Data Acquisition and Preprocessing

The EEG signals were collected by a 40-channel recording
cap (Neuroscan, America) where the electrodes were arranged
according to the standard international 10/20 system. The left
and right mastoids were set as reference electrodes. Four
electrodes, horizontally and vertically placed around eyes,
were electrooculogram (EOG) monitor. The sampling rate was
1000 Hz in this experiment.

The acquired data were preprocessed by EEGLAB soft-
ware where the raw signals were filtered into 1–50 Hz by

a band-pass FIR filter. As there are artifacts in collected EEG
signals, some blind source separation (BSS) methods have
been developed to remove these artifacts [47]. In this article,
the widely used ICA was applied to remove artifacts. Then
the signals were downsampled into 200-Hz for decreasing the
computation burden. After this preprocessing procedure, we
obtain clean 30-channel signals for each subject.

We removed the data from the mild fatigue state for each
subject and labeled the first 20 min of the driving process as
an alert category and the last 20 min as fatigue category. The
data from the two categories are divided into a series of 1 s
samples without overlapping. Then for each subject, there are
totally 2400 samples and each category has 1200 samples.

III. METHODS

CNBLS starts from the construction of MWRN namely
the transform of EEG signals and then the obtained network
matrix is fed into the BLS for driver fatigue detection. The
flow chart of the proposed technique is shown in Fig. 2.

A. Construction of MWRN

The driver fatigue detection system starts from the construc-
tion of MWRN, by transforming the EEG data to a network
matrix like an image representation. The basic idea of MWRN
is the calculation of the synchronization index which describes
the generalized synchronization between two systems [45].
Thereafter, we consider each channel of the EEG signals as
a node and regard the synchronization index as the weight
between two channels to construct the MWRN.

The process of calculating the synchronization index and
constructing MWRN is as follows. First, for multichannel EEG
signals {xk,l}L

l=1, k = 1, 2, . . . , p containing p subsignals of
equal length L, a phase-space reconstruction is performed on
each subsignal, respectively, to generate p trajectories �xk(t)

�xk(t) = (
xk,t, xk,t+τ , . . . , xk,t+(m−1)τ

)

t = 1, 2, . . . , N, k = 1, . . . , p (1)
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where N is the number of vector points in each trajectory,
m is the embedded dimension determined by the false near-
est neighbors (FNNs) algorithm [48], and τ is the time delay
decided by the C-C [49] method. Then, the single-channel
recurrence plot (RP) is used to visualize the behavior of each
trajectory in phase space

RP�xk
i,j

(
ε�xk

)
= �

(
ε�xk − ‖�xk(i) − �xk(j)‖

)

i = 1, . . . , N j = 1, . . . , N (2)

where ε�xk is an adaptive threshold for controlling the density
of recurrence points in the RP, namely, the recurrence rate
(RR) to be 0.1, and i as well as j are the vector points of
current trajectory. Thus, for each p subsignals, we obtain p
RPs. In order to describe the pair-wise relationship between
RPs, the joint RP (JRP) [50] is introduced. It characterizes
the joint probability that recurrences of pair-wise subsignals
happen simultaneously. JRP can be obtained by

JRP�xk1,�xk2
i,j

(
ε�xk1 , ε�xk2

)
= R�xk1

i,j

(
ε�xk1

)
R�xk2

i,j

(
ε�xk2

)
. (3)

On this JRP, the density of recurrence points is depicted by
the following joint RR:

JRR(�xk1, �xk2) = 1

N2

N∑

i,j=1

JRP�xk1,�xk2
i,j . (4)

Finally, we infer the synchronization index of pair-wise sub-
signals as follows:

S(�xk1, �xk2) = JRR(�xk1, �xk2)

RR
. (5)

Thus, for a multichannel EEG signals containing p subsignals,
a synchronization matrix with size p × p is acquired which is
then mapped into an MWRN.

B. Driver Fatigue Detection With BLS

The algorithm of BLS starts from a feature mapping pro-
cess. For an input dataset X with N samples and M dimensions,
n feature mappings, each of them has k nodes, are conducted
through the following equations:

Zi = φ(XWei + βei), i = 1, . . . , n (6)

where Wei and βei are randomly produced. Notably, sparse
autoencoder is then used to fine-tune the random features for
receiving better feature mappings. Thereafter, the n feature
mappings’ combination Zn ≡ [Z1, . . . , Zn] is enhanced by

Hm ≡ ξ
(
ZnWhm + βhm

)
(7)

where m represents the mth group of the enhancement nodes.
Thus, the output matrix Y can be expressed as

Y = [
Z1, . . . , Zn|ξ

(
ZnWh1 + βh1

)

. . . , ξ
(
ZnWhm + βhm

)]
Wm

= [Z1, . . . , Zn|H1, . . . , Hm]Wm

= [
Zn|Hm]

Wm (8)

where Wm is the connecting weights from the feature and
enhancement nodes to the output matrix. It can be determined
through the problem

argmin
Wm

∥
∥[

Zn|Hm]
Wm − Y

∥
∥2

2 + λ
∥
∥Wm

∥
∥2

2 (9)

where λ indicates further constraints on the sum of Wm. In
order to solve the problem, the ridge regression is used and
then Wm can be calculated by

Wm =
(
λI + [

Zn|Hm]T[
Zn|Hm])−1[

Zn|Hm]T
Y. (10)

In this equation, if there is no constraint, namely λ = 0,
then the above equation can be simplified into the least square
problem. If the constraint is infinite with λ → ∞, then the
solution tends to 0. Thus, we set λ → 0 here. Adding an
approximation to the Moore–Penrose generalized inverse of
[Zn|Hm] [51], then Wm can be received by

Wm = [
Zn|Hm]+

Y (11)

where
[
Zn|Hm]+ = lim

λ→0

(
λI + [

Zn|Hm]T

[
Zn|Hm])−1[

Zn|Hm]T
. (12)

In this article, the number of feature mappings n, the number
of nodes in feature mapping k, and the number of enhance-
ment nodes m are set as 10, 50, and 5000, respectively. The
back propagation (BP) is used to fine-tune the enhancement
nodes and connecting weights. Notably, in order to over-
come individual differences of subjects, some previous works
applied model transfer strategy to construct models for each
subject [52], [53]. However, in this article, we construct the
CNBLS model and adjust the parameters of the model on one
subject. Then the adjusted model is generalized to the data
of other subjects. The following results can indicate that our
model has a strong generalization capability on each subject.

IV. RESULTS AND DISCUSSION

The effectiveness of the proposed method is verified on the
experimental datasets described in the previous experiment
part. In addition, the results are compared with the results
obtained from four existing methods. Furthermore, whether the
signals can be directly fed into BLS is discussed and different
incremental learning strategies are compared in this section.

A. Results

In this part, a rigorous validation way is performed on each
subject’s dataset. Specifically, for each subject, we select out
the first 300 samples out from all 1200 samples of each cat-
egory to train the CNBLS model. Then, the last 300 samples
of each category are considered as the testing samples to ver-
ify the effectiveness of the proposed model. Thus, there is a
10-min interval between training and testing samples which
can effectively avoid the influences resulted from the continu-
ity of time series. Finally, we have 600 samples for training
the model and 600 samples for the test.
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(a)

(b)

Fig. 3. Accuracy (Acc.), sensitivity (Sens.), specificity (Spec.), and AUC
value of each subject.

In Fig. 3, we provide the detailed accuracy of 11 subjects.
Besides, we calculate the area under curve (AUC) value, sensi-
tivity and specificity to evaluate the performance of the model
from different perspectives. To be specific, AUC value can
illustrate the classification ability of a binary classifier where
the value range of AUC is 0.1∼1 and a higher AUC value
represents a better classification effect. On the other side, sen-
sitivity and specificity measure the proportion of the number
of correctly classified positive/negative samples to the total
number of positive/negative samples (equaling to 300), respec-
tively. In this article, the fatigue state is defined as a positive
class while the alert state is regarded as a negative class.
From the results, we can clearly see that all the subjects reach
an accuracy of over 98%, and, especially, 4 out of 11 sub-
jects reach the peak accuracy of 100%. From the results of
AUC value, we can find that four subjects can attain an AUC
value of 1 while the AUC value of the rest seven subjects is
all over 0.98. From the perspective of sensitivity and speci-
ficity, we can find that the fatigue samples of most subjects
can all be predicted correctly. These results indicate that the
proposed CNBLS model has a reasonably strong classification
capacity.

In addition, the results are compared with some exist-
ing works in EEG classification. In detail, two conventional
feature-based models and two CNNs models, which are com-
monly used in the detection of driver fatigue task and other
EEG classification tasks, are included to the comparisons to
validate the effectiveness of BLS in EEG classification. In par-
ticular, these models are reproduced following the description

(a)

(b)

Fig. 4. Average accuracy (Acc.), standard deviation (Std.), average sensitivity
(Sens.), specificity (Spec.), and AUC value of each method.

on their original literature, respectively. We provide a brief
introduction of these models as follows.

PSD+SVM [54]: The power spectral density (PSD) charac-
teristics of each channel are extracted in five certain frequency
bands [delta (< 4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta
(13–30 Hz) and gamma (31–50 Hz) frequency bands] to con-
stitute the feature vectors. In addition, different ratios of these
characteristics, (theta+alpha)/beta, alpha/beta, (theta+alpha)/
(alpha+beta), and theta/beta, are also added to the feature
vectors. An SVM is used as the classifier in this model. The
kernel function of SVM is radial basis function and the other
parameters are default values in LIBSVM toolbox [55].

WE+SVM [15]: Daubechies2 wavelet is chosen to obtain
wavelet coefficients series at different resolutions for each
channel of EEG signals and then, the corresponding WE is
calculated for each channel. Feature vectors composed of WE
are fed into an SVM to recognize driver fatigue condition and
alert state.

CNN-1 [22]: A five-layer channel-wise CNN is proposed
to detect drivers fatigue state from EEG recordings and pre-
processed EEG signals are input into the channel-wise CNN
directly. The CNN structure is composed of a convolution layer
with kernel (1, 200), a max-pooling layer with size (1, 2),
two fully connected layers with 500 and 100 nodes, and a
classification layer.
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(a) (b) (c)

(d) (e)

Fig. 5. Confusion matrix of each method. (a) CNBLS. (b) CNN-1. (c) CNN-2. (d) PSD+SVM. (e) WE+SVM.

CNN-2 [56]: A four-layer CNN is developed for motor
imagery brain–computer interface system and preprocessed
EEG signals are the input data. The CNN structure is com-
posed of two convolution layers with kernals (1, 30) and
(30, 1), an average pooling layer with kernel (1, 15), a fully
connected layer with 80 nodes and a classification layer.

The average accuracy, standard deviation, average AUC
value, sensitivity, and specificity of the four compared meth-
ods and the proposed method are shown in Fig. 4. In addition,
the average number of successfully predicted samples of each
type is shown in Fig. 5 in the form of confusion matrix.
From the confusion matrix, we can distinctly uncover that
the CNBLS method has almost the same classification abil-
ity to each type of state, which can also be reflected by
nearly the same average sensitivity (99.67%) and specificity
(99.48%). Moreover, it is obvious that CNBLS receives the
highest accuracy among all five methods, followed by CNN-2
(91.83%) and CNN-1 (88.62%), respectively. In addition,
the accuracies of two feature-based shallow models, which
reach 70.35% and 73.94%, respectively, are far behind that
of CNN models as well as BLS. From the perspective of
standard deviation, the standard deviation of BLS (0.54%)
is under 1%, which is quite less than that of CNN mod-
els and the feature-based SVM methods. The average AUC
value of the proposed method approaches 1 which surpasses
the other four methods by about 12%, 8%, 41%, and 34%,
respectively.

These findings demonstrate that the proposed CNBLS not
only possesses a fairly high recognition capability but also
holds a satisfactory stability in driver fatigue detection task.
Also, the CNBLS has nearly the same classification ability to
each class.

B. Discussion

In this article, EEG signals are transformed into a network
matrix for the application of BLS in EEG classification.
However, whether EEG signals can be directly classified by
BLS, like CNNs, is a worth exploring question. Therefore,
we have tested the performance of the method which uses
EEG signals as the input of BLS. The parameters are set the
same as CNBLS. The result attains 60.68% with the stan-
dard deviation 6.22%, showing that the way of directly using
EEG signals as an input cannot receive a satisfactory fatigue
detection result. On the other side, introducing the CN method
significantly improves the detection result to nearly 100%. The
results demonstrate that it is quite necessary to add the trans-
form procedure for EEG signals to realize the application of
BLS in fatigue detection task.

Except for the BP method used in this article, BLS has pro-
vided several incremental learning strategies for improving the
detection performance [57]. We test the performances of three
different strategies, namely, the increment of enhancement
nodes, the increment of both enhancement and feature nodes,
and the increment of input patterns [26]. The descriptions of
these constructions are as follows.

CNBLS-1: This is the one-shot construction which has
50 × 10 feature nodes and 5000 enhancement nodes [26]. This
is the basic construction.

CNBLS-2: The initial network is set as 50 × 10 feature
nodes and 3000 enhancement nodes. Then, the number of
enhancement nodes is dynamically increased by 500 until it
reaches 5000. This method applies the way of increment of
enhancement nodes.

CNBLS-3: The initial network is set as 50 × 6 = 300 fea-
ture nodes and 3000 enhancement nodes. Then, the number
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Fig. 6. Average accuracy (Acc.) and standard deviation (Std.) of each method.

of enhancement nodes is dynamically increased by (150+350)
until it reaches 5000. At that same time, the number of feature
nodes is dynamically increased by 50 until it reaches 500. This
method applies the way of increment of both enhancement and
feature nodes.

CNBLS-4: The initial network is trained under the first 400
samples and the incremental learning is used to dynamically
add 50 input patterns each time until all the 600 training sam-
ples are fed. This method applies the way of the increment of
input patterns.

As can be seen in Fig. 6, compared with one-shot con-
struction, all incremental strategies can slightly improve the
average accuracy. The results indicate that using incremental
learning strategies to dynamically update the broad learning
model could provide a compatible result which demonstrates
the effectiveness of incremental learning algorithms. On the
other hand, under our dataset, using the BP algorithm to fine-
tune CNBLS model outperforms the other three incremental
strategies. However, the overall performances of all CNBLS
structures are better than the four existing methods listed in
this article, demonstrating that the CNBLS method is quite
effective for the driver fatigue detection task.

V. CONCLUSION

In this article, an MWRN has been extended to build a
bridge between BLS and EEG-based driver fatigue detection.
A strict test is conducted to verify the performance of the
proposed method in differentiating fatigue state from alert
state. The results have shown that the proposed method can
reach an average accuracy of nearly 100% and an AUC value
of approaching 1. The results have also been compared with
two traditional methods and two existing CNN structures. We
find that the proposed method highly improves the classifica-
tion results obtained by four existing methods, including two
CNN structures. In comparison to directly using EEG signals

as the input of BLS, the proposed CNBLS provides excellent
results demonstrating the necessity of the transform procedure
based on CNs.

The proposed method provides a train of thought for the
application of BLS in signal analysis. This successful appli-
cation makes contribution to the enrichment and improvement
of EEG-based signal analysis methods as BLS has plenty of
merits. Moreover, we also expect the BLS-based model to
get broader applications in other research fields. In the future
work, we will increase the number of subjects to build a larger
dataset for exploring the capability of the proposed model in
online operation.
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