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This Letter is dedicated to the memory of
Joseph P. Zbilut (1948–2009), pioneer in the
development of RQA

Over the last decade, Recurrence Quantification Analysis (RQA) has become a new standard tool in the
toolbox of nonlinear methodologies. In this Letter we trace the history and utility of this powerful tool
and cite some common applications. RQA continues to wend its way into numerous and diverse fields of
study.

© 2009 Elsevier B.V. All rights reserved.

Mathematical tools adopted in science can be partitioned into
two general classes. One class is a collection of methods stem-
ming from some specific theory or tailored around a given phe-
nomenon. Examples include renormalization group theory in sta-
tistical physics and S matrix formalism in quantum mechanics.
Alternately, another class combines under a single rubric all those
methods designated as statistical. Such methods are independent
of any specific application, but rather refer to very basic epistemo-
logical concepts like the mean (barycentre) of a distribution or the
distance between two points. Examples in this class include Pear-
son correlation coefficient and the Fisher’s exact test.

In some cases, rare to be sure, methods rooted in the first
class (specific applications) can push into the second class (gen-
eral purpose). Such methodologies are incredibly valuable in sci-
ence because, beyond mere hypothesis testing submitted to statis-
tical inquiries, these strategies provide an underlying framework
or theoretical modeling applicable to the particular system under
study in the given field of interest. Probably the most famous of
these “interface” methods is principal component analysis (PCA)
for the simple reason that it diffused into numerous different
field of science. The invasions came not simply as some “statisti-
cal” onslaughts, but the infiltration was so complete that different
disciplines claimed PCA as “field specific” giving rise to multiple
aliases: Singular Value Decomposition, Singular Spectrum Analysis,
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or Essential Dynamics [1]. This diffusive spreading of PCA spanned
centuries and was made possible by the essential simplicity of the
core concepts the technique. Such simplicity imparted sufficient
flexibility in application that various quantitative needs in fields
as diverse as meteorology and molecular biology were adequately
met.

At the close of the twentieth century, another “interface” tech-
nique was born, Recurrence Quantification Analysis (RQA). RQA is
grounded in theory, but possesses statistical utility in dissecting
and diagnosing nonlinear dynamic systems across multiple fields
of science. Like its predecessor, PCA, RQA has the potential of be-
coming endemic to all scientific fields [2].

RQA was first introduced as a purely qualitative technique, the
Recurrence Plot, by Eckmann, Kamphorst and Ruelle [3]. The in-
terest of these mathematicians was mainly descriptive as they
discovered a way to visualize dynamical systems as recurrences
of phase space trajectories in higher dimensions. A state recurs if
it has neighbors in the phase space. There are several definitions
of neighborhoods possible [4]; the most frequent definition con-
siders the spatial distance between two state vectors (�xi − �x j) in
phase space and tests whether this distance is smaller than some
threshold or radius (ε) according to the fundamental formula for
the recurrence matrix. Members of the recurrence set include only
those vector pairs that fall within the specified radius. Plotting the
intersections of the i and j indices of all vector pairs within the
set generates the two-dimensional recurrence plot.

�i, j = Θ
(
ε − |�xi − �x j|

)
. (1)
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The implicit mathematical foundation of the recurrence plot
(RP) is deceptively simple and is no more than the Pythagorean
theorem applied to rows of the embedding matrix of a specific
time series. Such plots give very vivid and impressive images of
dynamical system trajectories. For example, different dynamics ex-
hibits typical patterns in the RP which characterize both global and
local patterns (Fig. 1). For the Lorenz system of equation (below),
recurrences are computed on the first variable (y1) which serves
as the surrogate for the other two variables (y2 and y3) by em-
bedding in three space (m = 3).

dy1 = 10 • (y1 − y2), (2)

dy2 = y1 • y3 + 28 • y1 − y2, (3)

dy3 = y1 • y2 − 8 • y3/3. (4)

The global (large-scale) appearance of a RP can give hints on
stationarity and regularity. Eckmann et al. [3] immediately noted
that the local (small-scale) patterns are related to important dy-
namical properties, like determinism and divergence. They also
stated that the lengths of the diagonal line structures in the RP are
related to the positive Lyapunov exponent. Moreover, the study of
recurrences of a state allows for a point-wise comparison of states,
whereas other comparison techniques (e.g. correlation, mutual in-
formation) require sequences of data points.

The quantum leap that allowed the recurrence plots to ex-
tend beyond their initial theoretical realm and to invade the other
fields of science occurred when RPs were rendered quantitative by
Joseph Zbilut and Charles Webber [5,6]. Interestingly, this quantita-
tive jump occurred not in the field of mathematics or physics, but
in the much less quantitative field of physiology. Thus, recurrence
quantifications were born out of the life sciences, but the underly-
ing recurrence plots were conceived in the womb of mathematical
physics.

It is a matter of fact that physicists commonly put mathematics
at the very beginning of a scientific enterprise. That is, the initial
theory is posited prior to the execution of the experiment which
is run to either confirm or falsify the theory. Any a posteriori data
analysis is normally considered much less a mathematical affair,
something that is normally left to standard techniques or purely
graphical evidence. But such is not the case with physiology (and
other biomedical sciences) where experimental data rule the day
and drive biological theories. And indeed, these theories can be
mathematical or non-mathematical in nature. The challenge is to
be able to extract meaningful information from dynamical systems
that have no supporting mathematical theory or conceptualization
(or bias). But RQA can do this very task on any data set with differ-
ing degrees of intrinsic deterministic information or lack thereof.

Zbilut and Webber started a productive research collaboration
in 1988 that lasted until the untimely death of Zbilut more than
twenty years later. Both had mathematical bents and functioned
as physiologists in different medical schools, but the two were as
different as night and day. Zbilut was the big concept and novel
idea person whereas Webber was the methodical computer pro-
grammer and data handler. In the late 1980s Zbilut and Webber
were frustrated with the inability of standard time series mea-
sures to adequately process physiological signals that were noto-
riously nonlinear, nonstationary and noisy. Zbilut’s interests were
with the cardiovascular system whereas Webber was studying the
pulmonary system. In their hands, Fourier transforms and chaotic
mathematics had only limited applicability to physiological sys-
tems.

It was a wonderful discovery for Zbilut and Webber to find the
short physics paper of Eckmann et al. [3] on recurrence plots. Im-
mediate applicability was seen for cardiac and respiratory systems.
Recurrence plots gave beautiful pictorial, but qualitative represen-

(A)

(B)

(C)

Fig. 1. Prototypical examples of RPs exhibiting different global and local recurrence
patterns. (A) normally distributed noise from random number generator (m = 1),
(B) sine wave function (m = 2), and (C) Lorenz oscillator variable y1 (m = 3).

tations of dynamical systems. Interpretations were “in the eye of
the beholder” as it were. Seeing the power of recurrence plots in
general alongside their qualitative restrictions, Zbilut and Webber
gave explicit mathematical definition to distinct features in recur-
rence plots as explained in two fundamental papers [5,6]. Early
programs were dubbed Recurrence Plot Analysis (RPA) routines,
but soon the software was renamed as Recurrence Quantification
Analysis (RQA), the basic concepts of which are continuing to be
expanded upon worldwide. The last paper of Zbilut and Webber [7]
discusses RQA in the context of unstable singularities in biological
systems. Such systems are piecewise deterministic meaning that
physiological systems are best characterized by selectable and de-
terministic trajectories and interspersed with dynamical pauses or
singularities from which the system can be steered.

One early but very instructive example illustrating the impor-
tance of recurrence analysis (RQA) over spectral analysis (FFT) was
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Fig. 2. Comparison of spectral analysis and recurrence analysis in detecting muscle fatigue. (A) Biceps EMG during light (left panel) and heavy (right panel) isometric muscle
loading. (B) Slow fall in FFT spectral center frequency during heavy loading. (C) Fast rise in RQA determinism during heavy loading. Parallel lines designate the 95% confidence
limits of variables during light loading. Smooth curved lines indicate polynomial fitting of the variables. Dots indicate when the polynomial crosses outside the 95% confidence
limits.

successfully carried out by comparing performances of the two
methodologies on the exact same, real-world time signal. The re-
search question being asked was how sensitive are RQA and FFT
in detecting muscle fatigue [5]? In this case, biceps EMGs were
recorded from normal individuals during light and heavy isometric
loading of the muscle as shown, respectively, before and after the
time zero line in Fig. 2A (reproduced from Fig. 3 of Ref. [8] with
permission). The test was run until the subject could no longer
support the hand-held weight without moving. FFT and RQA data
were computed across the signal within a 1.024 s moving win-
dow at 0.256 s intervals. As shown, the falling center frequency

variable ( fC ) of FFT and the rising determinism variable (%DET)
of RQA were both able to detect fatigue. However, the key is that
the %DET rose sooner and higher than the fC fell (compare dots
in Figs. 2B and 2C). It was concluded that RQA had a higher sen-
sitivity than FFT in detecting dynamical changes in EMG signals.
This was not surprising since recurrence analysis is a nonlinear,
multi-dimensional tool whereas spectral analysis is a linear, single-
dimensional analysis.

From a general computational point of view, one big strength
of RQA allowing for its great spread was the possibility to coa-
lesce two apparently very distant approaches to data analysis: the
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nonlinear dynamics one in which the interest is focused on the
temporal dimension, and the multivariate statistics one in which
the interest is focused on the relative similarities between data
points. This was very apparent when RQA enlarged its field of
application outside time series to go into the study of biologi-
cal polymers where the role of time was played by the order
of aminoacid residues along a protein [9]. In the case of protein
sequences the theoretical constructs of quasi-attractors, sojourn
points of trajectories were automatically translated into their bio-
chemical counterparts of hydrophobic cores and protein–protein
interaction. Moreover, the fact a protein has not only a primary
structure but a three-dimensional folding allowed to consider a re-
currence plot as a contact matrix of residues (points) in the space
so allowing to recognise the substantial equivalence of RQA de-
scriptors and network invariants: graph theory coalesced into the
dynamical perspective [10,11]. The consequent continuation of this
approach is the generalization of the RQA to 2- or 3-dimensional
spatial data [12,13]. This technique was successfully applied to
study, e.g., complex spatial structures of trabecular bone, and more
recently to the analysis of two-dimensional, spatially distributed
systems [14].

RQA has become a general purpose technique allowing for gen-
erating models endowed with a theoretical appeal in virtually
any science fields, starting with cardiology and other life sciences,
over engineering, economics, astrophysics and up to Earth sciences
[2,15]. A clear example is Earth and environmental science. RQA
can be fruitfully exploited when dealing with ecological systems. In
general, when trying to model the temporal evolution of physico-
chemical variables of ecological systems, one must cope with the
fact that the class of realistic models is often wide and compli-
cated, and the identification of the right one often needs some
a-priori knowledge about the model [13]. Furthermore, identifica-
tion techniques need the recording of time series, which in the
case of ecological systems are often short, non-stationary and cor-
rupted by noise. Under this point of view, providing a pre-analysis
tool able to catch visual and quantitative information can become
very useful. The problem of dealing with such time series is eas-
ily solved by RPs and RQA, as showed for the case of the Orbetello
Lagoon [16]: the application of RQA revealed a transition in the os-
cillations of dissolved oxygen just before the onset of an anoxic cri-
sis. This method was also proposed for monitoring regime shifts in
environmental time series, like lake eutrophication and sea water
oxygen variability in coastal regions [17]. Based on improvements
on the neighborhood criterion for recurrences, the calling-behavior
of Japanese tree frogs was analyzed [18]. This study revealed an
anti-phase synchronization of the frogs’ calls and transitions be-
tween different calling behaviors.

The rising interest in applications was for long time steps ahead
the interest of theoretical scientists. Meanwhile, several studies
on the understanding of the patterns and recurrence structures
[19–21] as well as their mathematical relationship to dynami-
cal properties, like K2 entropy, information or correlation dimen-
sions, of the system have been published [4,22–24]. Furthermore,
extensions to analyze periodic, spatial or multivariate data have
been developed, yielding cross and joint recurrence plots and their
quantification [12,13,25–27], and to an application of the Wiener–
Khinchin theorem on the RQA [28].

All in all, the story of RQA is a paradigmatic case of a tech-
nique allowing recognizing the substantial unity of all the science
fields. This can be made much more efficiently than by simply

making scientists of different background to work together, the
common appreciation of a very simple technique whose output
can be immediately translated into different scientific languages
turns the interdisciplinary dream into an immediately operational
reality. A great part in the fulfilling of this dream came from the
passionate work of our friend Joseph P. Zbilut who passed away
the 10th of January of 2009. The incredible ability of RQA to pro-
vide a theoretical and statistical frame that can be adapted to any
science field is an image of the Joe’s ability to make connections
among apparently diverse fields in his mind.

Looking back over the years one can weave together the mag-
nificent contributions of Joseph P. Zbilut to science. As a free
thinker, Zbilut was gifted with mathematic skills, was filled with
physiological insights and savvy in the laboratory as well as clinic,
and had an unbelievable grasp of multiple languages and cultures.
He was an integrationist seeking and seeing connections between
systems and among disciplines that others commonly overlooked.
As much as Zbilut was served by RQA over the last two decades,
however, his fundamental scientific tool and gift to us all was his
brain and unbelievable, nay uncanny way of thinking outside the
established scientific box. Like a spilt fluid spill that soaks every-
thing in its path, so Zbilut moved with fluidity within and between
and fields. His personality and enthusiasm for what he was do-
ing was infectious, influential, stimulating and inspiring. He will
be sorely missed by the scientific community, not to mention his
dear wife and two children whom he leaves behind.
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