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Abstract

We present recently introduced new recurrence plot

based measures of complexity and illustrate their potential

with applications to the logistic map and heart rate

variability data. These new measures make the

identification of chaos-chaos transitions possible and

identify laminar states. The application to the heart

rate variability data detects and quantifies the laminar

phases before a life-threatening cardiac arrhythmia occurs;

thereby facilitating a possible prediction of such an event. A

comparison to the previous applied methods from symbolic

dynamics and the finite-time growths rates is given.

1. Introduction

Numerous scientific disciplines use data analysis

techniques to get an insight into the complex processes

observed in nature which show generally a nonstationary

and complex behavior. As these complex systems are

characterized by different transitions between regular,

laminar and chaotic behaviors, the knowledge of these

transitions is necessary for understanding the process.

Linear approaches of time series analysis are often not

sufficient and most of the nonlinear techniques, such as

fractal dimensions or Lyapunov exponents, suffer from the

curse of dimensionality and require rather long data series.

To overcome the difficulties with nonstationary and

rather short data series, the method of recurrence plots

(RP) has been introduced [1]. An additional quantitative

analysis of recurrence plots has been developed to detect

transitions (e. g. bifurcation points) in complex systems

[2]. However, these measures can identify only transitions

between chaos and order. Therefore, we present here

three other measures basing on RPs and demonstrate their

potentials for a prototypical nonlinear model and for cardiac

data [3].

2. Recurrence plots

The method of recurrence plots (RP) was firstly

introduced to visualize the time dependent behavior of the

dynamics of systems, which can be pictured as a trajectory

~x(t) = ~xi ∈ Rn (i = 1, . . . , N , t = i∆t, where ∆t is

the sampling rate) in the n-dimensional phase space [1].

It represents the recurrence of the phase space trajectory

to a certain state, which is a fundamental property of

deterministic dynamical systems. The main step of this

visualization is the calculation of the N × N -matrix

Ri, j := Θ(ε − ‖x̃i − x̃j‖), i, j = 1 . . .N,

where ε is a cut-off distance, ‖ · ‖ a norm (e. g. L2

or L∞ norm; in this work the L2 norm is used) and

Θ(x) the Heaviside function. The phase space vectors

for one-dimensional time series ui from observations can

be reconstructed by using the Taken’s time delay method

~xi = (ui, ui+τ , . . . , ui+(m−1) τ ) with dimension m and

delay τ , whereby the dimension m can be estimated by

using methods basing on false nearest neighbors. The

binary values in Ri, j can be simply visualized by a

matrix plot with the colors black (1) and white (0). The

recurrence plot exhibits characteristic large-scale and small-

scale patterns which are caused by typical dynamical

behavior [1, 4], e. g. diagonals (similar local evolution of

different parts of the trajectory) or horizontal and vertical

black lines (state does not change for some time). Recently

introduced extensions to cross recurrence plots use the

diagonal structures and their distortions, respectively, for

finding similarities and time transfer functions between two

different systems [5]. Zbilut and Webber have developed

the recurrence quantification analysis (RQA) to quantify

an RP [4]. They defined measures using the recurrence

point density and diagonal structures in the recurrence

plot, e.g. the recurrence rate RR (percent recurrences,

density of recurrence points), the determinism DET

(ratio of recurrence points forming diagonal structures to

all recurrence points), the maximal length of diagonal

structures Lmax (or their averaged length L). A theoretical

approach to the RQA including the effect of observational

noise was recently published by Thiel et al. [6]. Trulla

et al. have applied the RQA in order to find transitions in

dynamical systems [2]. They have showed, that the RQA

measures are able to find transitions between chaos and

order (periodical states). But they could not find chaos-

chaos transitions, which are very typical in dynamical

systems.

0276−6547/03 $17.00 © 2003 IEEE 477 Computers in Cardiology 2003;30:477−480.



x

50 100 150 200 250 300

−2

0

2

Recurrence plot

50 100 150 200 250 300

50

100

150

200

250

300

Figure 1. Exemplary recurrence plot of the logistic map

for the band merging a = 3.679; RP parameters are m = 1,

τ = 1 and ε = 0.1σ.

3. Measures of complexity

Therefore, we have recently introduced two additional

measures which are based on the vertical structures in

the RP [3]. We define these measures analogous to the

definition of DET and L (and Lmax), but we consider the

distribution P (v) of the length of the vertical structures in

the RP. First, the laminarity LAM

LAM :=

∑N

v=2 vP (v)
∑N

v=1 vP (v)
,

is the ratio of recurrence points forming vertical structures

to all recurrence points and represents the probability of

occurrence of laminar states in the system, but it does not

describe the length of these laminar phases. It will decrease

if the RP consists of more single recurrence points than

vertical structures. Next, the trapping time TT

TT :=

∑N

v=2 vP (v)
∑N

v=2 P (v)
,

is the averaged length of the vertical structures. The

measure TT contains information about the amount and the

length of the laminar phases. Finally, we use the maximal

length of the vertical structures in the RP

Vmax := max ({vl ; l = 1, 2, . . . L})
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Figure 2. Laminarity (B) and trapping time (C) of

time series gained from the logistic map for various

control parameters (A). These measures reveal laminar

and intermittent states. The vertical dotted lines show a

choosing of points of band merging and laminar behavior

(a = 3.678, 3.727, 3.752, 3.791, 3.877, 3.927).

as a measure, which is the analogue to the standard RQA

measure Lmax. The distinction between these measures

and the traditional RQA measures is their ability to find

transitions between chaos and chaos [3].

4. Application to the logistic map

In order to illustrate the potentials of LAM , TT

and Vmax, we firstly apply them to the logistic map

xn+1 = a xn (1 − xn), especially the interesting range

of the control parameter a ∈ [3.5, 4]. We generate for

each control parameter a a separate time series. In the

analyzed range of a various regimes and transitions between

them occur, e. g. accumulation points, periodic and chaotic

states, band merging points, period doublings, inner and

outer crisis [7]. We compute the RP with a cut-off distance

of ε = 0.1 (in units of the standard deviation σ); an

embedding is not necessary here (i.e. m = 1 and τ =
1). The cut-off distance ε is selected to be 10 percent

of the diameter of the reconstructed phase space. Smaller

values would lead to a better distinction of small variations

(e. g. the range before the accumulation point consists of

small variations), but the recurrence point density decreases

in the same way and thus the statistics of continuous

structures in the RP becomes soon insufficient. For various

values of the control parameter a the RPs exhibits specific

features (an exemplary RP is shown in Fig. 1). Periodic

states cause continuous and periodic diagonal lines in the
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Figure 3. Recurrence plots of the heart beat interval (HBI) time series at a control time (left) and before a VT (right) with

m = 6 and ε = 170. The RP before a life-threatening arrhythmia is characterized by big black rectangles whereas the RP

from the control series shows only small rectangles.

RP but no vertical or horizontal lines. Band merging

points and inner crisis represent states with short laminar

behavior and cause vertically and horizontally spread black

areas in the RP. Fully developed chaotic states (a = 4)

cause a rather homogeneous RP with numerous single

points and rare short diagonal or vertical lines. Therefore,

the measures LAM , TT and Vmax, which base on

these vertical structures, find the periodic-chaotic/ chaotic-

periodic transitions as well as the laminar states (Fig. 2 B,

C). Since vertical lines occur much more frequently at inner

crisis and band merging points (i.e. laminar states) than in

other chaotic regimes, LAM and TT grows up at those

points. Although Vmax also reveals laminar states, it is

quite different from the other two measures, because it

gives the maximum of all of the durations of the laminar

states [3]. Hence, the vertical length based measures yield

periodic-chaotic/ chaotic-periodic as well as chaos-chaos

transitions (laminar states).

5. Application to HRV data

A major challenge in biological physics is the analysis

of cardiac time series. Heart rate variability (HRV)

typically shows a complex behavior and it is difficult to

identify disease specific patterns. Implantable cardioverter

defibrillators (ICD) are a safe and effective treatment for

ventricular tachycardia or fibrillation (VT). These fatal

cardiac arrhythmias are the main factors triggering sudden

cardiac death. A fundamental challenge in cardiology is

to find early signs of VT in patients with an ICD based

on HRV data (e.g. [8]). Recently studies applied standard

methods, methods basing on symbolic dynamics as well as

finite-time growth rates to the HRV parameters from time

and frequency domain [8, 9, 10, 11, 12]. The defibrillators

used in this study are able to store at least 1000 beat-to-

beat intervals prior to the onset of VT (10 ms resolution,

Biotronik), corresponding to approximately 9–15 minutes.

We studied the ICD stored beat-to-beat intervals before

the onset of 24 VT episodes and at 24 control intervals

without VT in 17 ICD patients of the Franz-Volhard-

Hospital with severe congestive heart failure. The beat-

to-beat intervals of the VT at the end of the time series

were removed from the tachograms so that we analyzed

only the dynamics occurring immediately prior to VT. We

calculate all standard RQA parameters described in [4]

as well as the new measures LAM , TT and Vmax for

different embedding dimensions m and vicinity threshold

radii ε. We find differences between both groups of data for

several of the parameters mentioned above. However, the

most significant parameters are Vmax and Lmax for rather

large radii (Tab. 1). The vertical line length Vmax is more

powerful in significantly discriminating both groups than

the diagonal line length Lmax, as can be recognized by

the higher p-values for Vmax (Tab. 1). The RP before a
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life-threatening arrhythmia is characterized by large black

rectangles, whereas the RP from the control series shows

only small rectangles (Fig. 3).

Table 1. Results of Lmax and Vmax shortly before VT

and at control time, nonparametric Mann-Whitney U-test,

p – significance; * – p < 0.05; ** – p < 0.01; ns – not

significant p ≥ 0.05)

m ε
〈Lmax〉 〈Vmax〉

VT Ctr. p VT Ctr. p

3 77 396.6 261.5 ns 261.4 169.2 *

6 110 447.6 285.5 * 283.7 179.5 **

9 150 504.6 311.6 * 342.4 216.1 **

12 170 520.7 324.7 * 353.5 215.1 **

In Tab. 2 a comparison to the previous applied methods

from symbolic dynamics and the finite-time growths rates

is given [11]. The highest correlation was found for the

recurrence rate and the Shannon-Entropy of the histogram:

the higher the entropy of the histogram the lower the RR.

For the parameter DET a relative high correlation was found

to ’Shannon’ whereas Vmax is only moderately correlated.

Table 2. Correlation coefficients of the RQA

parameters (m = 12, ε = 170) to the previous

applied measures ’Shannon’ (the Shannon-Entropy of

the histogram), ’FWShannon’ (the Shannon-Entropy of

the word distribution), ’PLVAR10’ (symbolic dynamics

parameter) as well as the finite time growth rates λ3, λ6

and λ9. All coefficients are significantly different from zero

p < 0.05 (except RR vs. λ9).

RR DET 〈Vmax〉
Shannon -0.85 -0.77 -0.49

FWshannon -0.41 -0.49 -0.41

PLVAR10 0.49 0.73 0.48

λ3 -0.71 -0.74 -0.57

λ6 -0.36 -0.63 -0.49

λ9 0.00 -0.26 -0.27

6. Conclusions

We have demonstrated that our new three measures of

complexity basing on recurrence plots are able to identify

chaos-chaos transitions and epochs of laminar behavior.

The application of these measures to heart rate variability

data, has shown, that they are able to detect and quantify

laminar phases before a life-threatening cardiac arrhythmia

and, thus, may predict such an event [3]. These findings

can be of importance for the therapy of malignant cardiac

arrhythmias. Limitations of this analysis are the relatively

small number of time series and the reduced statistical

analysis (no subdivisions concerning age, sex, heart disease,

VT time). For this reason, these results have to be validated

on prospective data from the MARITA multicentric study

were 9000 RR-intervals before a VT are stored. A

download of a Matlab implementation is available at:

tocsy.agnld.uni-potsdam.de.
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