
July 2009

EPL, 87 (2009) 10004 www.epljournal.org
doi: 10.1209/0295-5075/87/10004

Detection of time-delayed interactions in biosignals

using symbolic coupling traces
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Abstract – Directional coupling analysis of bivariate time series is an important subject of current
research. In this letter, a method based on symbolic dynamics for the detection of time-delayed
coupling is presented. The symbolic coupling traces, defined as the symmetric and diametric traces
of the bivariate word distribution, allow for the quantification of coupling and are compared with
established methods like mutual information and cross recurrence analysis. The symbolic coupling
traces method is applied to model systems and cardiological data which demonstrate its advantages
especially for nonstationary data.
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Biological systems usually consist of several subsys-
tems which are interrelated by feedbacks with time
delay. To reveal such time-delayed coupling directions
from biosignals is a basic task in understanding such
systems [1–8]. Data recorded from these systems reflect
biological activities of living beings and are characterized
on the one hand by real biological information, including
nonstationarities, nonlinearities and intrinsic noise, and
on the other hand by measurement noise. Therefore, the
analysis of biosignals, especially the detection of coupling
directions is complicated. Different methods, starting from
cross correlation via mutual predictability to information-
theoretic approaches [9–18] were applied to biosignals. All
these methods are able to find directions of interactions.
However, due to the nonstationarity and nonlinearity of
the biosignals, the conclusions are not homogenous.
Recently new methods based on order pattern analysis

appear to circumvent these problems [19–21]. Order
patterns result from a coarse graining (symbolization)
of the data into two states: increasing or decreasing
amplitudes. This symbolic representation of successive
amplitudes is not sensitive to nonstationarities. Figure 1
gives one example showing the potentials of order

(a)Both authors equally contributed to this work.

patterns: the linear cross correlation analysis obviously is
not so applicable as the recurrence quantification analysis
with order patterns in the bivariate data set of heart rate
(BBI: beat-to-beat interval) and systolic blood pressure
(SBP), because it detects too many lags which cannot
be interpreted physiologically [22]. From the physiology
it is expected that SBP drives BBI by a current and/or
a delayed intervention which is caused by two opposite
directed cardiovascular regulation mechanisms. On the
other hand BBI influences the stroke volume of the heart
which tunes SBP. Thus, the order pattern approach
reveals these lags τ of the time series more clearly
(fig. 1), suggesting the idea that the ordinal structure of
nonlinear and nonstationary time series is necessary for
the analysis of the dynamics. Here we report an extension
of bivariate symbolic dynamics [23] that greatly improves
the detection of coupling directions in biosignals. Signals
from coupled biological processes tend to move in the
same direction or in opposing directions. We show that
this type of relationship is reliably indicated by the
symmetric and diametric bivariate word distributions.
Our very intuitive measure is tested on paradigmatic
models and applied to cardiovascular data, especially to
bivariate time series consisting of the beat-to-beat systolic
blood pressure and heart rate variability values. Revealing
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Fig. 1: Linear cross correlation function (R) as well as recurrence quantification analysis (recurrence rate RRτ ) for the detection
of coupling directions of real data (see fig. 2). Top: R between heart rate (BBI) and systolic blood pressure (SBP) data.
This analysis reveals interrelations between both time series for almost any lag (marked with asterisks) and is, therefore, not
very specific. Bottom: cross recurrence quantification analysis based on order patterns (CRQA(OP)) applied to BBI and SBP
data [19,20] reveals the most significant positive interrelation between both time series for lag τ = 0 and negative interrelation
for lag τ =−2. Solid line: SBP→BBI (positive linkage RR+ in [24]); dotted line: BBI→ SBP (negative linkage RR−). The
order patterns are constructed using the dimension m= 3 and delay ϑ= 3.

the coupling relations for the latter data enables us to
quantify the short term regulation of the cardiovascular
system, and thus to quantify the risk of cardiovascular
disorders. In the following we develop the theory and
give examples of symbolic coupling traces (SCT) which
are also based on the analysis of structural patterns but
easier to interpret and less computationally intensive.
To introduce the SCT method, we consider a dynamic

system represented by two paired one-dimensional time
series x(t) and y(t). They are first transformed into two
symbol sequences sx(t) and sy(t) via the transformation
rule

sz(t) =

{

1, z(t)! z(t+ϑ),

0, z(t)> z(t+ϑ).
(1)

Next, we construct series of words wx(t) and wy(t)
containing l successive symbols from the time series sx(t)
and sy(t), respectively. Hence, d= 2l different patterns are
possible. Using the notion of nonlinear systems theory and
the concept of embedding, the time series x(t) and y(t) can
be interpreted as realisations of a dynamical system. Then,
the original phase space is reconstructed by time delay
embedding #x=

(

xt, xt+ϑ, . . . , xt+(m−1)ϑ
)

for sufficiently
high dimension m [25]. Depending on the strength of

noise, the structure of the reconstructed trajectory could
be very complicated. Therefore, we make it simpler by
symbolisation. The encoding of the trajectory yields a
decomposition of the phase space into 2l areas where l=
m− 1. Afterwards, the bivariate word distribution (BWD)
(pij)i=1,...,d, j=1,...,d is estimated [23]

pij = P
(

wx(t) =Wi, wy(t) =Wj
)

. (2)

pij is the joint probability that the words Wi and Wj
occur at the same time t in the word sequences wx(t)
and wy(t), respectively. In the univariate symbolic dynam-
ics approach only one word sequence is considered. A
schematic illustration of the encoding procedure and the
BWD-calculation is depicted in fig. 2. To measure the
delay-time probability matrix Π(τ) = (pij(τ)) that the
word Wi occurs in wx at time t and Wj occurs in wy
at time (t+ τ), we introduce

pij(τ) = P
(

wx(t) =Wi, wy(t+ τ) =Wj
)

, (3)

based on eq. (2). With the symbol transformation of eq. (1)
we take a loss of amplitude information x(t) and y(t),
however, in time series with moderate noise and nonsta-
tionarities this information can be unreliable. Through
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Fig. 2: Scheme for calculating the bivariate word distribution. Starting from two time series (e.g. SPB and BBI upper panel), a
two-dimensional symbol sequence (middle panels) is calculated by a symbol transformation (ϑ= 1 and l= 3) which leads then
to the bivariate word distribution (lower panel) as the basis of parameter calculation.
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Fig. 3: Comparison of the calculated SCT parameter ∆T = T −T , cross correlation R, the mutual information I, and the
recurrence rate difference ∆RR=RR+−RR− (based on order pattern) for a simulation (left: xi = axi−1+ byi−τ1 + εi and yi =
cyi−1+ dxi−τ2 + νi, two coupling terms coupling yi−τ1 and xi−τ2 , ε=N(0, 0.1), ν =N(0, 0.1), a= 0.3, b= 0.7, c= 0.3, d= 0.7)
and experimental data of a healthy volunteer (right) at different lags τ . Significant parameters are drawn as boxes. A simulation
with symmetric coupling at τ = 1 as well as diametric coupling at τ =−2 is indicated on the left. The exact detection of the
lags by ∆T is obvious. This is also true if nonstationarities, such as additive trends or time-dependent variance are present. R
and I as well as ∆RR help to draw conclusions about the lags, but do not show them clearly. On the right, the most significant
lags in the real data are revealed by ∆T at τ = 0 and τ =−2, i.e. BBIs correspond diametrically (τ =−2) and symmetrically
(τ = 0) with SBP. The parameters R, I and ∆RR do not show these lags as clearly as ∆T , respectively show false significant
lags.

symbolisation, word transformation and symmetric bivari-
ate selection of the diagonals we can exclude random
effects and include significant coupling information only.
Therefore, it is quantified by the BWD-diagonals: i) the

trace T of the matrix Π(τ) is defined as

T (τ) =
∑

i=j

pij(τ). (4)

It represents the fraction of both time series, which are
structurally equivalent to each other at lag τ .
ii) The parameter T

T (τ) =
∑

i=1,...,d, j=d+1−i

pij(τ) (5)

describes the fraction of both signals, which are struc-
turally diametric at lag τ (d is the number of different
patterns). Both parameters vary from 0 to 1 and comprise
the diagonals of the BWD only. The quantification of the
complete BWD by means of Shannon-entropy does not
reveal the correct lags clearly. The reason for this is, that
if all elements of the BWD are included in the parameter,
too much information about mixed forms of symmetric
and diametric structures are involved. This leads to a blur,
hiding the correct lags. Finally, the difference ∆T = T −T
of the above parameters is the most appropriate choice
which is shown by simulations, for example in fig. 3.
Apart from the cross recurrence and SCT parameters, the

classic cross correlation function R [10] and the mutual
information I [15] are calculated for comparison.
To study significance limits for ∆T , the parameter is

calculated for randomised time series without coupling
(for τ = 0). A parameter value in a statistical test is
considered as significant (seldom event) if its probabil-
ity (estimated by N = 100 randomized surrogates) is
smaller than the chosen significance level. Therefore,
the maximum and minimum of ∆T in the group of
simulations represent the borders of 1% significance
level. In the following we consider only m= 4 and ϑ= 1.
Higher dimensions are not appropriate, because the word
distribution (eq. (2)) cannot be estimated sufficiently well
for smaller datasets. The considered lags are limited to
20! τ ! 20 (sampling units) in order to focus on short
time-delayed dependencies. To validate the new method,
the simplest approach is used: simulations of coupled 2D
autoregressive (AR) processes (cf. fig. 3, left panel). The
coefficients of the AR models are varied in order to study
the influence of varying coupling strengths and of noise.
For an example with model-specified lags at τ =−2 and
τ = 1 (fig. 3, left panel), all four methods determine the
defined lags correctly. In contrast to the SCT, however,
the other three methods have additional false detections.
The SCT-parameter detected the lags in case of delayed
coupling with autocorrelation more clearly than cross
correlation, mutual information and recurrence plot based
on order pattern (cf. fig. 3, left panel). For higher noise
levels this advantage decreases, however, for cardiological
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time series autocorrelation with certain coupling have to
be expected. Consequently, the SCT parameters are suit-
able for analysing the coupling of these signals (cf. fig. 3,
right panel). For a further validation, we also applied it
to nonlinear coupled models, e.g. SETARX (self-exciting
threshold autoregressive model with external input)
systems [26] and found similar results.
A minimal required sampling time is essential for

our method. We used the symbolic dynamics method
introduced in [27] to verify that the required sampling
time for the given time series is fulfilled. This method
quantifies the maximum information in a time series when
coarse-graining the absolute differences between adjacent
sample points. We find that an electrocardiogram sampled
with at least 100Hz and blood pressure recordings with
at least 2mmHg resolution are sufficient. Moreover, it
is important to consider the amount of noise in the
data when calculating the bivariate symbol sequence
according to eq. (1). We investigated the impact of
noise on the SCT coupling parameters by simulations.
Additive white noise with a maximal signal-to-noise ratio
of 10 dB does not significantly influence the coupling
results. The SCT method is applied to real cardiological
data to analyse the coupling between BBI and SBP values
of 20 healthy volunteers (age: 53.0± 8.0 years). For all
subjects, we measured continuous blood pressure signals
(30min, Portapres Mod. 2, 100Hz sampling frequency,
under standardized supine resting conditions, recorded at
the Charité Berlin). Artefacts, such as calibration, motion
etc., are removed and interpolated using an adaptive filter
technique [28] to avoid corrupted results. The continuous
blood pressure curves are used to extract the time series
of BBI and SBP. A representative example of the coupling
analysis is shown in fig. 3 (right panel). Parameters
based on SCT are not influenced by nonstationarities of
the time series. The parameter ∆T detects significant
lags at τ =−2 and τ = 0 for all subjects. This confirms
the prevailing opinion about the cardiovascular short
term regulation. The symmetric lag at τ = 0 reflects
the mechanically induced arterial pressure fluctuations,
whereas the diametric lag at τ =−2 represents the vagal
feedback from the BBI to the SBP. In ongoing studies the
diagnostic and prognostic value of the new method could
be verified with respect to cardiological diseases and the
influence of ventilation.
The analysis of model systems and cardiological data

with the SCT method demonstrates its advantages espe-
cially for physiological data. Nevertheless, for the general
assessment of coupling directions in time series, both new
and established methods should be used. The amount
of nonstationarities, nonlinearities, autocorrelation and
noise influences the quality of the results of each method.
Coupling in stationary data with strong noise can be well
detected via mutual information and cross correlation,
whereas in deterministic data cross recurrence should be
preferred. The parameters of the SCT method and cross
recurrence based on order pattern close the gap in the

coupling analysis of nonstationary time series with strong
autocorrelation and moderate noise, where cross corre-
lation, mutual information and other methods are not
sufficient to localise the lags exactly. The advantages of
the SCT parameters in comparison to cross recurrence are
the easy interpretation and the lower computational costs,
because only symmetric and diametric words are quanti-
fied. Furthermore, SETARX simulations discovered that
the reason for the failure of the known methods are insta-
tionarities, which are caused by intrinsic nonlinearities or
changing conditions. As the time series of heart rate and
blood pressure are likely to be of the mentioned kind for
which the SCT is appropriate, a higher gain of diagnostic
information can be expected. Testing of coupling in terms
of time lag and in terms of intensity under well-controlled
physiological test conditions can probably give indications
for risk factors for cardiovascular diseases. Finally, our
approach may be applicable also for multivariate or
various other systems, e.g. socio-economic systems.
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