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Abstract
Natural systems often exhibit chaotic behavior in their space-time evolution. Systems transiting between chaos and order

manifest a potential to compute, as shown with cellular automata and artificial neural networks. We demonstrate that

swarm optimization algorithms also exhibit transitions from chaos, analogous to a motion of gas molecules, when particles

explore solution space disorderly, to order, when particles follow a leader, similar to molecules propagating along diffusion

gradients in liquid solutions of reagents. We analyze these ‘phase-like’ transitions in swarm optimization algorithms using

recurrence quantification analysis and Lempel-Ziv complexity estimation. We demonstrate that converging iterations of the

optimization algorithms are statistically different from non-converging ones in a view of applied chaos, complexity and

predictability estimating indicators. An identification of a key factor responsible for the intensity of their phase transition is

the main contribution of this paper. We examined an optimization as a process with three variable factors—an algorithm,

number generator and optimization function. More than 9000 executions of the optimization algorithm revealed that the

nature of an applied algorithm itself is the main source of the phase transitions. Some of the algorithms exhibit larger

transition-shifting behavior while others perform rather transition-steady computing. These findings might be important for

future extensions of these algorithms.

Keywords Chaos � Recurrence � Complexity � Swarm � Convergence � Phase transitions

1 Introduction

Natural systems often undergo phase transition when per-

forming a computation (as interpreted by humans), e.g.,

reaction-diffusion chemical systems produce a solid precipi-

tate representing geometrical structures (Costello and Ada-

matzky 2017), slime mould transits from a disorderly network

of ‘random scouting’ to prolonged filaments of protoplasmic

tube connecting source of nutrients (Adamatzky 2016), ‘hot

ice’ computer crystallizes (Adamatzky 2009). Computation at

the phase transition between chaos and order was firstly

studied by Crutchfield and Young (Crutchfield and Young

1988), who proposed measures of complexity characterizing

the transition. The ideas were applied to cellular automata by

Langton (1990): a computation at the edge of chaos occurs

due to gliders. Phase transitions were also demonstrated for a

genetic algorithm which falls into a chaotic regime for some

initial conditions (Mitchell et al. 1993; Wright and Agapie

2001) and network traffic models (Ohira and Sawatari 1998).

Algorithmic models of evolutionary based optimization,

AI and Artificial Life possess comparable features of the

systems with a higher complexity they simulate (Zenil and
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Gauvrit 2017; Detrain and Deneubourg 2006). We focus on

the behavioral modes: the presence of random or pseudo-

random cycling (analogous to gaseous phase state), ordered

or stable states (analogous to solid state), or the chaotic

oscillations (transitive states). Each of the modes could

imply a different level of computational complexity or an

algorithm performance as it was revealed on different

algorithms (Boedecker et al. 2012; Bertschinger and

Natschläger 2004; Kadmon and Sompolinsky 2015). By

detecting such modes we can control and dynamically tune

the performance of the computational systems.

A swarm-like behavior has been extensively examined

in studies of Zelinka et al. (2017) where the changing

dynamics of an observed algorithm was modelled by a

network structure. The relevance between network features

and algorithm behavior supported the control mechanism

that was able to increase the algorithm performance (To-

maszek and Zelink 2016). An extensive empirical review

of existing swarm-based algorithms has been brought by

Schut (2010) where approaches like collective intelligence,

self-organization, complex adaptive systems, multi-agent

systems, swarm intelligence were empirically examined

and confronted with their real models which reflected

several criteria for development and verification.

Our previous study (Vantuch et al. 2018) revealed the

presence of phase transitions in the computation of various

swarm intelligence based algorithms. The different phases

were observed on parameters estimating complexity and

entropy. In the end, it was also statistically proven, that

converging phases significantly differs from others in the

view of mean analysis on the used parameters.

This study may serve as an advancement of our previous

one. Our goal was to extend the collection of examined

swarm-based algorithms, to see whether all of them per-

forms similar transitions. On the other hand, we also

extended the testing of swarm-based algorithms into other

dimensions, like to rank them according to their sensitivity

towards the optimization function or random number

generator that drives their computation. This test is con-

sidered as necessary in order to reveal whether the phase

transition occurs due to the chosen optimized function,

used number generator or their appearance is clearly based

on the nature of the algorithm. Having this knowledge will

shape the design of the optimization algorithms towards

more transitional behavior or otherwise to the stability.

2 Theoretical background

2.1 Swarm based optimization

The optimization algorithms examined in our study are

representatives of bio-inspired single-objective

optimization algorithms. They iteratively maintain the

population of candidates migrating through the searched

space. Their current position represents the solution vector

X of the optimized problem.

2.1.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was proposed by

Kennedy and Eberhart (1995). The main characteristic of

the algorithm is the combination of the particle’s aim

towards the global leader and its previous best position

(Kennedy and Eberhart 1995). The composition of these

two stochastically altered directions modifies its current

position to find a better optimum of the given function.

Several reviews are available on extensions and variations

of the algorithms (Banks et al. 2007; Del Valle et al. 2008).

The process of PSO starts with the initial generation of

particles population Pg where g is an index of iteration.

Initially, particles are distributed randomly in the searched

space with a randomly adjusted vector of velocities Vg.

Through the generations, all the particles in the current

generation are evaluated by the given fitness function. The

global leader bg for the entire population is found by its

fitness, as well as each particle keeps its personal best

position pg from his previous steps. Based on those two

positions, the new velocity vector Vgþ1 for each next par-

ticles’ move is derived.

v
gþ1
i ¼ wv

g
i þ c1r1ðbgi � x

g
i Þ þ c2r2ðpgi � x

g
i Þ ð1Þ

where c1 and c2 are the positive acceleration constants, r1
and r2 represent the randomly adjusted variables from the

range h0; 1i and w represents the inertia weight from the

range h0; 1i.
The next generation of particles P

gþ1
PSO is obtained by

computing new positions Xgþ1 for each particle

accordingly.

x
gþ1
i ¼ x

g
i þ v

gþ1
i ð2Þ

2.1.2 Self-organizing migrating algorithm

(SOMA) is a stochastic evolutionary algorithm was pro-

posed by Zelinka (2004) and Davendra et al. (2016). Ide-

ologically, these algorithms stand right between purely

swarm optimization driven PSO and evolutionary-like DE.

The entire nature of migrating individuals across the

search-space is represented by steps in the defined path

length and stochastic nature of a perturbation parameter

that represents a specific version of the mutation. The

randomness is involved through the binary vector by the

adjustedextension for multi-dimensional perturbation

(PRT) parameter [0–1] and the given formula
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v
prt
j ¼

1; if rj\PRT

0; otherwise

�
; ðj ¼ 1; 2; . . .; dÞ ð3Þ

Applying Vprt, the path is perturbed towards a new solution

using current particle and leaders position.

xtþ1i ¼ xti þ ðxtL � xtiÞv
prt
i ð4Þ

During each migration loop, each particle performs n steps

according to the adjusted step size and the path length. If

the path length is higher than one, the particle will travel a

longer distance, that is his distance towards the leader.

2.1.3 Ant colony optimization for continuous domains

(ACOR) (Socha and Dorigo 2008) is an extension of an

algorithm inspired by ant movements firstly designed to

optimize problems in a discrete domain (Dorigo and Blum

2005). This algorithm starts by initialization of the parti-

cles’ positions at random places in the searched space.

These positions, representing the solution candidates, are

evaluated according to the optimized function and sorted

by their fitness values.

f ðX1Þ� f ðX2Þ� f ðXjÞ� f ðXMÞ ð5Þ

From this sorted collection, the weights w are calculated by

the form which allows us to prefer solutions with lower

fitness values. These may be in a close neighbourhood of

the global optimum. Based on the position in the collection,

the weights are calculated

wj ¼
1

qM
ffiffiffiffiffiffi
2p
p e

�ðj�1Þ
2

2q2M2 ð6Þ

where q is adjustable hyper-parameter controlling the

degree on which the lower fitness values are preferred. The

weights are chosen probabilistically towards the leading

solution around which a new candidate solution is gener-

ated. The probability of choosing solution sj as leading

solution is given by wj=
Pk

a¼1 wa so that the better solu-

tions obtain higher probability to be selected. Once a

leading solution slead is chosen, the algorithm samples the

neighbourhood of i-th real-valued component of the lead-

ing solution silead using a Gaussian PDF with lilead ¼ silead
and rilead is defined as

rilead ¼ n
Xk
j¼1

jsij � sileadj
k � 1

ð7Þ

which stands for the average distance between the value of

the i-th component of Slead and the values of the i-th

components of the other solutions in the archive, multiplied

by a parameter n. The process of choosing a guiding

solution and generating a candidate solution is repeated in

N times (corresponding to the number of ’ants’) per itera-

tion. Before the next iteration, the algorithm updates the

solution archive keeping only the best k of the k þ N

solutions that are available after the solution construction

process.

2.1.4 Artificial bee colony

Artificial bee colony (ABC) (Karaboga and Basturk 2007)

operates with three different kinds of swarm members and

with different reaction-diffusion model proposed by Ter-

eshko (2000), Tereshko and Lee (2002), Tereshko and

Loengarov (2005). The so called bees are divided into

employed, onlooker bees and scout bees. The first group

searches for the food around the food source, which com-

putationally means the making use of greedy search over

the available solution around the defined position.

vi;j ¼ xi;j � /i;jðxi;j � xk;jÞ ð8Þ

where xk is a randomly selected solution, j is randomly

selected index within the dimension of the problem and /i;j

is a random number within ½� 1; 1�. If the value Vi of the

fitness is improved, the xi is substituted by this found

position, otherwise xi is kept.

After all employed bees accomplish their search pro-

cess, they share their positions with onlooker bees by

pi ¼
fitiPSN
j¼1 fitj

ð9Þ

where fitn is the fitness value of nth solution. If the solution

is not improved in a defined number of cycles, the food

source is being abandoned and scout bees seek for the new

source to replace using

xi;j ¼ lbj � randð0; 1Þ � ðubj � lbjÞ ð10Þ

where randð0; 1Þ is a generated random number from the

normal distribution and lb, ub are the lower and upper

boundaries of the j-th dimension.

2.1.5 Firefly algorithm

Firefly algorithm (FA) has been developed in 2008 by

Yang and it is based on light flashing interactions of the

swarm of so-called fireflies (Yang and M 2008; Yang

2010). Initially, they are distributed randomly in the sear-

ched space which is very similar compared to other swarm-

intelligence algorithms. The light flashing interaction rep-

resents the algorithm’s novelty through the light decay

caused by the increasing distance of two interacting flies,

and it is defined as follows

b ¼ b0e
�cr2 ð11Þ
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where b is so called the attractiveness, r is the distance and

b0 is the attractiveness at r ¼ 0. The attractiveness is

estimated based on a current particle’s position in the

searched space, so it reflects its optimization function

value.

The move of the particle is than defined similarly to

other optimization algorithms as

xtþ1i ¼ xti þ b0e
�cr2ijðxtj � xtiÞ þ ate

t
i

ð12Þ

where xtj represents the brightest firefly for firefly xti at time

t which determines its next move altered by random vector

eti multiplied by randomization parameter at which nor-

mally decays over time as

at ¼ a0d
t; 0\d\1 ð13Þ

2.2 Number generators driving the process
of optimization

All previously mentioned optimization algorithms more or

less rely on a random number generator that adds some

controllable amount of stochastic behavior into the process.

Altering of its amount may have a critical impact on the

convergence which was described and tested in available

papers.

Various recent studies showed alternative options able

to substitute the random number generator by other

mechanisms generating numbers to drive the seek for the

global optimum. In studies of Zelinka et al. (2018), the

chaos number generators proved their quality in the per-

formance increase for various solutions. These studies,

therefore, underline the necessity of testing the impact of

various number generators on phase transitions of the

optimization algorithms.

2.3 Complexity estimation

Three indicators were selected to evaluate the current state

of the system represented by swarm-based algorithm. They

are the computational complexity derived by Kolmogorov

complexity, predictability estimated by the Determinism

and the complexity of the deterministic structure in the

system represented by an Entropy. Both entropy and

determinism are indicators based on recurrence quantifi-

cation analysis.

2.3.1 Lempel-Ziv complexity

According to the Kolmogorov’s definition of complexity,

the complexity of an examined sequence X is the size of a

smallest binary program that produces such sequence

(Cover and Thomas 2012). Because this definition is way

too general and any direct computation is not guaranteed

within the finite time (Cover and Thomas 2012), approxi-

mating techniques are often employed.

Lempel and Ziv designed a complexity (LZ complexity)

estimation in a sense of Kolmogorov’s definition, but

limiting the estimated program only to two operations:

recursive copy and paste (Lempel and Ziv 1976). The

entire sequence based on an alphabet @ is split into a set of

unique words of unequal lengths, which is called a

vocabulary. The approximated binary program making use

of copy and paste operations on the vocabulary can

reconstruct the entire sequence. Based on the size of

vocabulary (c(X)), the complexity is estimated as

CLZðXÞ ¼ cðXÞðlogkcðXÞ þ 1Þ � N�1 ð14Þ

where k means the size of the alphabet and N is the length

of the input sequence. A natural extension for multi-di-

mensional LZ complexity was proposed in Zozor et al.

(2005). In case of a set of l symbolic sequences

Xiði ¼ 1; . . .; lÞ, Lempel and Ziv’s definitions remain valid

if one extends the alphabet from scalar values xk to l-tuples

elements ðx1k ; . . .; xlkÞ. The joined-LZC is then calculated as

CLZðX1; � � � ;XlÞ

¼ cðX1; � � � ;XlÞðlogk2cðX1; . . .;XlÞ þ 1Þ � N�1:

Conventionally LZ complexity is used to measure com-

pressibility (Ziv and Lempel 1978; Feldman and Crutch-

field 1998). Experimenting with cellular automata we

found that the compressibility performs similarly well as

Shannon entropy, Simpson index and morphological

diversity in detecting phase transitions (Redeker et al.

2013; Adamatzky 2012). For example, in cellular automata

we can detect formation of travelling localisations, propa-

gating patterns, stable states and cycles (Adamatzky and

Chua 2012; Ninagawa and Adamatzky 2014). The com-

pressibility was also well used for the analysis of living

systems, e.g., EEG signals (Bhattacharya 2000; Aboy et al.

2006) and DNA sequences (Orlov and Potapov 2004), and

classification of spike trains (Amigó et al. 2004).

2.3.2 Recurrence quantification analysis

The recurrence plot (RP) is the visualization of the recur-

rences of m-dimensional system states x 2 Rm in a phase

space (Marwan et al. 2007b). Recurrence is defined as

closeness of these states xi ði ¼ 1; 2; . . .;N where N is the

trajectory length), measured by thresholded pairwise dis-

tances. Formally, the RP can be expressed by Ri;jðeÞ ¼
Hðe� kxi � xjkÞ with Hð�Þ the Heaviside step function.

The Euclidean norm is the most frequently applied distance

metric k � k and the threshold value e can be chosen

according to several techniques (Koebbe and Mayer-Kress

582 T. Vantuch et al.
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1994; Zbilut et al. 2002; Zbilut and Webber 1992; Marwan

et al. 2007b; Schinkel et al. 2008; Kraemer et al. 2018).

If only a one-dimensional measurement ui of the sys-

tem’s dynamics is given, the phase space trajectory has to

be reconstructed from the time series fuigNi¼1, e.g., by using

the time-delay embedding xi ¼ ðui; uiþs; . . .; uiþðm�1ÞsÞ,
where m is the embedding dimension and s is the embed-

ding delay (Packard et al. 1980). The parameters m and s
may be found using methods based on false nearest

neighbors and auto-correlation (Kantz and Schreiber 1997).

The recurrence quantification (RQA) measures applied

in this experiment describe the predictability and level of

chaos in the observed system. Determinism is defined as

the percentage of points that form diagonal lines

DET ¼
PN

l¼2 lPðlÞPN
l¼1 lPðlÞ

ð15Þ

where P(l) is the histogram of the lengths l of the diagonal

lines (Marwan et al. 2007b). Its values, ranging between

zero and one, estimate the predictability of the system.

The measure divergence is related to the sum of the

positive Lyapunov exponents, naturally computing the

amount of chaos in the system, and is defined as

DIV ¼ L�1max; Lmax ¼ maxðfli; i ¼ 1; . . .;NlgÞ ð16Þ

where Lmax is the longest diagonal line in the RP (ex-

cluding the main diagonal line) (Marwan et al. 2007b).

3 Experiment design

The motivation is to identify the key factor for the phase

transitions in swarm optimization algorithms. Based on our

previous study and as it was mentioned previously, we used

three metrics M in order to evaluate the phase transitions,
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Fig. 1 Recurrence plots of the

PSO (a–c), DE (d–f), and
SOMA (ghi) behavior

calculated as similarities among

the particles’ positions Xt

grouped into the windows of

populations Pwi
during their (a,

d, g) ‘‘post-initial’’ (10th
migration), (b, e, h) ‘‘top-
converging’’ (60th migration)

and (c, f, i) ‘‘post-converging’’
(400th migration) phase
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they are the Kolmogorov complexity (m1 ¼ Kc), deter-

minism (m2 ¼ DET) and divergence (m3 ¼ DIV). The

progress of swarm optimization execution is captured as a

tensor T which is part by part (t1. . .tN) examined by metrics

M. Their changes within one optimization reflected its

transitions s. The intensity of the transition is simply

evaluated as the standard deviation of the metric value

si ¼ stdðmiðTÞÞ.
The examined factors that may alter the significance of s

were represented by the kind of the algorithm (A), the

number generator (G 2 frand; chaos; orderg) and opti-

mized function (F).

The algorithms were mentioned previously, therefore,

A 2 fSOMA; PSO; FA;ABC;ACORg. The number of

generators were considered as an important source of

chaos-order transitions, so three of them were examined

(G 2 frand; chaos; orderg). In the first case, the standard

random number generator (Mersenne Twister) (Matsumoto

and Nishimura 1998) was kept to drive the optimization

process, while in the chaos and order mechanisms, the

numbers were loaded from time series generated by chaotic

system—Lorenz attractor (Stewart 2000) (all three

coordinates x, y, z were used as the source of randomness)

and deterministic processes—the sinðxÞ equidistantly

sampled, similarly as in Zelinka et al. (2018).

Our aim was to test the algorithms on dimensionally

scalable fitness functions F having at least one global

optimum surrounded by multiple local optimums. These

conditions were met making use of the Rastrigin function

(Eq. 17), the Rosenbrock function (Eq. 18) and Ackley’s

function (Eq. 19) (Abiyev and Tunay 2015),

F 2 fackley; rosenbrock; rastriging.

f ðxÞ ¼A � nþ
Xn
i¼1
ðx2i � A � cosð2pxiÞÞ ð17Þ

f ðxÞ ¼
XN�1
i¼1
½100ðxiþ1 � x2i Þ

2 þ ð1� x2i Þ� ð18Þ

f ðxÞ ¼ � 20 exp

�
� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1 x
2
i

r �

� exp

�
1

N

XN
i¼1

cosð2pxiÞ
�
þ 20þ e

ð19Þ

Fig. 2 Comparative visualization of mean distributions of standard

deviations of determinisms of algorithm progresses. Sub-figures show

the values separated on different criteria comparing their impact:

a applied filtering based on number generator while subfilters were

optimization algorithm and optmized function, b applied filtering

based on optimized function while subfilters were optimization

algorithm and number generator
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The entire experiment is, therefore, the set of several

executions of the optimization process O which is always

defined by those three factors (O(A, G, F)). The pseu-

docode of the experiment may be seen below.

The transitions s will differ from each other based on the

adjusted factors of optimization. To identify the key factor

responsible for the increasing amplitude of s we need to

compare the means for each factor. An additional outcome

will be the reveal of the conditional means for each algo-

rithm while one of its factors will be fixed.

3.1 Tensor data obtained from the optimization

The optimization step of the optimization algorithms is

represented by the positions (Xt1 ¼ fxt1;1; xt1;2; . . .; xt1;Dg)
taken by its population members (P ¼ fp1; p2; . . .; pNg)
during their migrations/iterations (p1 ¼ Xt1;1;Xt2;1; . . .;

Xtm;1). All of them are stored for the further examination.

The time windows w of iterations are taken and transferred

into matrices of particles positions where columns are

particle’s coordinates and rows are ordered particles by

their population number and time (Pwi
¼ fxti;1; xti;2; . . .;

xti;N ; xtiþ1;1; xtiþ1;2. . .; xtiþ1;N ; . . .xtiþw;Ng).
The changes and interactions inside of their migrating

populations are not usually visible in convergence plots;

Table 1 Determinism parameters: calculated averages of standard

deviations of s for the given setups to picture the amount of phase

transition observed during optimization

Driver Ack. Ras. Ros. All

(a) Artificial Bee colony

Chaos 0.03 0.03 0.05 0.03

Order 0.08 0.03 0.05 0.05

Rand 0.08 0.03 0.05 0.05

All 0.07 0.03 0.05

(b) Ant colony

Chaos 0.14 0.12 0.1 0.12

Order 0.21 0.17 0.1 0.16

Rand 0.19 0.12 0.1 0.14

All 0.18 0.14 0.1

(c) Particle swarm

Chaos 0.19 0.16 0.19 0.18

Order 0.08 0.07 0.05 0.07

Rand 0.18 0.13 0.16 0.16

All 0.15 0.12 0.13

(d) Self organizing migrating

Chaos 0.01 0.13 0.14 0.09

Order 0.13 0.0 0.01 0.05

Rand 0.02 0.0 0.02 0.01

All 0.05 0.05 0.05

(e) Firefly algorithm

Chaos 0.08 0.08 0.14 0.1

Order 0.03 0.08 0.09 0.08

Rand 0.03 0.09 0.11 0.07

All 0.05 0.08 0.11

Table 2 Entropy parameter: calculated averages of standard devia-

tions of s for the given setups to picture the amount of phase transition

observed during optimization

Driver Ack. Ras. Ros. All

(a) Artificial Bee colony

Chaos 0.14 0.16 0.12 0.14

Order 0.21 0.16 0.12 0.16

Rand 0.21 0.15 0.13 0.16

All 0.19 0.16 0.12

(b) Ant colony

Driver ack. ras. ros. all

Chaos 0.55 0.56 0.34 0.49

Order 0.86 0.71 0.33 0.64

Rand 0.81 0.57 0.34 0.57

All 0.74 0.61 0.34

(c) Particle swarm

Chaos 0.48 0.44 0.48 0.47

Order 0.4 0.18 0.16 0.26

Rand 0.46 0.37 0.44 0.42

All 0.44 0.33 0.35

(d) Self organizing migrating

Chaos 0.05 0.56 0.57 0.38

Order 0.51 0.03 0.02 0.19

Rand 0.1 0.04 0.08 0.07

All 0.21 0.2 0.22

(e) Firefly algorithm

Chaos 0.5 0.53 0.78 0.58

Order 0.1 0.52 0.2 0.31

Rand 0.08 0.51 0.35 0.31

All 0.25 0.52 0.37
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however, changes during the convergence may be esti-

mated using recurrence plots. For this purpose, three

selected windows of algorithms’ iterations were visualized

to spot the differences among them. Figure 1 illustrates

how phases of the algorithm convergences are reflected in

RPs.

Complexity estimation. The obtained matrix Pwi
served

as input for a joint Lempel-Ziv complexity (LZC) esti-

mation and RQA.

For the purpose of joint LZC estimation, the input

matrix was discretized into adjustable number of letters nl
of an alphabet by the given formula. Let

pmin ¼ minfpjj1� j�wg, pmax ¼ maxfpjj1� j�wg and

pd ¼ pmax � pmin then each element pj is assigned value

pj  bnl pj�pminpd
c: The joint-LZC therefore stands, in our

case, for the complexity of time ordered n dimensional

tuples (populations).

In case of RQA, there is a possibility to directly use the

spatial data representation (Marwan et al. 2007a), therefore

we did not apply the Takens’ embedding theorem (Takens

1980; Marwan et al. 2015) and we directly calculated the

RP from our source data. The RQA features like deter-

minism and divergence were calculated.

4 Results

Each of the algorithms were executed 200 times. During

each execution the hyper-parameters were adjusted ran-

domly in order to fairly examine the presence of phase

transitions regardless of the optimization performance. The

significance of phase transition s was estimated by the

standard deviation of the estimated complexity parameter

(Determinism, Entropy and Kolmogorov complexity). The

higher level of s implies a higher level of fluctuating

behavior of the optimization while minimal s stood for a

transition-less optimization.

In Fig. 2 various levels of phase transitions have been

observed across all the available setups. From the given

charts, there may be spotted those three defined factors

affecting the significance of the phase transitions (A, G, F).

Their impact is visually different, therefore our further

Table 3 Kolmogorov complexity parameter: calculated averages of

standard deviations of s for the given setups to picture the amount of

phase transition observed during optimization

Driver Ack. Ras. Ros. All

(a) Artificial Bee Colony

Chaos 0.14 0.17 0.23 0.18

Order 0.24 0.16 0.23 0.21

Rand 0.25 0.16 0.23 0.21

All 0.21 0.16 0.23

(b) Ant Colony

Chaos 0.8 0.59 0.75 0.72

Order 1.36 0.98 0.71 1.01

Rand 1.3 0.71 0.61 0.87

All 1.15 0.76 0.69

(c) Particle Swarm

Chaos 1.03 1.1 1.0 1.04

Order 0.55 0.56 0.57 0.56

Rand 1.13 1.11 0.93 1.06

All 0.91 0.92 0.83

(d) Self organizing migrating

Chaos 0.1 0.88 0.88 0.62

Order 0.89 0.02 0.03 0.31

Rand 0.16 0.1 0.13 0.13

All 0.38 0.33 0.35

(e) Firefly algorithm

Chaos 0.9 0.9 0.96 0.92

Order 0.28 0.86 0.39 0.56

Rand 0.27 0.9 0.95 0.71

All 0.52 0.88 0.73

Table 4 Determinism parameter: calculated averages of standard

deviations of s for the given setups to picture the amount of phase

transition observed during optimization

Driver Ack. Ras. Ros. all

(a) Random number generator

ABC 0.08 0.03 0.05 0.05

ACOR 0.19 0.12 0.1 0.14

FA 0.03 0.09 0.11 0.07

PSO 0.18 0.13 0.16 0.16

SOMA 0.02 0.01 0.02 0.01

All 0.1 0.07 0.08

(b) Order number generator

ABC 0.08 0.03 0.05 0.05

ACOR 0.21 0.17 0.1 0.16

FA 0.03 0.08 0.09 0.08

PSO 0.08 0.07 0.05 0.07

SOMA 0.13 0.0 0.01 0.05

All 0.11 0.07 0.06

(c) Chaos number generator

ABC 0.03 0.03 0.05 0.03

ACOR 0.14 0.12 0.1 0.12

FA 0.08 0.08 0.14 0.1

PSO 0.19 0.16 0.19 0.18

SOMA 0.01 0.13 0.14 0.09

All 0.09 0.11 0.12
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examination is to reveal which of those affect the level of s
the most significantly.

Simply by filtering of one examined factor from the

entire database and averaging its s values on the given

subset, we may estimate whether the optimization process

is rather stable or not while applying this examined factor.

To estimate how much one factor is affecting another, we

need to perform another filtering on the given subset. This

secondary filtering will reveal the conditional phase tran-

sition significance based on the given subfactor and it will

show how this subfactor behaves on the given conditions.

We started by filtering based on optimization algorithm

A and remaining factors for subselections were G and F,

therefore we were able to estimate how modification of

G and F alters the behavior of A. Later we switched and as

a main factor we selected G and F accordingly.

4.1 Selection by type of algorithm

Separation of the data set by algorithm factor A results into

five different subsets where we are able to examine the

influence of number generator G and optimization problem

F (see Figs. 1, 2, 3). Comparing the given setups, we may

observe some differences among phase transition levels. It

is difficult to estimate from these charts, whether the

number generator is affecting the phase transitions more

than the optimized function or vice versa. What is clearly

visible, and will be estimated further as well, is a signifi-

cant difference among algorithms which is caused by the

way how they are designed to process the computation.

Among algorithms with the rather higher mean of s, we
may account PSO and ACOIR especially due to values

examined by Determinism and Kolmogorov complexity

estimation. On the other hand, very stable behavior may be

seen in cases of SOMA and ABC examinations.

From the Tables 1, 2, and 3 it is not clear which of the

secondary factors has higher influence. In cases of ABC,

ACOR and FA, the optimized function affects s more

significantly than the number generator. Differences of s
means are much higher based on G compare to F. In other

cases (PSO and SOMA) the much higher influence is

obtained altering the number generator, while optimization

seems not to be so sensitive on changing the optimization

function. These findings were spotted in all three examined

metrics M. The difference between those subfactors is

rather small, but still, we may observe that changing the

Table 5 Entropy parameter: calculated averages of standard devia-

tions of s for the given setups to picture the amount of phase transition

observed during optimization

Driver Ack. Ras. Ros. all

(a) Random number generator

ABC 0.21 0.15 0.13 0.16

ACOR 0.81 0.57 0.34 0.57

FA 0.08 0.51 0.35 0.31

PSO 0.46 0.37 0.44 0.42

SOMA 0.1 0.04 0.08 0.07

All 0.33 0.33 0.26

(b) Order number generator

ABC 0.21 0.16 0.12 0.16

ACOR 0.86 0.71 0.33 0.64

FA 0.1 0.52 0.2 0.31

PSO 0.4 0.18 0.16 0.26

SOMA 0.51 0.03 0.02 0.19

All 0.45 0.32 0.17

(c) Chaos number generator

ABC 0.14 0.16 0.12 0.14

ACOR 0.55 0.56 0.34 0.49

FA 0.5 0.53 0.78 0.58

PSO 0.48 0.44 0.48 0.47

SOMA 0.05 0.56 0.57 0.38

All 0.34 0.44 0.42

Table 6 Kolmogorov complexity parameter: calculated averages of

standard deviations of s for the given setups to picture the amount of

phase transition observed during optimization

Driver Ack. Ras. Ros. All

(a) Random number generator

ABC 0.25 0.16 0.23 0.21

ACOR 1.3 0.71 0.61 0.87

FA 0.27 0.9 0.95 0.71

PSO 1.13 1.11 0.93 1.06

SOMA 0.16 0.1 0.13 0.13

All 0.62 0.59 0.57

(b) Order number generator

ABC 0.24 0.16 0.23 0.21

ACOR 1.36 0.98 0.71 1.01

FA 0.28 0.86 0.39 0.56

PSO 0.55 0.56 0.57 0.56

SOMA 0.89 0.02 0.03 0.31

All 0.71 0.52 0.39

(c) Chaos number generator

ABC 0.14 0.17 0.23 0.18

ACOR 0.8 0.59 0.75 0.72

FA 0.9 0.9 0.96 0.92

PSO 1.03 1.1 1.0 1.04

SOMA 0.1 0.88 0.88 0.62

All 0.59 0.71 0.74
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optimization function may change the phase transition

significance more likely than changing the number

generator.

4.2 Selection by type of number generator

In this second view on the result data, we will filter based

on the number generator G at first and than as a subfactors

to compare, we will use the type of algorithm A and

optimized function F. Results are depicted in Tables 4, 5

and 6. The differences on s mean are much higher on

algorithm based filtering compare to the optimized function

based filtering. This simply implies that optimization pro-

cedure alters its phase transitions significance based on the

kind of applied algorithm rather than optimized function.

This observation was spotted in all kinds of examined

metrics.

SOMA with ABC appeared as the most stable having

the lowest values of average differences of complexity

parameters, while PSO and ACOR performed the exact

opposite indicating the much higher presence of phase

transitions in this algorithm. FA was performing rather

Table 7 Determinism parameter: calculated averages of standard

deviations of s for the given setups to picture the amount of phase

transition observed during optimization

Driver Chaos Order Rand All

(a) Ackley function

ABC 0.03 0.08 0.08 0.07

ACOR 0.14 0.21 0.19 0.18

FA 0.08 0.03 0.03 0.05

PSO 0.19 0.08 0.18 0.15

SOMA 0.01 0.13 0.02 0.05

All 0.09 0.11 0.1

(b) Rastrigin function

ABC 0.03 0.03 0.03 0.03

ACOR 0.12 0.17 0.12 0.14

FA 0.08 0.08 0.09 0.08

PSO 0.16 0.07 0.13 0.12

SOMA 0.13 0.01 0.01 0.05

All 0.11 0.07 0.07

(c) Rosenbrock function

ABC 0.05 0.05 0.05 0.05

ACOR 0.1 0.1 0.1 0.1

FA 0.14 0.09 0.11 0.11

PSO 0.19 0.05 0.16 0.13

SOMA 0.14 0.01 0.02 0.05

All 0.12 0.06 0.08

Table 9 Kolmogorov complexity parameter: calculated averages of

standard deviations of s for the given setups to picture the amount of

phase transition observed during optimization

Driver Chaos Order Rand All

(a) Ackley function

ABC 0.14 0.24 0.25 0.21

ACOR 0.8 1.36 1.3 1.15

FA 0.9 0.28 0.27 0.52

PSO 1.03 0.55 1.13 0.91

SOMA 0.1 0.89 0.16 0.38

All 0.59 0.71 0.62

(b) Rastrigin function

ABC 0.17 0.16 0.16 0.16

ACOR 0.59 0.98 0.71 0.76

FA 0.9 0.86 0.9 0.88

PSO 1.1 0.56 1.11 0.92

SOMA 0.88 0.02 0.1 0.33

All 0.71 0.52 0.59

(c) Rosenbrock function

ABC 0.23 0.23 0.23 0.23

ACOR 0.75 0.71 0.61 0.69

FA 0.96 0.39 0.95 0.73

PSO 1.0 0.57 0.93 0.83

SOMA 0.88 0.03 0.13 0.35

All 0.74 0.39 0.57

Table 8 Enropy parameter: calculated averages of standard deviations

of s for the given setups to picture the amount of phase transition

observed during optimization

Driver Chaos Order Rand All

(a) Ackley function

ABC 0.14 0.21 0.21 0.19

ACOR 0.55 0.86 0.81 0.74

FA 0.5 0.1 0.08 0.25

PSO 0.48 0.4 0.46 0.44

SOMA 0.05 0.51 0.1 0.21

All 0.34 0.45 0.33

(b) Rastrigin function

ABC 0.16 0.16 0.15 0.16

ACOR 0.56 0.71 0.57 0.61

FA 0.53 0.52 0.51 0.52

PSO 0.44 0.18 0.37 0.33

SOMA 0.56 0.03 0.04 0.2

All 0.44 0.32 0.33

(c) Rosenbrock function

ABC 0.12 0.12 0.13 0.12

ACOR 0.34 0.33 0.34 0.34

FA 0.78 0.2 0.35 0.37

PSO 0.48 0.16 0.44 0.35

SOMA 0.57 0.02 0.08 0.22

All 0.42 0.17 0.26
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transitions occurring computations mostly on average of

the observed algorithms.

4.3 Selection by type of optimized function

The filter based on the optimized function F only confirms

the previously observed findings, but this time the com-

pared subfactors are the type of algorithm A and number

generator G. Results are depicted in Tables 7, 8, and 9. The

differences on s mean are significantly higher on algorithm

based filtering compare to the number generator based

filtering. This again implies, that optimization procedure

alters its phase transitions significance due to the kind of

applied algorithm more likely than optimized function.

This observation was spotted in all kinds of examined

metrics.

Due to our finding, the third examination of phase

transitions was performed on the results filtered by algo-

rithms’ kind. We averaged the impact of the other factors

for each algorithm to measure how they change alters the

algorithms’ behavior. The results are depicted in Fig. 3

where we can clearly observe that PSO, ACOR and FA are

the groups of algorithms with the higher level of phase

transitions while SOMA and ABC are representatives of

rather phase-stable optimization approaches. These results

were obtained similarly on all examined complexity mea-

sures with visible correlation among them.

5 Conclusions

The varying instability of swarm optimization behavior was

examined in these experiments in a slightly larger scale

comparing to our first initial study (Vantuch et al. 2018).

Five swarm-intelligence based optimization algorithms

were examined in nine different setups based on three

different number generators and three different optimized

functions. The main motivation was to compare which

factor most likely affects the amount of phase transitions.

From our simulations, it is clearly visible that the type of

optimization algorithm is the key factor affecting the sig-

nificance of phase transitions. The remaining factors were

also altering this phenomenon significantly but in a much

smaller scale.

The last comparison only underlines our conclusions.

Algorithms were depicted in Fig. 3 where the sensitivity on

the number generator (the average standard deviation on all

number generators) was in all cases very close to the

sensitivity on the fitness function (the average standard

deviation on all fitness functions), while differences among

the algorithms were very significant. All three complexity

measures confirmed this observation with a slight visible

correlation.

Our future work has to examine whether the phase

transitions are beneficial for the convergence and which

algorithm is using them this way, because otherwise, they

may perform only disruptive element which is necessary to

minimize. On the other hand, our results sometimes

returned an outlier observations (behavior of some algo-

rithm changed too much or not at all) which may be caused

by another, not considered factor. Our future study will

consider the examination of initial population distribution

on the phase transition significance as well.
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