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Abstract. Natural systems often exhibit chaotic behavior in their
space-time evolution. Systems transiting between chaos and order mani-
fest a potential to compute, as shown with cellular automata and artificial
neural networks. We demonstrate that swarms optimisation algorithms
also exhibit transitions from chaos, analogous to motion of gas molecules,
when particles explore solution space disorderly, to order, when particles
follow a leader, similar to molecules propagating along diffusion gradients
in liquid solutions of reagents. We analyse these ‘phase-like’ transitions in
swarm optimization algorithms using recurrence quantification analysis
and Lempel-Ziv complexity estimation. We demonstrate that converging
and non-converging iterations of the optimization algorithms are statis-
tically different in a view of applied chaos, complexity and predictability
estimating indicators.
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1 Introduction

Natural systems not rarely undergo phase transition when performing a com-
putation (as interpreted by humans), e.g. reaction-diffusion chemical systems
produce a solid precipitate representing geometrical structures [10], slime mould
transits from a disorderly network of ‘random scouting’ to a prolonger filaments
of protoplasmic tube connecting source of nutrients [2], ‘hot ice’ computer crys-
tallizes [1]. Computation at the phase transition between chaos and order was
firstly studied by Crutchfield and Young [12], who proposed measures of com-
plexity characterising the transition. The ideas were applied to cellular automata
by Langton [19]: a computation at the edge of chaos occurs due to gliders. Phase
transitions were also demonstrated for a genetic algorithm which fall into a
chaotic regime for some initial conditions [24,31] and network traffic models [25].
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Algorithmic models of evolutionary based optimization, AI and ALife possess
comparable features of the systems with a higher complexity, they simulate [14,
36]. We focus on the behavioral modes: the presence of a random or pseudo-
random cycling (analogous to gaseous phase state), ordered or a stable states
(analogous to solid state), or the chaotic oscillations (transitive states). Each
of the modes could imply different level of a computational complexity or an
algorithm performance as it was revealed on different algorithms [6,7,15]. By
detecting such modes we can control and dynamically tune performance of the
computational systems.

A swarm-like behavior has been extensively examined in studies of Zelinka
et al. [35] where the changing dynamics of an observed algorithm was modeled
by a network structure. The relevance between network features and algorithm
behavior supported the control mechanism that was able to increase the algo-
rithm performance [30]. An extensive empirical review of existing swarm based
algorithms has been brought by Schut [28] where approaches like collective intelli-
gence, self-organization, complex adaptive systems, multi-agent systems, swarm
intelligence were empirically examined and confronted with their real models
which reflected several criteria for development and verification.

We aim to evaluate the dynamics of optimization algorithms, inspired by
evolution and swarm-like behavior. We evaluate the dynamical modes of algo-
rithms based on predictability, complexity and chaos features. At the end, we
statistically examine the difference between estimated modes, they possessed. In
case of successful detection of statistically different modes and their transitions
during the optimization process, the edge of chaos may be examined as well as
controlling tools may be designed. Having these tools may increase the ability
to control the optimization process being on maximal convergence level.

2 Theoretical Background

2.1 Swarm Based Optimization

The optimization algorithms examined in our study are representatives of bio-
inspired single-objective optimization algorithms. They iteratively maintain the
population of candidates migrating through the searched space. Their current
position represents the solution vector X of the optimized problem.

Particle Swarm Optimization implies that the combined particle’s aim
towards the global leader and its previous best position [17]. The composition of
these two stochastically altered directions modifies its current position in order
to find a better optimum of the given function. Several reviewing studies are
available as extensive descriptions of the algorithm and they are also surveying
proposed extensions and variations [4,13].

Differential Evolution (DE) was developed by Storn and Price [29] and it pos-
sesses the features of a self-organizing search as well as an evolutionary based
optimization. This interconnection is deserved due to its three main stages. DE
offers several strategies driving the computation of new positions for its candi-
dates. One of them takes three random candidates to calculate an intermediate
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candidate which creates a new position by binary crossover with an optimized
candidate xi. It takes this new position only if it is better than the current one.

Self-organizing migrating algorithm (SOMA) is a stochastic evolutionary
algorithm was proposed by Zelinka [34]. Ideologically, this algorithms stands
right between purely swarm optimization driven PSO and evolutionary-like DE.
The entire nature of migrating individuals across the search-space is represented
by steps in the defined path length and a stochastic nature of a perturbation
parameter that represents specific version of the mutation. The perturbation
creates binary vector by the adjusted PRT parameter and the given formula

vprt
j =

{
1, if rj < PRT

0, otherwise
, (j = 1, 2, · · · , d) (1)

Applying V prt, the path is perturbed towards new solution using current
particle’s and leaders position.

xt+1
i = xt

i + (xt
L − xt

i)v
prt
i (2)

During each migration loop, each particle performs n steps according to the
adjusted step size and the path length. If the path length is higher than one,
particle will travel longer distance, than is his distance towards the leader.

2.2 Lemplel-Ziv Complexity

According to the Kolmogorov’s definition of complexity, the complexity of an
examined sequence X is the size of a smallest binary program that produces
such sequence [11]. Because this definition is way too general and any direct
computation is not guaranteed within the finite time [11], approximative tech-
niques are frequently employed.

Lempel and Ziv designed a complexity estimation in a sense of Kolmogorov’s
definition, but limiting the estimated program only to two operations: recursive
copy and paste [21]. The entire sequence based on an alphabet ℵ is split into a
set of unique words of unequal lengths, which is called a vocabulary. The approx-
imated binary program making use of copy and paste operations on the vocab-
ulary, is able to reconstruct the entire sequence. Based on the size of vocabulary
(c(X)), the complexity is estimated as CLZ(X) = c(X)(logkc(X) + 1) · N−1,
where k means the size of the alphabet and N is the length of the input
sequence. A natural extension for multi-dimensional LZ complexity was pro-
posed in [37]. In case of a set of l symbolic sequences Xi(i = 1, · · · , l), Lempel
and Ziv’s definitions remain valid if one extends the alphabet from scalar val-
ues xk to l-tuples elements (x1

k, · · · , xl
k). The joined-LZC is than calculated as

CLZ(X1, · · · ,X l) = c(X1, · · · ,X l)(logk2c(X1, · · · ,X l) + 1) · N−1.

2.3 Recurrence Quantification Analysis

The recurrence plot (RP) is the visualization of the recurrence matrix of
m-dimensional system states x ∈ R

m [23]. The closeness of these states for
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a given trajectory x i (i = 1, 2, ..., N) where N is the trajectory length, is thresh-
olded in the Heaviside step function Θ(·) which results in the binary matrix of
recurrence Ri,j(ε) = Θ(ε−‖x i−x j‖). The Euclidean norm is the most frequently
applied distance metric ‖ · ‖ and the threshold value ε can be chosen according
to several techniques [18,23,27,32,33].

If only one-dimensional time series is given, the phase space trajectory has
to be reconstructed from the time series {ui}N

i=1, e.g., by using the time-delay
embedding x i = (ui, ui+τ , ..., ui+(m−1)τ ), where m is the embedding dimension
and τ is the embedding delay [26]. The parameters m and τ may be found using
methods based on false nearest neighbors and auto-correlation [16].

The RQA measures applied in this experiment describe the predictability and
level of chaos in the observed system. Determinism is defined as the percentage
of points that form diagonal lines (Eq. 3)

DET =
N∑

l=2

lP (l)

[
N∑

l=1

lP (l)

]−1

(3)

where P (l) is the histogram of the lengths l of the diagonal lines [23]. Its values,
ranging between zero and one, estimate the predictability of the system.

Divergence is related to the sum of the positive Lyapunov exponents, natu-
rally computing the amount of chaos in the system, and it is defined as follows

DIV = L−1
max, Lmax = max({li; i = 1, · · · , Nl}) (4)

where Lmax is the longest diagonal line in the RP (excluding the main diagonal
line) [23].

3 Experiment Design

Data Preparation. All three examined algorithms attempted to optimize one
common fitness-function, the Rastrigin function, because of its frequent appli-
cation with similar manners and its dimensional scalability that satisfies our

testing purposes: f(x) = A · n +
n∑

i=1

(x2
i − A · cos(2πxi)), where A = 10 and

xi ∈ [−5.12, 5.12]. The function has a global minimum at x = 0 where f(x) = 0.
The adjustment of the optimization algorithms was tuned by random search

hyper-parameter optimization [5] in order to find the optimal adjustment to
perform the best possible convergence. The only fixed hyper-parameters were
the dimension of the optimized function (it also affected the dimension of the
particles, D = 10) and the population size of the algorithm (NP = 40, 60, 100- it
varied in order to see the affect of population size on the appearing dynamics).
The rest of the hyper-parameters were optimized in the ranges according to
Table 1.

The behavior of the optimization algorithms is represented by the posi-
tions (Xt1 = {xt1,1, xt1,2, · · · , xt1,D}) taken by their population members (P =
p1, p2, · · · , pN ) during their migrations/iterations (p1 = Xt1,1,Xt2,1, · · · ,Xtm,1).
All of them are stored for the further examination. The time windows w of
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iterations are taken and transfered into matrices of particles positions where
columns are particle’s coordinates and rows are ordered particles by their pop-
ulation number and time.

(Pwi
= {xti,1, xti,2, · · · , xti,N , xti+1,1, xti+1,2 · · · , xti+1,N , · · · xti+w,N}).

Table 1. The value ranges of hyper-parameters of optimization algorithms to be
adjusted with their meaning.

Parameter Algorithm Meaning Value

c1 PSO global best position multiplier 〈0.5, 1.5〉
c2 PSO local best position multiplier 〈0.5, 1.5〉
w PSO inertia weight 〈0.5, 0.95〉
F DE differential weight 〈0.1, 1.0〉
Cr DE crossover probability 〈0.1, 1.0〉
prt SOMA pertubation probability 〈0.1, 1.0〉
step size SOMA size of the performed step 〈0.1, 1.0〉

Convergence. Applying the before-mentioned algorithms’ hyper-parameters, the
optimization converged towards an optimum. In case of our experiment, the
exclusive finding of a global optimum does not play such an important role
as the fact that algorithms converge towards a fixed point performing various
changes and interactions inside of their swarm. Various visualization settings
(window size, population size) were tested in order to plot the most kinds of
phase shifting behaviors. Figures, depicted as follows (Figs. 2, 3, 4), performed
visually the representatives of the most common kinds.

The changes and interactions inside of their migrating populations are not
usually visible in convergence plots, however changes during the convergence may
be estimated using recurrence plots. For this purpose, three selected windows
of algorithms’ iterations were visualized to spot the differences among them.
Figure 1 illustrates how phases of the algorithm convergences are reflected in
recurrence plots.

Complexity Estimation. The obtained matrix Pwi
served as input for a joint

Lempel-Ziv complexity (LZC) estimation and RQA. For the purpose of joint
LZC estimation, the input matrix was discretized into adjustable number of
letters nl of an alphabet by the given formula. Let pmin = min{pj |1 ≤ j ≤ w},
pmax = max{pj |1 ≤ j ≤ w} and pd = pmax − pmin then each element pj is
assigned value pj ← �nl

pj−pmin

pd
�. The joint-LZC therefore stands, in our case,

for the complexity of time ordered n dimensional tuples (populations).
In case of RQA, there is a possibility to directly use the spatial data repre-

sentation [22], therefore we did not apply the Takens’ embedding theorem and
we directly calculated the thresholded similarity matrix from our source data.
The RQA features like determinism and divergence were calculated.
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Fig. 1. Recurrence plots of the PSO (abc), DE (def), and SOMA (ghi) behavior calcu-
lated as similarities among the particles’ positions Xt grouped into the windows of pop-
ulations Pwi during their (adg) “post-initial” (10th migration), (beh) “top-converging”
(60th migration) and (cfi) “post-converging” (400th migration) phase.

Based on the obtained visualizations (Figs. 2, 3 and 4) we are able to confirm
the visible differences in cases of PSO and SOMA algorithm. These two opti-
mizations are performing similarities when the population is migrating the same
direction. Once the optimum is reached, the similarities decrease. We are not able
to confirm the same in case of DE. Due to the randomly performed crossover
and additional mutation, this algorithm seems to contain more randomness and
evolution-like behavior.
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Further examinations calculated the DET, DIV and LZC values during all of
the migrations. The statistical difference of these complexity indicators among
the converging and non-converging iterations will be examined by ANOVA to
confirm the presence of state transitions [20].

Fig. 2. Progress of the PSO algorithms executed several times with varying populations
and window sizes. Horizontal axis represents the migrations while the vertical line holds
values of average fitness-function of the population (Avg. Fit.) and obtained indicators.
(a) population size 40, window 20, (b) population size 70, window 20, (c) population
size 100, window 30, (d) population size 100, window 40

4 Results

Levels of complexity and the RQA indicators may posses different values based
on a given window size as well as the size of the population, therefore we tried
several combinations of these parameters (3 per each, therefore nine combina-
tions for each algorithm). Only each tenth value of each time set was plotted in
the charts (see Figs. 2, 3 and 4). The values of fitness-function and LZ complex-
ity were normalized into the range between 0 and 1. The determinism returns
such normalized values originally, therefore there was no need for an additional
normalization. In case of the divergence, its values were very low (×E10−3), so
it was necessary to multiply them in order to keep the similar visual scale in
charts.
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Fig. 3. Progress of the DE algorithms executed several times with varying populations
and window sizes. Horizontal axis represents the migrations while the vertical line holds
values of average fitness-function of the population (Avg. Fit.) and obtained indicators.
(a) population size 40, window 20, (b) population size 70, window 20, (c) population
size 70, window 30, (d) population size 70, window 40

Particle Swarm Optimization. The progress of PSO (Fig. 2) possess quickly
decreasing LZC as the population converges towards an optimum and looses
diversity. This behavior is expected as well as some appearing pulses in times
when population probably left a local optimum, which was also reflected by an
additional converges towards some better solution.

The progress of the population was very much predictable as it was eval-
uated by DET which possesed values close to 1 when the convergence of the
population was the highest. Once a found optimum was reached by the major-
ity of the population, DET dropped and evaluated the population’s progress as
unpredictable.

Higher values of DIV imply the presence of chaotic behavior in the system. All
of the evaluations returned only very small values of this indicator therefore the
only small amount of chaos can be confirmed. In the available visual evaluation,
the DIV appears to possess the smallest relation to the progress of the algorithm.
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Fig. 4. Progress of the SOMA algorithms executed several times with varying pop-
ulations and window sizes. Horizontal axis represents the migrations while the ver-
tical line holds values of average fitness-function of the population (Avg. Fit.) and
obtained indicators. (a) population size 40, window 20, (b) population size 40, window
30, (c) population size 40, window 40, (d) population size 100, window 20

Differential Evolution. DE performs elitism during its operation which can be
the reason of an absolute flat progress of all its indicators during last iterations.
The significant increase of LZC values in some cases remains unclear and can
be connected with situation when the population found several optimums of the
same quality and the population randomly switched among them (see Fig. 3).
The values of DET only evaluate the entire progress of DE as unpredictable
almost the same way as the DIV which marked the behavior as chaotic until the
found optimum was reached by the population and any other better solution
was found.

Self-Organizing Migration Algorithm. The progress of the SOMA algorithm has
similarities with both previous algorithms. All indicators are very flat during its
last migrations, because particles remains on their positions in cases when better
solution was not found. The pertubet following of the leader is similarly reflected
by DET as it was in case of PSO, when the behavior of the algorithm was marked
as predictable until the majority of the population reached the found optimum.
The appearance of the chaos is very low the same way as it was in previous
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cases (DIV). The LZC as well as the Fitness dropped very quickly because of
the nature of SOMA. Each particle performed multiple trials (steps as the path
length divided by the step size) and the each population’s individual migrated
towards its best trial. This is the nature of the algorithm and the reason why
it appears as the algorithm with the highest performance in the frame of our
experiments.

4.1 ANOVA Testing

The DET, DIV and LZC values were split into values obtained in different phases
of the optimization. Six groups, marked from 1 to 6, were defined by visual
estimation as follows.

– 1 as progress of PSO algorithm during its converging migrations [10, 60]
– 2 as progress of DE algorithm during its converging migrations [10, 60]
– 3 as progress of SOMA algorithm during its converging migrations [10, 60]
– 4 as progress of PSO algorithm during its non-converging migrations [300,

350]
– 5 as progress of DE algorithm during its non-converging migrations [300, 350]
– 6 as progress of SOMA algorithm during its non-converging migrations [300,

350]

The presence of statistically significant differences among the means of these
groups will confirm the state transitions. Especially we are interested whether
the groups of the same algorithms are different and in which indicators.

1 2 3 4 5 6
Group index

0.2

0.4

0.6

0.8

1
DET

1 2 3 4 5 6
Group index

0

0.2

0.4

0.6

0.8

1

DIV

1 2 3 4 5 6
Group index

0

0.2

0.4

0.6

0.8

1
LZC

Fig. 5. Means with standard deviations obtained by ANOVA testing on six defined
groups of data.

ANOVA testing rejected the null hypothesis that says about similarity of the
means across the examined groups of the data (see Fig. 5). Obtained p-values are
0 for ANOVADET and ANOVADIV , and 2.657e − 94 for ANOVALZC . The per-
formed additional post-hoc analysis revealed the specific differences among the
groups according to their means and it is as follows. The means of Determinism
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results were able to differentiate the groups 1 and 3 from the rest of the groups,
while the means of second group were not significantly different from others (5,
6). The separability performance of the means of Divergence were able to sig-
nificantly exclude the groups 2 and three from the rest while the means of the
first group were similar to the fourth group. Both of them differed from the rest
significantly. In case of LZC, the groups 1 and 3 are have means significantly dif-
ferent from the rest of the groups while group 2 possesses this difference against
all of the groups.

These results mean that optimization phases are distinguishable by means
of this complexity measure. From the above mentioned differences of the means,
it is clearly visible that the convergence phases of PSO are separable by the
means of Determinism and LZC while in case of Divergence we are not able to
distinguish among them. In case of DE, its LZC and Divergence means possessed
significant differences between DEs’ convergence phases while Determinism was
not applicable for this task. And finally the case of SOMA. All of the applied
complexity criteria returned significantly different means among the SOMA con-
vergence phases, therefore they are able to be distinguished by these values.

5 Discussion

In contrast to conventional computers, natural systems never stop to function,
therefore by simply observing a physical, chemical or living computer we might
never know when its completed the task and produced result. This phenomenon
was formalized in a framework of inductive Turing machines [8] and advanced in
structural machines [9], however still there is a lack of a definite measure. Some
measures of spatio-temporal dynamics of a computing systemare necessary to infer
weather consider its current state as representing a final solution or wait longer.

In computer experiments with particle swarm optimization we found that it
is possible to detect the convergence of algorithm using RQA and LZ complex-
ity measures. The converging and non-converging iterations of the optimization
algorithms are statistically different in the view of applied chaos, complexity and
predictability estimating indicators. Typically, the degree of RQA Determinism
sharply increases, as if undergoing a phase transition, when fitness approaches
its maximum. Dynamics of LZ complexity follows, in general, the level of fitness.
These results are well in line, and somewhat complement, our previous studies
on the use of dynamics of compressibility of a system’s spatial configurations to
detect when the system completed computation [3].

Our findings may lead to the future work which is related to the estimation
of the edge of chaos in the swarm-like optimization algorithms. It may be applied
in a design of adaptive approaches aiming to control their progress in order to
sustain the best possible performance.
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