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One main challenge in constructing a reliable recurrence plot (RP) and, hence, its quantification
[recurrence quantification analysis (RQA)] of a continuous dynamical system is the induced noise
that is commonly found in observation time series. This induced noise is known to cause disrupted
and deviated diagonal lines despite the known deterministic features and, hence, biases the diagonal
line based RQA measures and can lead to misleading conclusions. Although discontinuous lines can
be further connected by increasing the recurrence threshold, such an approach triggers thick lines in
the plot. However, thick lines also influence the RQA measures by artificially increasing the number
of diagonals and the length of vertical lines [e.g., Determinism (DET) and Laminarity (LAM ) become
artificially higher]. To take on this challenge, an extended RQA approach for accounting disrupted
and deviated diagonal lines is proposed. The approach uses the concept of a sliding diagonal window
with minimal window size that tolerates the mentioned deviated lines and also considers a specified
minimal lag between points as connected. This is meant to derive a similar determinism indicator
for noisy signal where conventional RQA fails to capture. Additionally, an extended local minima
approach to construct RP is also proposed to further reduce artificial block structures and vertical
lines that potentially increase the associated RQA like LAM. The methodology and applicability
of the extended local minima approach and DET equivalent measure are presented and discussed,
respectively. Published by AIP Publishing. https://doi.org/10.1063/1.5025485

One main challenge in constructing a reliable recurrence
plot (RP) and, hence, its quantification (RQA) of a con-
tinuous dynamical system is the induced noise that is
commonly found in observation time series. This induced
noise is known to cause disrupted and deviated diago-
nal lines despite the known deterministic features and,
hence, biases the diagonal line based RQA. Therefore,
an extended RQA approach using the sliding diagonal
window for accounting disrupted and deviated diagonal
lines is proposed. In addition, an extended local min-
ima RP is also introduced to prevent RP’s artifacts of
noise induced signals caused by block structures and
thick lines.

I. INTRODUCTION

As a fundamental property of many dynamical systems,
recurrence can be exploited to characterize the system’s
behavior from their phase space topology. A recurrence plot
(RP) is a visualization tool for the analysis of this prop-
erty. In this study, the phase space reconstruction method of
time delay embedding1,2 is used to create the topology of the
system dynamics �xi from a variable ui [Eq. (1)]:

�xi =
m∑

i=1

ui+(j−i)τ�ej, (1)

where i is the current time point and j is other time point, m is
the embedding dimension, and τ is the time delay. The vectors

(�ej) are unit vectors and span an orthogonal coordinate system
(�ei · �ej) = δi,j.

The RP is basically the visual representation of the square
matrix, in which the matrix elements correspond to those
times at which a state of a dynamical system recurs (columns
and rows correspond then to a certain pair of times). The cal-
culation of a recurrence point as an element of the RP matrix
R is usually based on Eq. (2). RPs are especially useful for
analyzing non-stationary time series3,4

Ri,j(ε) = �(ε − ‖�xi − �xj‖), i, j = 1, . . . , N , (2)

where N is the number of measured points �xi, ε is a thresh-
old distance, ‖ · ‖ is a norm, and �(·) is the Heaviside step
function.

Besides using RP for the visual analysis of time series,
RP can also be used quantitatively to unveil hidden structures
from the series through recurrence quantification analysis
(RQA).4,5 In RQA, the important elements are the diago-
nal and vertical lines because they reveal typical dynamical
features of the investigated system, such as range of pre-
dictability, chaos-order, and chaos-chaos transition.6 One of
the prominent diagonal line measures is determinism (DET),
from which the system’s predictability can be inferred:

DET =
∑N

d=dmin
dP(d)

∑N
i,j Ri,j

, (3)

where P(d) = {di; i = 1, . . . , Nd} is the histogram of the
lengths d of connected diagonal lines, and Nd is the absolute
number of those diagonal lines.
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In addition, laminarity (LAM ) is a measure based on the
distribution of the RP’s vertical lines:

LAM =
∑N

v=vmin
vP(v)

∑N
i,j Ri,j

, (4)

where P(v) = {vi; i = 1, . . . , Nv} is the histogram of the
lengths v of connected vertical structures and Nv is the
absolute number of those vertical lines.

For a deterministic continuous dynamical system (includ-
ing chaos), many diagonal lines in the RP are typical, leading
to a high value of DET .7 However, single, isolated recurrence
points can occur if states are rare, if they do not persist, or if
they fluctuate heavily. For instance, stochastic or random sig-
nals would comprise such single points and result in a very
low DET .

Nevertheless, pitfalls and artifacts are not unusual when
constructing RP such as those occurring with the wrong
choice of embedding parameters or high threshold (ε).7–9

Thick lines, for instance, could easily occur in continuous
dynamical systems due to the temporal correlation of the
phase space trajectory, and, hence causing the RP to contain
redundant information.8 Such thick lines artificially increase
the number of diagonal lines and even introduce vertical lines
that lead to artifacts in RQA such as an increase in DET and
LAM . With regard to these thick lines, Schultz et al. suggested
a local minima based RP with additional threshold ε to over-
come this issue and demonstrated the benefits on the Lorenz
system as an example. The minima are found in each column

of the RP and should correspond to the closest neighbors of a
state (within the range ε). Such a method is shown to minimize
line thickness without requiring much computational effort as
would be necessary for perpendicular or iso-directional RPs
that had also been suggested to overcome the line thickness
problem. Additionally, Schultz et al. concluded that such local
minima based RP resulted in less dependency when choos-
ing the ε. In our study, we call this approach LMT (i.e., local
minima with threshold), while we refer the local minima with-
out any constraint parameter as LM. LM and LMT methods’
difference is further illustrated in Fig. 1(d), such that LM con-
siders all local minima found, while LMT only considers the
local minima below the ε, indicated by the region of orange
shade.

However, in real world application, observation signals
are often induced by noise, and that can lead to further
artifacts in our RP and RQA. Especially, in the regular
RP (using a distance threshold ε), the induced noise could
easily disrupt and deviate the position of recurring points
(Fig. 1). Nevertheless, such is no exception when using the
LM approach, the mentioned artifacts are still present due to
the induced noise. It is also important to note that in this study,
we only consider the contamination of noise by adding Gaus-
sian to a one dimensional input signal (i.e., of a continuous
dynamical systems or in this case Lorenz) given the desired
signal SNR (signal to noise ratio) in decibels.

The impact of noise is obvious in the traditional dis-
tance threshold based RP, LM, and LMT (Fig. 2). Visible
block clusters can be observed in the threshold based RP

(a) (b)

(c) (d)

FIG. 1. Phase space trajectories of
the Lorenz series

(
dx
dt , with σ = 10,

ρ = 28, β = 8
3

)
: (a) without noise and

(b) with noise (SNR = 20 dB); (c) zoom-
in view of both signal trajectories; and
(d) extracted phase space distance (y-
axis) between a selected point at the
phase space trajectory and all other tra-
jectory points by time lag (x-axis) and
corresponding local minima (blue and
red points, indicating local minima of
no noise and noisy Lorenz, respectively).
The shaded orange region refers to the
region where local minima with thresh-
old (ε) are used for RP with the LMT
approach. The embedding parameters of
all phase space are fixed at m = 3, τ = 3.
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[Fig. 2(c)] especially along the lines of identity (known as
LOI, i.e. the middle diagonal line) where perfect continuous
line is expected) and in the LMT [Fig. 2(e)] despite the reduc-
tion of thick lines (marked with red rectangles). Although
the thick lines in the threshold based RP result in clearer
diagonal lines and, hence, a higher DET value; this is, how-
ever, not necessarily correct, because these thick lines (and
block structures) artificially introduce more diagonal and ver-
tical lines; therefore, artificially increasing LAM (i.e., in our
example by 0.35). Despite the thick lines in threshold based
RP result in the visually clearer diagonal lines, this is not
necessarily correct as they artificially introduce more diago-
nal lines and block structures that increase vertical lines and
hence artificially increasing LAM (i.e. in our example and
increase by 0.35). This is a problem because such laminarity
characteristics are not expected for the Lorenz system. The
increase of LAM is also noticed in the LMT approach (by

0.11). Meanwhile, the LM RP [Fig. 2(d)] is dominated by vis-
ible long vertical lines which, therefore, drastically increase
the LAM when compared to the RP of the Lorenz without
noise (increase by 0.69).

To tackle the problems with noisy continuous signals
(blocks and vertically extended structures), we propose an
additional constraining parameter to the LMT in order to
reduce the mentioned artifacts (i.e., block cluster and increase
in LAM) and we call this method local minima based RP
with 2 parameters (LM2P). This LM2P approach is further
explained in Sec. II. Although LM2P is found to improve
the reliability of RP and RQA as evaluated from its devi-
ation from the RP constructed from uncontaminated signal
(i.e., without noise), the disrupted or discontinuous diagonal
lines due to noise are, however, still a bottleneck in deriv-
ing a system representative DET value, e.g., such that the
deterministic Lorenz would still yield a very low DET value

(c) (d)

(e)

(a) (b)

(f)

FIG. 2. RPs of the Lorenz series
(

dx
dt , with σ = 10,

ρ = 28, β = 8
3

)
and additionally induced with noise (SNR =

20 dB). The following RPs are constructed using (a) LMT of
Lorenz with no noise, while (b) is the zoomed-in view of the
same RP, (c) distance threshold of ε = 5th percentile of phase
distances, (d) LM only, (e) LMT with the same ε parameter
used in (a), and (f) LM2P with the same ε and τm = 10. The
red rectangles in (c) and (e) are used to indicate the mentioned
block clusters. The embedding parameters of all RP are fixed at
m = 3, τ = 3.
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(a)

(b)

FIG. 3. Safe choice of parameter τm by using ACF: (a) Local minima of the
phase space distance for Lorenz and Gaussian noise, while (b) is the inferred
safe τm to choose based on first minimum τ of auto-correlation (chosen
threshold, ACF ≤ 0.1).

despite its RP deterministic pattern (i.e., DET of 0.24 instead
of 0.59 found in the RP of Lorenz without noise). Such is also
noticed in different Lorenz systems with varying ρ parame-
ters (Fig. 3), where DET of the noise induced signals (both
LMT and LM2P) show a very low DET value closer to the
stochastic system rather than the reference DET generated
from the RP of Lorenz with no noise. This reference RP
(shown in all figures as Lorenz no noise) is generated using
the LM2P approach, although there is hardly any difference
with the one generated using the LMT approach (i.e., when no
noise is present). Therefore, we also propose a new measure
to account for this mentioned diagonally clustered points that
do not necessarily form strict diagonal lines as required for
the conventional RQA calculation of, e.g., DET. The methods
and findings are presented and discussed in Secs. II and III.

II. LOCAL MINIMA BASED RP WITH 2 PARAMETERS
(LM2P)

The vertical distance between recurrence points in the RP
corresponds to the time between recurring states (recurrence
time). However, noise can reduce these recurrence times by
introducing many new local minima in the distance matrix,
and by this artificially adding many new recurrences (visible
as clusters and vertical structures in Fig. 2). In order to reduce
the number of these noise-induced minima, we introduce a
minimum distance τm required between the local minima as

a new additional parameter. This τm in addition to ε is also
illustrated in Fig. 2(d). Because the local minima approach
now consists of two parameters (i.e., ε and τm), we call
this approach “local minima with 2 parameters” (LM2P). By
doing so, we exclude the minima that are found next to each
other due to the induced noise. The resulted minima with rea-
sonable τm are expected to separate the potentially recurring
pattern despite the local noise. This selection of τm, how-
ever, should be minimized so that one does not exclude the
recurring pattern due to large τm that potentially overlaps the
sequence of the signal. It should also be reasonably sized to
avoid the noise artifact. The optimal τm as implied by Fig. 3(a)
has to be larger than the maximum of the local minima of
the phase space distances as found in a random system (i.e.,
Gaussian white noise) and smaller than the one of the assessed
deterministic signal (in this case Lorenz). Such a criterion can
be found by using the auto-correlation function (ACF) of the
assessed signal. This should be chosen larger than the first
minimum lag of white noise, and lower than the first minimum
lag of the assessed signal. In this case, we obtained the first
minimum by using a threshold of autocorrelation value less
than or equal to 0.1, and we infer the safe choice of τm to be
below 15 at Lorenz with ρ = 80 [see Fig. 3(b)]. Since the τm

of Gaussian noise is found to be around 3, we could infer the
safe τm for our noisy Lorenz signal to be above 3 (let us say 5)
[see Fig. 3(a)] and below 15 as guided by ACF. The RP based
on the LM2P approach solves the mentioned issues on thick
lines and block patterns as well as the vertical artifacts due
to noise. First, for the noisy signal, the LM2P RP [Fig. 2(f)]
yields a closer pattern to the one of the uncontaminated time
series (i.e., without noise) as seen in Figs. 2(a) and 2(b). Fur-
thermore, the block clusters are now removed and vertical
lines due to noise disappear [Fig. 2(f)]. This is confirmed by
the low LAM value that is similar to the one of the signal with
no noise (difference only 0.02). However, disrupted lines due
to noise are still visible to cause low diagonal line based RQA
measures (e.g., DET, difference 0.35) despite the agreement
of the RP patterns. The conventional RQA measures based
on strict diagonal structures (i.e., connected points with 45◦

slope) are not always satisfactory especially in the case of
noisy signals, where diagonal lines can be disrupted by noise.
The disruption of line is prominent and shown to vary with
the noise level (see Fig. 4). For instance, noise impact with
SNR of 30 dB already causes the median values (probability
exceedance of 0.5) of the line length to 1 (i.e., no connected
points) and that the relatively longest diagonal line within the
RP already drops to 30%. Despite the solution in increas-
ing ε could be promising in connecting the disrupted and
deviated lines,10 such an approach undesirably thickens the
structures in the RP and eventually causes an artificial increase
in diagonal and vertical lines, and, therefore, biases RQA.

III. DETERMINISM INDICATOR USING DIAGONAL
SLIDING WINDOW

In order to resolve the aforementioned reliability issues
(i.e., DET sensitivity to disrupted and deviated diagonal
lines), we propose another approach to derive a more robust
determinism indicator that is less sensitive to noise. This
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(a) (b)

FIG. 4. (a) Probability exceedance of diagonal line lengths
and (b) relative longest diagonal line length (%) of Lorenz of
ρ = 80. with response to induced noise, i.e., indicated by signal
to noise ratio (SNR).

approach uses a sliding window (wi) of size ws and iterates
at a lag of τw (distance from the main diagonal LOI) from the
left corner of the RP until the end point of the RP (right corner)
minus the window size (N − ws). The conceptual diagram of
this method is presented in Fig. 5(a). The RP of a deterministic
signal tends to form a cluster of diagonal structures despite
the wiggly and disrupted lines (i.e., up to the user tolerance

deviation criteria set by ws, and maximum gap or disconti-
nuity distance of D(max)) as exemplified in the rotated view
of the window for the sub-figure [Fig. 5(b)] RP of Lorenz
without noise, (c) Lorenz with noise using LM2P, (d) Lorenz
with noise using LMT, and (e) RP of a random signal (i.e.,
Gaussian noise) with typical scattered recurrence points all
over the space.

(a)

(f)

(b) (c) (d) (e)

FIG. 5. Concept of the diagonal sliding window:
(a) A considerably small ws size window (wi) slides
diagonally through the RP. For each window, RRwi

and DDETwi are calculated [Eqs. (5) and (6)]. Sub-
figures (b) to (e) show a zoom in the rotated view of
a diagonal window to exemplify an RP of Lorenz
without noise, RPs with noises constructed with
LMT and LM2P, and an RP of Gaussian white
noise, respectively. Sub-figure (f) with reference to
(a) shows the calculation concept of the diagonal
distance between (D or 	k) recurring points at each
window (rotated view) derived from an aggregate of
cells (OR logic) from i to i + ws − 1.
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For each wi the recurrence rate of the window (RRwi) is
calculated as the ratio of the number of recurrence points (Rwi)
over the area of the window Awi [Eq. (5)]. In this approach,
ws should be set considerably small (2 or 3) to consider only
small wiggling or deviation of the diagonal lines due to noise.
Such a limited window, e.g., with ws = 2, allows each perpen-
dicular cell or point (i.e., Rdi binary values) along the length
of the window (i, . . . , i + ws − 1 ) to be aggregated like a log-
ical OR function as dk . In addition, for every dk at window
wi, the diagonal recurrence point distance along the axis k is
calculated between each consecutive recurrence points as D
or 	k [Fig. 5(f)]. The ratio of frequency distribution of the
gap distance that is within the threshold D(max) is the empha-
sis for our calculation. In this case, the user should allow
minimal gap tolerance to consider such discontinuity as the
diagonal line (e.g., gap of 1 or 2 point distance). These vari-
ables are then used to formulate an alternative determinism
indicator DDwi for each window (wi) and DDET as the index

for the whole RP:

RRwi = 1

Awi

n∑

i,j=wi

Rwi,j , (5)

where Awi is the area of the diagonal window (i.e., number of
cells in each window) and Rwi,j is the recurrence point within
the window calculated from the starting point of the window
(wi) up to the maximum possible length (N − ws).

DDET = log

( 1
N

∑N
i DDwi

1
N

∑N
i RRwi

)
,

DDwi =
∑D(max)

j DjP(Dj)
∑N

j lwi − DjP(Dj)
, (6)

D = 	k, for {dk ∈ B : dk = 1},
dk = ∨n

i Rdi , n = i + ws − 1,

(a) (b)

(c) (d)

FIG. 6. Probability of exceedance of (a) RRwi and (b) DDwi values of diagonal windows between Lorenz no noise and the LMT and LM2P of the one with noise
(shown here is only Lorenz with ρ = 80), and Gaussian noise. Correlation coefficient r of (c) RRw and (d) DDET for all RPs with reference to the RP of Lorenz
with no noise. The embedding parameters of all the assessed RPs are fixed at m = 3, τ = 10, ε = 5th, τm = 10 ws = 2, and τw = 2.
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where dk is calculated as the logical OR aggregate func-
tion of horizontal cells Rdi within the window size ws (from
Rdi...n , where n = i + ws − 1). P(Dj), j = {1, . . . , ND} is the
frequency distribution of the gap distance k between consecu-
tive diagonal recurrence points (dk ≡ 1), where D(max) is the
maximum threshold of distance allowed, lwi is the maximum
length of wi (lwi = nk), and ND is the absolute number of those
distances stored in D.

The calculated RRwi and DDwi of every window are
then compared for their probability of exceedance. Based
on Lorenz with parameter ρ = 80, the distributions of the
exceedance are distinct between those of Lorenz and Gaussian
processes with better performance of LM2P over LMT (i.e.,
closer to the one of Lorenz with no noise) especially for DDwi

[Figs. 6(a) and 6(b)]. Furthermore, the correlation coefficient
(r) of RRwi and DDwi between the RP of the Lorenz signal
with no noise as reference and the other RPs are assessed,
respectively, for varying ρ [Figs. 6(c) and 6(d)]. Unlike the
conventional RQA (i.e., DET is low for the noisy Lorenz
signal and appears closer to the one of Gaussian noise and
thus, the correlation to the reference is low), the correlation
between LM2P RP of the reference (i.e., no noise) and the
noisy signal is higher.

Furthermore, the resulted DDETs for varying ρ are also
plotted in comparison with the DET values of Lorenz with no
noise as reference [Fig. 7(b)]. Although the DDET values of
Lorenz with noise (both LMT and LM2P) are slightly lower
than the one without noise, their values are rather distinctive

from the one of Gaussian noise. Meanwhile, two periodic win-
dows (P1 and P2) of the Lorenz system as indicated by the
maximum Lyapunov exponent below 0 [Fig. 7(a) (red)] are
also captured by the DDET measure, while the RQA DET
could only capture the high deterministic features of Lorenz
in the 2nd periodic window (P2). DDET values can be seen
to range from approximately 2 to 3 for the periodic sys-
tem, fluctuating around a value of 1 for the chaotic regime,
and dropped to almost −1 when it is Gaussian noise or the
stochastic process.

Although a higher embedding dimension could fur-
ther insinuate the implicit deterministic features and, hence,
increase DET values, the impact of induced noise as shown in
Fig. 8 would still result in distinct difference (i.e., underesti-
mation) as compared to the signal without noise. In contrast,
DDET values of the noisy Lorenz are found to be much
closer to the Lorenz without noise regardless of the embed-
ding dimension. This differentiates stochastic systems like
white noise further from the deterministic signal. Further-
more, applying LM2P in this case does not require to choose
high embedding. The LM2P approach outperforms the other
approach for all ρ parameters [Fig. 7(b)] and with varying
embedding dimensions (Fig. 8).

Despite the selection of optimum ws being attributed to
the amount of noise, i.e., the lower the signal to noise ratio
(SNR), the expected deviation is larger, and the large choice
of ws could result in the recurring sequence being aggregated
within a window. In our test case, we focus on the example of

(a)

(b)

FIG. 7. (a) Maximum Lyapunov exponent of the Lorenz sys-
tem with varying ρ parameters (with values below 0 indicating
periodic dynamics highlighted in red). (b) DDET values of
Gaussian noise and Lorenz with varying parameters with refer-
ence to DET. Green boxes emphasize the two Lorenz periodic
windows P1 and P2 (indicated by the max. Lyapunov expo-
nent below 0). The RP measures are calculated based on the
embedded approach: m = 3, τ = 10, ε = 5th, and τm = 10 (for
LM2P), and ws = 2 and τw = 2 (for the DDET calculation).
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(a)

(b)

FIG. 8. (a) Impact of the embedding parameter (m on the DDET measure).
Shown here is the example of ws for the full Lorenz system (i.e., created
without embedding, using 3 variables) RP (LM2P) set for 2 ≤ ws ≤ 10 and
additionally ws = 50 and Gaussian noise with ws = 2 as the reference.

the Lorenz series with 20 dB SNR, which is already consid-
ered to be quite a prominent noise contamination case. With
this SNR, the choice of ws = 2 is already shown to be effec-
tive to derive a representative DDET (i.e., close to the signal

FIG. 9. (a) Impact of the window size parameter (ws on the DDET measure).
Shown here is the example for DDET of the embedded Lorenz system using
the LMT and LM2P approaches in response to changing ws in comparison
with Lorenz without noise.

25dB

20dB

30dB

30dB

25dB
20dB

N
o 

no
is

e

SNR
(dB)

51015202530

(a)

(b)

FIG. 10. (a) Impact of the induced noise SNR level on the DDET and DET
measures. Shown here is the example of the noisy Lorenz series with SNR
from 5 to 30 db as compared to Lorenz with no noise. All measures are
based on RPs generated using LM2P and the embedded approach with m = 3,
τ = 10, ε =5th, τm = 10 ws = 2, and τw = 2.

without noise), and as shown in Fig. 9, the increase of ws
would only decrease the reliability of DDET (i.e., DDET val-
ues between non-noisy and noisy signals start to distant apart
and that the DDET values of the deterministic signal start
to decrease). In this figure, it is also shown that the LM2P
approach would yield more robust DDET values with respect
to the increase of ws in contrast to the LMT approach where
the decrease of DDET deviates further from the non-noisy
signal.

Moreover, this example can be used to study the sensi-
tivity of the new approach with respect to noise. The DDET
values for SNR ranging from 30 to 20 dB are still close to the
DDET values of the non-noisy signal (Fig. 10). On the con-
trary, DET is very sensitive to noise, and the drop in SNR to
20 dB causes a drastic change in the DET and implies a closer
relationship to a stochastic process. However, in the case of an
extremely noisy signal, i.e., SNR below 20 dB, even DDET
cannot be longer deemed to be reliable.

IV. CONCLUSION

(1) RP artifacts such as thick lines can be reduced using
the LMT (i.e., introduced by Schultz et al.8) and the LM2P
methods (i.e., introduced in this paper). However, when noise
is present in the continuous system, the LMT approach is
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still shown to contain block like clusters and artificial ver-
tical lines that eventually increase the RQA measure LAM.
This, however, can be resolved by using the LM2P approach,
where an additional parameter constraint (i.e., minimum dis-
tance τm between the local minima) is introduced in addition
to the threshold. The parameter τm can be guided by using the
location of the first zero auto-correlation function (ACF). The
recommended τm should be smaller than the first zero ACF
but larger than the ACF of the stochastic process.

(2) Although the LM2P (and LMT) approach reduces the
mentioned artifacts and visually appears to have agreement
between RPs created from pure and noisy signals (i.e., a closer
representation of LAM values), their conventional RQA cal-
culated based on diagonal line lengths (i.e., DET) is heavily
underestimated. This is due to the impact of the induced noise
that disrupts and deviates the recurrence points. Therefore, the
strict quantification based on connected points that form 45◦

diagonal lines would fail to capture the recurring dynamics’
property.

(3) To resolve the RQA reliability with mentioned dis-
rupted and deviated diagonal lines, an alternative approach
for calculating a determinism indicator is proposed. This uses
a diagonal sliding window concept with a minimal window
size (ws) designed to capture the mentioned deviated lines at
each window time lag (τw).

(4) To account for the disrupted lines (i.e., cluster of
points with minimal distance), we propose an index measured
from the distribution of this minimal diagonal point distance,
and their recurrence rate at each window iteration (wi). This
allows disrupted points with minimum distance to be consid-
ered as a diagonal line and, hence, provides a DET equivalent
measure.

(5) The new measure is able to capture the determinis-
tic property of the Lorenz system (for varying parameter ρ

from 80 to 110) despite the induced noise with signal to noise
ratio of 20 dB, as assessed from their window’s RRw and DDwi

correlation agreement, distribution, and DDET variation for
different ρ values as compared to the system without noise.
In addition, it also captures the two periodic windows of the
Lorenz system in both noisy and non-noisy signals, whereas
the conventional RQA-DET measure fails to capture them.
The conventional DET measure also tends to distinctly under-
estimate the determinism and, hence, appears to be closer to
the indication of a stochastic process when the induced noise
is present. Furthermore, the use of DDET allows minimal
embedding dimension to match the noisy system with the non-
noisy one, and their performance is, in general, rather constant
in spite of the embedding.

(6) However, it is worth to note that the magnitude range
of this measure differs from the conventional DET measure.
The challenge remains in setting up a standard of range for
which a more intuitive scale of determinism can be easily
inferred. Nevertheless, the new DDET measure and the diag-
onal sliding window are promising concepts when the known
continuous system dynamics is induced by noise, which is
very common in real world observations. More research could
focus on the more specific attribution of the measures and dif-
ferent types of noise. Furthermore, the relation of the signal
to noise ratio to the window size (ws) necessary to capture
the expected deviation and the maximum diagonal distance to
consider the tolerance of line disruption should be elaborated
in future studies.
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