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Abstract
The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and evolution in Africa through the 
analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin. In this statistical project we 
consider the Chew Bahir palaeolake to be a dynamical system consisting of interactions between its different components, 
such as the waterbody, the sediment beneath lake, and the organisms living within and around the lake. Recurrence is a 
common feature of such dynamical systems, with recurring patterns in the state of the system reflecting typical influences. 
Identifying and defining these influences contributes significantly to our understanding of the dynamics of the system. 
Different recurring changes in precipitation, evaporation, and wind speed in the Chew Bahir basin could result in similar 
(but not identical) conditions in the lake (e.g., depth and area of the lake, alkalinity and salinity of the lake water, species 
assemblages in the water body, and diagenesis in the sediments). Recurrence plots (RPs) are graphic displays of such recur-
ring states within a system. Measures of complexity were subsequently introduced to complement the visual inspection of 
recurrence plots, and provide quantitative descriptions for use in recurrence quantification analysis (RQA). We present and 
discuss herein results from an RQA on the environmental record from six short (< 17 m) sediment cores collected during the 
CBDP, spanning the last 45 kyrs. The different types of variability and transitions in these records were classified to improve 
our understanding of the response of the biosphere to climate change, and especially the response of humans in the area.
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1 Introduction

The development by humans of settlement systems, artis-
tic representations, and hunting strategies during the last 
50–40 kyrs marks a “human revolution” and the emergence 
of behaviorally modern humans in Africa (Renfrew 2009; 

Richter et al. 2012). These behaviorally modern humans may 
have adapted to environmental changes and extreme climatic 
oscillations through technological, behavioural, cultural and 
cognitive innovation rather than through physical adapta-
tion (Klein 1995; Klein and Steele 2013; Clark et al. 2016). 
Determining the nature and pace of changes in the environ-
ment of early modern humans is crucial to understanding the 
factors that influenced this human revolution. For example, 
different types of climate variability would have resulted in 
different types of climatic stress and changes to environmen-
tal boundaries (Hildebrand and Grillo 2012; Vogelsang and 
Keding 2013; Foerster et al. 2015).

There are currently ongoing discussions concerning 
global and regional climate fluctuations that had an effect on 
human habitats (e.g. Trauth et al. 2007, 2018; Foerster et al. 
2015; Lamb et al. 2018; Ivory and Russell 2018; Maley et al. 
2018; Garcin et al. 2018) and which did not, either because 
these fluctuations had little or no effect on the African cli-
mate (e.g. Timmerman and Friedrich 2016) or because their 
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effect was buffered by the environmental system (e.g. Cuth-
bert et al. 2017). Among the most debated episodes of Afri-
can climate (including their onset, termination, and internal 
variability) are the Dansgaard–Oeschger (DO) cycles and 
Heinrich Events (HEs) (~ 110–12 kyr BP, e.g. Brown et al. 
2007; Garcin 2008; Tierney and deMenocal 2013; Berke 
et al. 2014; Timmerman and Friedrich 2016; Lamb et al. 
2018), the marine isotope stage 4 (MIS 4) aridification 
(~ 71 kyr BP, e.g. Timmerman and Friedrich 2016), the 
Last Glacial Maximum (LGM, 23.5–18 kyr BP, e.g. Gasse 
2000; Shakun and Carlson 2010; Tierney and deMenocal 
2013), and the African Humid Period (AHP, ~ 15–5 kyr BP, 
e.g. deMenocal et al. 2000; Tierney and deMenocal 2013; 
Shanahan et al. 2015; Tierney et al. 2017). Such global (DO 
cycles, HEs, LGM) and regional (AHP) episodes may have 
affected the availability of water and food, spatial retreats 
and shelter, and migration corridors, over variable periods 
of time (e.g. Ambrose 1998; Carto et al. 2009; Castañeda 
et al. 2009; Brandt et al. 2012; Foerster et al. 2015; Flohr 
et al. 2016; Marchant et al. 2018).

Time-series analysis provides a number of tools with 
which to characterize past climate change, which can be ran-
dom, clustered, cyclic, or chaotic (e.g. Marwan et al. 2007; 
Mudelsee 2014; Trauth 2015). The most popular methods 
for characterizing variations are based on Fourier or wavelet 
transforms, decomposing time series into a linear combina-
tion of sinusoids (e.g. Trauth 2015 and references therein). 
Past climate change is, however, often nonlinear (i.e. there 
is no simple proportional relation between cause and effect) 
and techniques to describe nonlinear behavior have there-
fore become increasingly popular in recent decades, defining 
the scaling laws and fractal dimensions of natural processes 
(Kantz and Schreiber 1997; Turcotte 2010; Tsonis 2018) and 
detecting nonlinear interrelationships using methods such 
as transfer entropies, graphic models, and recurrence plots 
(Zbilut and Webber 1992; Marwan et al. 2003; Rodó and 
Rodríguez-Arias 2006; Feldhoff et al. 2013; Goswami et al. 
2013; Runge et al. 2012, 2014; Builes-Jaramillo et al. 2018; 
Ramos et al. 2018). The availability of long time series in 
the Earth sciences in recent times (for example from multi-
sensor core logger and micro X-ray fluorescence results) 
facilitates the use of these methods and increases the reli-
ability of the results obtained.

In this paper we present a classification of past climate 
variability in the Chew Bahir basin of southern Ethiopia 
over approximately the last 45 kyrs using recurrence plots, 
which provide a graphic display of recurring states in the 
environmental system (Eckmann et al. 1987; Marwan et al. 
2007). Quantitative descriptions (measures of complexity) 
have been developed to complement visual inspection of 
recurrence plots (RPs) and for recurrence quantification 
analysis (RQA) (e.g. Zbilut and Webber 1992; Marwan et al. 
2007; Marwan 2008). We previously used recurrence plots 

to identify past climate transitions during the Plio-Pleisto-
cene in Africa, the Middle East, and East Asia (e.g., Donges 
et al. 2011; Eroglu et al. 2016). Such plots enable us to detect 
nonlinear patterns in past climate change, helping to improve 
our understanding of the underlying process of climate tran-
sitions in the Chew Bahir basin by statistically describing the 
dynamical characteristics of the environment (Marwan et al. 
2007, 2013; Donges et al. 2011; Marwan and Kurths 2015; 
Eroglu et al. 2016). We first used the method on prototypical 
data in order to assess its performance with typical palaeo-
climate transitions. We then performed an RQA on the Late 
Quaternary climate record from Chew Bahir cores CB01–06 
because it provides one of the most detailed records of cli-
mate change available from the vicinity of important sites 
for modern human fossil (Foerster et al. 2012, 2015, 2018; 
Trauth et al. 2015, 2018).

2  Regional setting

The sediment cores described herein were recovered 
from the Chew Bahir basin in the southern Ethiopian Rift 
(4.1–6.3°N, 36.5–38.1°E; Fig. 1) (see details in Foerster 
et al. 2012). Chew Bahir is a closed basin, separated from 
the Turkana Basin to the west by the Hammar Range. The 
western part of the 32,400 km2 catchment, drained by the 
perennial Segen and Weyto rivers, is mostly formed by Late 
Proterozoic gneisses, whereas the eastern part is dominated 
by Miocene basalts (Moore and Davidson 1978; Davidson 
1983). Rainfall in the area is associated with the seasonal 
migration of the Intertropical Convergence Zone (ITCZ), 
resulting in two rainy seasons in March–May and Octo-
ber–November (Nicholson 2017). Rainfall intensity strongly 
depends on Atlantic and Indian Ocean sea-surface tempera-
ture (SST) variations caused by the Indian Ocean Dipole 
(IOD) and the El Niño-Southern Oscillation (ENSO), also 
explaining the recent reduction of rainfall intensities over 
the last decades (Saji et al. 1999; Seleshi and Zanke 2004; 
Cheung et al. 2008; Segele et al. 2009; Nicholson 2017).

3  Methods

3.1  The Late Pleistocene–Holocene record 
of the Chew Bahir basin

We reconstructed climate fluctuations in the Chew Bahir 
from six short (< 17 m) sediment cores (CB01–06), col-
lected along a ~ 20 km transect from Northwest to South-
east in the basin (Foerster et al. 2012, 2015; Trauth et al. 
2018) (Fig. 1). These six cores were collected in a pilot 
study for the Hominin Sites and Paleolakes Drilling Project 
(HSPDP; HSPDP-CHB deep coring site in Fig. 1) (Cohen 
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et al. 2016; Campisano et al. 2017) and the Collaborative 
Research Center CRC-806 at the University of Cologne, 
and were described in detail in earlier publications (e.g., 
Foerster et al. 2012, 2015; Trauth et al. 2015). We used the 
potassium (K) concentrations of the sediment, determined 
by micro X-ray fluorescence (µXRF) scanning, as a proxy 
of aridity (Foerster et al. 2012, 2018; Trauth et al. 2015). 
Dynamic time warping (DTW) was employed for aligning 
the K records from the six cores CB01–06 (Trauth et al. 
2018). The composite age model of Trauth et al. (2015), 
based on 32 AMS 14C ages derived from biogenic carbonate, 
fossilized charcoal and organic sediment, resulting in a very 
solid chronology for lake record spanning the last ~ 45 kyr, 
was then used to convert composite core depths into ages.

A principal component analysis (PCA) helped us to sepa-
rate the mixed regional and local environmental signals in 
the K records from the six aligned cores. The first principal 
component (PC1) contains more than 94% of the variance 
of the data and was therefore interpreted to best represent 
regional climate. The temporal resolution of the climate 
proxy record in CB01, with 2812 original measurements, 

has a calculated mean spacing of ~ 16 yrs, ranging from 
~ 4 yrs in the upper part of the core to almost 2 kyrs in the 
deeper part of the core (Foerster et al. 2012, 2015; Trauth 
et al. 2015). The K record (following DTW alignment of 
cores CB01 to CB06 and PCA-based unmixing) runs from 
45.358 to 0 kyr BP with a mean resolution of 8 yrs (ranging 
from 2.6 to 30.6 yrs) and the record has therefore been inter-
polated to an evenly-spaced time axis running from 45.358 
to 0 kyr BP at 10 year intervals, which is close to the mean 
intervals of the original data (~ 16 yrs, ranging from ~ 4 
yrs to 2 kyrs) and in the aligned and unmixed data (~ 8 yrs, 
ranging from 2.6 to 30.6 yrs) (Trauth et al. 2018).

3.2  Principles of recurrence plots (RPs) 
and recurrence quantification analysis (RQA)

We consider the Chew Bahir palaeolake to represent a com-
plex system of interacting components, such as the water-
body, the sediment beneath the lake, and the organisms liv-
ing within and around the lake. Systems with properties that 
change over time, such as the Chew Bahir palaeolake with its 

Fig. 1  a Topographic map of the Chew Bahir basin, showing the out-
line of the catchment, the drainage network, the locations of the short 
cores in the pilot study (2009, 2010), and the 2014 HSPDP-CHB drill 
site. b Geologic map of the Chew Bahir basin, showing the three gen-
eralized rock types: Cenozoic rift sediments, Cenozoic rift volcanics, 
and Proterozoic basement. Compilation based on Omo River Project 

Map (Davidson 1983), Geology of the Sabarei Area (Key 1988), 
Geology of the Yabello Area (Hailemeskel and Fekadu 2004), and 
Geology of the Agere Maryam Area (Hassen et al. 1997). Maps are 
modified versions of the ones previously published in Trauth et  al. 
(2018) and Foerster et al. (2018)
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slowly changing geomorphologic features, much more rap-
idly varying climatic factors, and the possible (very recent) 
influence of human activities, are known as dynamical sys-
tems. The Chew Bahir multi-dimensional palaeolake system 
is affected by a number of factors (known as state variables 
of the system) such as precipitation (with higher rainfall 
resulting in increased weathering and erosion within the 
catchment, and hence more potassium washed into the lake), 
evaporation (with increased evaporation producing more 
extreme hydrochemical conditions that enhance potassium 
fixation in the sediment through authigenic clay-mineral 
alterations, Foerster et al. 2012, 2018) and wind speed (with 
higher wind speeds and reduced vegetation cover resulting 
in more potassium-rich particles being blown into the lake).

Analysis of temporal variations in the state variables of 
the Chew Bahir palaeolake requires a record of the variables 
influencing those state variables over a relevant time period. 
Since the state variables of the Chew Bahir system (e.g., pre-
cipitation, evaporation and wind speed) cannot be measured 
directly, we use indirect indicators (known as climate prox-
ies) measured from natural archives of environmental change 
such as the sediments of the Chew Bahir basin, sampled by 
coring. A proxy record of a multi-dimensional dynamical 
system obtained by sampling a single variable is equivalent 
to projecting the dynamics of a complex system onto a single 
axis (Iwanski and Bradley 1998). In our case the sampled 

variable is the series x(t) of potassium concentrations x along 
a lake sediment core, which provides a natural archive of 
past influences on the Chew Bahir lake system, with sedi-
ment depth d converted into time t using the age model from 
Trauth et al. (2015).

One way to untangle the dynamics of a multi-dimensional 
system from a one-dimensional time series x(t) is by time-
delay embedding, which preserves the dynamic character-
istics of the system (Packard et al. 1980) (Fig. 2). The rea-
son why an entire system needs to be reconstructed from a 
single variable is that information about the system and the 
factors affecting its state variables is contained in a one-
dimensional time series. In other words, since the potassium 
concentration in the Chew Bahir sediments is the result of 
a complex interplay between unknown amplitudes of dif-
ferent environmental (or state-) variables (such as precipi-
tation, evaporation, and wind velocity), an analysis of the 
temporal variations in this environmental proxy will help 
us to understand the state variables of the Chew Bahir pal-
aeolake and the time-varying interactions between its dif-
ferent components. The embedding of the time series x(t) 
in a three-dimensional (m = 3) coordinate system (a phase 
space), for example, means that three successive values x(t), 
x(t + τ), and x(t + 2τ) with a temporal separation of τ are rep-
resented by a single point within the phase space (Iwanski 
and Bradley 1998; Webber and Zbilut 2005; Marwan et al. 

Fig. 2  Principle of recurrence plot. To untangle the dynamics of a 
multi-dimensional system from a onedimensional time series x(t) 
(black line, in a) is by time-delay embedding. The embedding of the 
time series x(t) in a three-dimensional (m = 3) coordinate system (a 
phase space, shown in b), for example, means that three successive 
values x(t), x(t + τ), and x(t + 2τ) with a temporal separation of τ are 
represented as a single point s⃗(t) within the phase space (Iwanski and 

Bradley 1998; Webber and Zbilut 2005; Marwan et al. 2007). Recur-
rence plots (RPs, d), first introduced by Eckmann et  al. (1987), are 
graphic displays of such recurring states within a system, calculated 
from the distance (e.g. the Euclidean distance d, shown in c) between 
all pairs of phase space vectors s⃗ (t1) and s⃗ (t2), below a threshold 
value e (also shown in c) (Marwan et al. 2007)
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2007) (Fig. 2). The geometric representation of the embed-
ded time series of observations as trajectories s⃗(t)=[x(t), 
x(t + τ), x(t + 2τ)] within the phase space is called a phase 
portrait. The reconstructed phase space is not exactly the 
same as the original phase space, but its topological proper-
ties are preserved provided that the embedding dimension is 
sufficiently large (Packard et al. 1980; Takens 1981).

A common feature of dynamical systems is the property 
of recurrence (Webber and Zbilut 2005). Recurring patterns 
in the state of a system are a reflection of typical character-
istics of the dynamical system. Defining these patterns can 
contribute significantly to our understanding of the system’s 
dynamics. Changes in environmental (or state-) variables 
(such as precipitation, evaporation, and wind velocity) often 
follow characteristic courses (represented as trajectories s⃗ 
in phase space) that could lead to similar (but not identi-
cal) lake characteristics (e.g. depth and area of the lake, 

alkalinity and salinity of the lake, species assemblage in 
the waterbody, or formation of authigenic minerals in the 
sediment). Recurrence plots (RPs), first introduced by Eck-
mann et al. (1987), are graphic displays of such recurring 
states within a system, calculated from the distance (e.g. 
the Euclidean distance) between all pairs of phase space 
vectors s⃗(t1) and s⃗(t2), below a threshold value e (Marwan 
et al. 2007) (Figs. 2, 3).

Measures of complexity were subsequently introduced to 
complement the visual inspection of recurrence plots, pro-
viding quantitative descriptions for use in recurrence quanti-
fication analysis (RQA) (e.g. Zbilut and Webber 1992; Mar-
wan et al. 2007; Marwan 2008). Among these, a selection 
of recurrence characteristics are very useful to summarize 
the appearance of the recurrence plots, ultimately helping 
to describe the behavior of the Chew Bahir lake system. An 
example of such a characteristic is the recurrence rate (RR), 

Fig. 3  a–f  Recurrence plots (RPs) and recurrence quantification 
analysis (RQA) measures for synthetic data representing common 
types of dynamic behavior: a normally-distributed (Gaussian) noise. 
b Composite signal comprising two sine waves and a positive trend 
in the mean. c Composite signal comprising a sine wave and Gauss-
ian noise with decreasing signal-to-noise ratio from left to right. d 
Composite signal comprising two sine waves and a trend in the fre-
quencies. e Abrupt transition from a composite signal comprising 
two sine waves to a signal with only one sine wave. f Normally-dis-
tributed (Gaussian) noise with a stepwise transition in the mean and 

a change in the autocorrelation prior to this transition. The examples 
display the time series (upper panel), the recurrence plot (middle 
panel) and the RQA measures (lower panel). Embedding param-
eters m  = embedding dimension, tau  = time delay, e  = threshold, 
w = window size, ws = window moving steps, norm = vector norm, 
thei  = size of Theiler window, lmin  = minimum line length, RQA 
measures RR = recurrence rate and DET = determinism. Please read 
the “Methods” section for a detailed description of the embedding 
parameters and RQA measures
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Fig. 3  (continued)
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which is the density of black dots within the recurrence plot. 
This measure simply describes the probability of states of 
the system recurring within a particular time period.

Diagonal lines typically occur in recurrence plots when 
one segment of the trajectory runs almost parallel to another 
segment (e.g. within a given tolerance) representing an ear-
lier episode in the history of the system within the phase 
space. Diagonal lines in recurrence plots are therefore diag-
nostic of cyclicity in time series; such cyclicity detected 
using recurrence plots is not restricted to sinusoidal struc-
tures, in contrast to cyclicity in Fourier-based time-series 
analysis. Cyclicity can be used to predict future conditions 
from present and past conditions using the ratio of the recur-
rence points that form diagonal patterns (of a certain length) 
to all other recurrence points, as a measure of the determin-
ism (DET) or predictability of the system.

Misleading results can be obtained during analysis of the 
diagonal and vertical lines in recurrence plots due to what is 
known as tangential motion (Marwan et al. 2007). Tangential 
motion occurs when calculating points of recurrence if there 
are points in the phase space below the threshold value e that 
define the same trajectory segment, which is very typical of 
smooth or high resolution data (Marwan et al. 2007). This 
can lead to misleading RQA values, especially DET values. 
There are a number of methods that can be used to suppress 
this effect: (1) using a Theiler window defining the minimum 
time separation of nearest neighbors, (2) trailing data points 
on the phase space trajectory, or (3) by increasing the mini-
mum length of the lines used to calculate the DET (Marwan 
et al. 2007). The latter method defines a lower limit for the 
length of the diagonal lines in order to exclude points on the 
same trajectory from DET calculations (Marwan et al. 2007; 
Marwan 2011).

RP analysis is further complicated by trends in the mean 
and variance (i.e. nonstationarity and long-term variations), 
which have a marked effect on the recurrence rate (RR), i.e. 
on the density of dots in RPs. If the long-scale variations 
are not of interest, the RQA characteristics can be used to 
reveal undesired fluctuations that do not reflect the more 
rapid variations in the dynamics of the system. We therefore 
use an adaptive threshold instead of a fixed value e, which is 
determined in such a way that all points in the phase space 
have the same number of neighbors. The RR is thus cor-
rected for any changes in the density of points within the 
phase space. The resulting constant RRs (and hence more 
homogeneous RPs) make it easier to detect rapid changes of 
the system dynamics at a particular point, while long-term 
changes can be observed at other points. Note that the RR 
obtained by using an adaptive threshold is constant with 
respect to the whole RP and also to each column within the 
RP, since one column represents one point in time, hence 
one point in the (reconstructed) phase space. This means, we 
expect a time-dependent behavior of RR, when performing 

a windowed analysis over the entire RP and a constant RR 
with respect to the whole RP (see description below). One 
other possible problem in analyzing palaeoclimate records, 
which typically have very low signal-to-noise ratios, is the 
disruption of patterns in the RP (such as diagonal lines) by 
noise, gaps and other disturbances.

The RQA can be carried out using moving windows in 
order to detect changes in the system dynamics, represented 
by a change in the RQA measures, (1) by developing a single 
RP and calculating the RQA measures for windows moving 
along this RP, or (2) by developing multiple RPs of indi-
vidual windows and calculating the RQA measures for these 
RPs. If nonstationarities (e.g. trends) are not the main focus 
of the analysis, then approach (2) makes it easier to find 
transitions while ignoring any nonstationarities. However, if 
the detection of overall changes is of interest (e.g. to test for 
nonstationarity), the recurrence conditions should be kept 
constant over time (thus taking into account the RP of the 
entire time series) and approach (1) will be more appro-
priate (Marwan 2011). A window size needs to be chosen 
that is small enough to ensure good temporal resolution but 
large enough to cover typical variations (e.g. the number of 
cycles) in order to be able to detect recurrences. Since our 
data show a very dominant long-term trend, we first perform 
the RQA on the original data and then on a high-pass filtered 
(and hence detrended) version of the data.

3.3  Synthetic examples of a recurrence 
quantification analysis

The investigation of synthetic data using RPs and the RQA 
measures described above, which are then used to analyse 
real data, has proven to be particularly advantageous when 
the methods are complex and the results not immediately 
obvious (e.g. Marwan et al. 2007; Trauth 2015) (Fig. 3). The 
use of conceptual models that mimic typical system changes 
helps us to understand the typical changes seen in RPs and 
to assign them to one or other of those changes. The first 
example investigated was of normally-distributed (Gauss-
ian) noise, for which an RP and RQA measures were derived 
(Fig. 3a). The RP shows randomly distributed points, each 
representing times when the system randomly returned to a 
similar state. Similar states frequently recur in random noise 
but without any regularity except the states represented by 
the main diagonal line, the line of identity. The RR is there-
fore more or less constant with very low values. Since there 
is no systematic pattern (e.g. cyclically recurring states), 
the RP does not show any linear patterns and the DET is 
therefore very low.

The second example investigated was a composite sig-
nal of two sine waves, for which an RP and RQA meas-
ures were again derived. In the interval between − 1400 
and − 600 there is a positive trend in the mean (Fig. 3b). 
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The RP shows long diagonal lines, diagnostic of cyclicity 
in time series, with shorter lines in between. The horizon-
tal distances between these lines corresponds to the peri-
ods of the two sine waves (T1 = 50 and T2 = 200). Since the 
higher frequency is a harmonic of the lower frequency, the 
corresponding diagonal lines appear thicker in the RP. The 
RP clearly shows the effect of the trend in the mean as the 
diagonal lines disappear towards the upper left and lower 
right corners of the RP due to the trend-induced increase in 
the distance, leaving a blocky pattern in the middle of the 
RP. Because the dynamic itself does not change, neither do 
the DET values; instead they persist at their maximum val-
ues, which are unaffected by the trend. The RR is however 
affected, as shown by the lower density of black dots in the 
RP, indicating cyclic variations with a period of the same 
order as the dominant period in the signal (T2 = 200).

The synthetic data in the third example comprised a sine 
wave and Gaussian noise with a signal-to-noise ratio that 
decreases from left to right (Fig. 3c). As a result the conti-
nuity of the diagonal lines decreases to the right, as do both 
the DET and the RR values. The synthetic data in the fourth 
example investigated comprised a composite signal from two 
sine waves with distinct trends in their frequencies (Fig. 3d). 
The distances between diagonal lines decrease as a result of 
increasing signal compression with time. The convergence 
of the lines and their degree of curvature depend on the 
function describing the signal compression. The increase in 
frequency with time results in reductions in the DET because 
the higher-frequency cycles seen on the right of the plot are 
no longer adequately resolved. Recurrence points in between 
diagonal lines are scarce due to the fact that the time delay τ 
chosen for the plot no longer suits the increased frequency. 
A higher sampling rate eliminates this phenomenon.

The results of the fifth example revealed how RPs and 
RQAs respond to an abrupt transition from a composite 
signal consisting of two sine waves (T1 = 300, T2 = 50) to 
a signal with only one sine wave (T3 = 60) (Fig. 3e). As 
before, the oscillations of the signal produce diagonal lines 
in the RP, with horizontal distances between the lines corre-
sponding to the periods of the signals. Two sets of diagonal 
lines in the lower-left corner of the RP correspond to the two 
frequencies of the sine waves, while there is only one set of 
diagonals in the upper right corner. During the transition we 
also let the amplitude of the signal decrease. Both the change 
from two sine waves to a single sine wave and the decrease 
in variance during the transition are clearly visible in the RP, 
as well as in the RQA measures. The single period oscilla-
tion has more recurrences than the two-period signal and 
therefore a higher RR, peaking at the transition because the 
lower signal variance produces a blocky pattern in the RP.

Because of the two different time scales of the two-period 
signal it has a more complicated phase-space trajectory on 
the left-hand side of the RP than the one-period signal. 

Trajectory segments are therefore only parallel at particular 
times, resulting in long diagonals for the long period signal 
(because T2 is a harmonic of T1, as in the second example 
above), but interrupted diagonals (and lines that are curved 
at times) for the short period signal. This results in slightly 
lower DET values before the transition to a one-period sig-
nal than after it. An effect similar to that seen in our third 
example is observed in the interval between t = –1200 and 
t = –1050 (where the actual transition from a two period sig-
nal to a one period signal occurs), which is why the DET 
decreases here before again increasing due to the blocky 
pattern in the RP, which also causes the RR to increase, as 
mentioned previously.

The synthetic data in the sixth example investigated was 
of Gaussian noise with a stepwise transition in the mean 
and a change in the autocorrelation prior to this transition 
(Fig. 3f). It is important to note that neither the mean nor the 
variances change in the pre-transition section, so this change 
cannot be recognized using conventional methods. The two 
blocky features in the RP before and after the transition look 
very similar to those in the RP of the first example above. 
However, the interval between − 1200 and − 1000 clearly 
shows distinctive patterns within the RP that are different 
from those typically occurring in RPs of pure noise. White 
vertical lines help to define blocky features that represent 
episodes with different dynamics. The RQA characteristics 
look similar to those in the Gaussian noise example except 
for a section with higher autocorrelation, which is reflected 
in the higher density of black dots, clear diagonal lines, and 
a change in the dynamics of the system. This fact can be 
used to detect such a change in autocorrelation as a precur-
sor to a tipping point and to ultimately predict the tipping 
point itself.

4  Results

We have used recurrence plots (RPs), complemented by a 
recurrence quantification analysis (RQA), to characterize 
past climate change in the Chew Bahir basin over approxi-
mately the last 45 kyrs. We selected the RR and DET meas-
ures because they describe fundamental properties of the 
complex Chew Bahir system dynamics, while keeping the 
theoretical complexity within reasonable limits to facilitate 
interpretations. The RP and RQA approach was applied to 
the record of K concentrations in the sediment cores (fol-
lowing DTW-based alignment and linear unmixing using 
a PCA), which has previously been shown to be a reliable 
proxy for aridity in the Chew Bahir basin (Foerster et al. 
2012, 2018; Trauth et al. 2015, 2018). The K record was 
embedded in phase spaces with dimensions varying from 
m = 5 to m = 6 and temporal distances varying from τ = 3 
to τ = 10 data points, equivalent to 3 × 10 yrs = 30 yrs and 
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10 × 10 yrs = 100 yrs, where 10 yrs is the resolution of the 
time series following interpolation. The RPs were calculated 
using a Euclidean norm, a Theiler window of thei = 1 data 
point, a minimum length of lmin = 3 for the lines used to 
calculate DET, and an adaptive threshold value e rather than 
a fixed value. The size w and the step size ws of the moving 
window depend on the period of time investigated and the 
number of data points contained therein.

In order to compare different climatic conditions we first 
looked at the RP of the complete, unfiltered time series doc-
umenting the long-term variations in the Chew Bahir system 
(Fig. 4). This RP reveals a clear division of the time series 
into sections of different lengths, indicated by square blocky 
features in the RP separated by white vertical lines (see also 
Fig. 3b, e, f). The first cluster of recurrence points occurs 
between 45.35 and 37 kyr BP, comprising both connected 
and isolated points. This interval is characterized by both 
vertical and horizontal lines, representing episodes of stabil-
ity (both wet and dry) interrupted by a series of extremely 
wet events, indicated by white vertical lines in the RP. We 
observe low but gradually increasing DET values in this 
episode, suggesting increasing predictability in the system.

A second, very obvious, cluster of recurrence points 
occurs between 37 and 20 kyr BP, which includes the time 
intervals in which the Dansgaard-Oeschger (DO) cycles 
(~ 110–23 kyr BP), the Heinrich Events (HE, ~ 60–12 kyr 
BP) and the Last Glacial Maximum (LGM, 23.5–18 kyr BP) 
affected the climate further to the north. The RQA reveals 
consistently high DET values until about 15 kyr BP, exceed-
ing those of the previously described cluster and suggesting 
a much higher predictability in the system during that time. 
The recurrence plot for the time interval from 20 to 0 kyr 
BP includes the African Humid Period (AHP, ~ 15–5 kyr 
BP). This interval is characterized by three large clusters 
of recurrence points, interrupted by both white vertical and 
horizontal lines, together with fluctuating RR values and a 
long-term trend towards lower DET values. The white verti-
cal lines again help to define blocky features marking epi-
sodes with different dynamics.

To analyze the dynamics of these individual sections, the 
time series was high-pass filtered with a cutoff frequency 
of 0.001 yrs−1 in order to remove any long-term trends 
(Figs. 5, 6, 7). An RP was constructed and an RQA per-
formed using a sliding window (w = 100, ws = 10) over the 

Fig. 4  Recurrence plot (RP) and recurrence quantification analy-
sis (RQA) measures of the complete record (–  45,358  to  0 yrs BP) 
from the Chew Bahir basin: time series (upper panel), the recurrence 
plot (middle panel) and the RQA measures (lower panel) of mov-

ing windows determined either by a calculating the RQA measures 
for windows moving along a single (global) RP and b by calculating 
individual RPs for windows moving along the entire time series. See 
previous figure for the meaning of the abbreviations
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entire RP, assuming stationarity within the intervals. The 
interval between 35 and 20 kyr BP is remarkable for numer-
ous short, slightly curved diagonal lines, suggesting a cyclic 
recurrence of wetter episodes in the Chew Bahir basin within 
a period that had a generally dry climate (Fig. 5). The oscil-
lating climatic conditions are reflected in higher DET values, 
while the low RR values suggest a low probability of recur-
ring states occurring within the system over a particular time 
period (Marwan et al. 2007).

The recurrence plot for the time interval from 20 to 1 kyr 
BP includes the AHP (~ 15–5 kyr BP) (Fig. 6). As before, 
using moving windows with a length of w = 100 (1000 yrs) 
and a step size of ws = 10 (100 yrs) reveals a series of blocky 
recurrence point patterns, interrupted by a series of white 
vertical lines. These patterns suggest distinct episodes of 
relative stability, both wet and dry, separated by abrupt tran-
sitions at ~ 13.2 kyr BP, ~ 11.8 kyr BP, ~ 7.5 kyr BP, ~ 5.2 
kyr BP, and ~ 4.5 kyr BP. The overall appearance of the RP 
(and of the time series itself) reflects dynamics character-
ized by a period of higher variability followed by a period 
of low variability between 9.5 and 8 kyr BP, and dynamics 

dominated by a high-frequency cyclicity between 8 and 1 
kyr BP, which is roughly similar to the fifth synthetic exam-
ple above (see Fig. 3e). In addition to these patterns, the 
RP for the interval from 20 to 1 kyr BP also shows numer-
ous short diagonal lines, suggesting a weak cyclicity. The 
diagonal lines, however, are very different from each other in 
width and in the number present. The RR values are very low 
except for an interval of relative stability between 10 and 8 
kyr BP, which has a high probability of recurring states. The 
DET values document a general trend towards lower predict-
ability in the system dynamics, but this decline exhibits a 
very complicated and somewhat cyclical pattern, rather than 
a simple linear trend.

In contrast to the RP for the first half of the time inter-
val from 20 to 1 kyr BP, the RP for the period between 8 
and 1 kyr BP contains numerous spotty diagonals follow-
ing two blocky features at about 9 and 7 kyr BP (Fig. 7). 
These blocky features indicate a slowing-down of the system 
dynamics and therefore a higher predictability, as also indi-
cated by high DET values (similar to the synthetic example 

Fig. 5  Recurrence plot (RP) and recurrence quantification analysis 
(RQA) measures for the Chew Bahir basin covering of the time inter-
val between 35 and 20 kyr BP: time series (upper panel), the recur-
rence plot (middle panel) and the RQA measures (lower panel) of 
moving windows determined by calculating individual RPs for win-
dows moving along the entire time series. See previous figure for the 
meaning of the abbreviations

Fig. 6  Recurrence plot (RP) and recurrence quantification analysis 
(RQA) measures for the Chew Bahir basin covering of the time inter-
val between 20 and 1 kyr BP: time series (upper panel), the recur-
rence plot (middle panel) and the RQA measures (lower panel) of 
moving windows determined by calculating individual RPs for win-
dows moving along the entire time series. See previous figure for the 
meaning of the abbreviations
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shown in Fig. 3e, f). The RR values are very low, except 
for one interval of relative stability. The distinctive diago-
nal lines after about 6.8 kyr BP suggest a marked cyclic 

recurrence of droughts approximately every 100–150 yrs, 
which lasted until stable conditions returned following the 
termination of the AHP. The relatively low DET values 
(~ 0.5) and therefore low predictability during this inter-
val, however, reflects the discontinuity in the diagonal lines 
and the dispersion of cycles (i.e. the variability in distances 
between the diagonal lines, similar to the synthetic example 
shown in Fig. 3c, d), suggesting that a stochastic process is 
superimposed on the cyclicity. The DET values during the 
wet-dry transition at the end of the AHP remain moderately 
high in the high-pass filtered time series until stable dry con-
ditions are established. The interval between 4 and 2 kyr BP 
with very low DET values (< 0.5) reflects a predominantly 
stochastic process.

5  Discussion

A section-by-section analysis of the RPs of the time series 
together with an examination of the temporal course of 
the RQA measures allows us to identify and eventually 
classify different types of variability and transitions 
(Table 1). The classification of variability and transitions 
can help to improve our understanding of the response 
of the biosphere (including humans) to climate changes 
(e.g. Donges et al. 2011; Foerster et al. 2015, 2018; Trauth 
et al. 2015, 2018). There is a general consensus amongst 
anthropologists that both long-term trends and severe, 
abrupt changes resulted in significant changes to the social 
and socio-economic behavior of early humans (Gatto and 
Zerboni 2015; Clark et al. 2016; Lahr 2016; Flohr et al. 
2016). The response to a changing habitat, both subtle or 
dramatic, accompanied by changes in essential resources 
such as food and water, could be either expansion, decease, 

Fig. 7  Recurrence plot (RP) and recurrence quantification analysis 
(RQA) measures for the Chew Bahir basin of the time interval between 
9 and 1 kyr BP: time series (upper panel), the recurrence plot (middle 
panel) and the RQA measures (lower panel) of moving windows deter-
mined by calculating individual RPs for windows moving along the 
time series. See previous figure for the meaning of the abbreviations

Table 1  Compilation of the most important time periods in the Chew Bahir sediment cores, classified according to main climate, environmental 
conditions, recurrence plot appearance, recurrence rate RR, determinism DET, occurrence of extreme events and human habitat

Age (kyr) 45–37 37–20 20–16 16–10 10–8 8–4 4–now

Main climate Intermediate Dry Intermediate Wet, with YD 
dry event

Wet Wet Dry

Environmental 
conditions

Wet–dry trend 1500 yrs cycles Long-term sinusoidal dry-wet-dry trend due to 20 
kyr precession cycle

Stable with 160 
yrs cycles

Stable, wet at the 
end

RP appearance Irregular Regular Regular Irregular Regular regular Regular
Recurrence rate 

(RR)
Low Intermediate Intermediate High, with low 

YD event
High high Intermediate

Determinism 
(DET)

Low High High Intermediate Intermediate intermediate Low

Extreme events Random wet Wet–dry None YD dry event Possibly 8.2 kyr 
dry event

~14 dry events, 
20–80 yrs 
long

Very arid, pos-
sibly wet after 2 
kyr BP

Human habitat Extreme radom 
wet events

Wet–dry cycles Stable Threshold Stable, except 
for 8.2 kyr 
event

Threshold and 
cycles

Aridity
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migration, or adaption (e.g. Foerster et al. 2015, 2018). 
In this process, the nature of the adaptation is a function 
of the adaptability and the time scale (e.g. Foerster et al. 
2015, 2018). Of particular interest is how the adaptability 
of humans has enabled them to deal with such diverse 
and profound environmental changes since 45 kyrs BP 
through behavioral changes, and what level of environ-
mental change met the limit of resilience (e.g. Marshall 
and Hildebrand 2002; Foerster et al. 2015, 2018; Trauth 
et al. 2015, 2018). Furthermore, the different types of vari-
ability and transitions, and the corresponding response 
of the biosphere (including humans), will help to detect 
similar types of changes in the long (~ 280 m) sediment 
cores recently collected in the Chew Bahir basin within the 
Hominin Sites and Paleolakes Drilling Project (HSPDP) 
and to investigate whether or not these types are typical 
for and exclusive to the basin, as well as the response of 
the biosphere to these changes.

Our analysis clearly shows a number of different types 
of variability in the K record, separated by either gradual or 
rapid transitions. The first type of variability occurs between 
the beginning of the record (45 kyr BP) and about 35 kyr BP. 
Within this interval we observe a relatively low but gradu-
ally increasing predictability during times of relative stabil-
ity (both wet and dry), interrupted by a series of extremely 
wet events. There is no cyclicity in this interval but rather 
an irregular pattern of different types of variability. Both the 
extreme events and the rapid transitions between episodes 
of relative (wet and dry) stability will certainly have had an 
impact on humans in the area, leaving them with a range 
of possible responses (adapt, migrate, starve) to a dramati-
cally changing environment (e.g. Foerster et al. 2015, 2018; 
Trauth et al. 2015, 2018).

The second type of variability occurs between 35 and 20 
kyr BP, with slightly different dynamics before and after 
25 kyr BP. This interval is characterized by a millennial-
scale climate variations during the last glacial cycle, which 
includes the time intervals in which the Dansgaard–Oeschger 
(DO) cycles (~ 110–23 kyr BP), the Heinrich Events (HE, 
~ 60–12 kyr BP) and the Last Glacial Maximum (LGM, 
23.5–18 kyr BP) affected the climate further to the north. 
This millennial-scale climate fluctuations are cyclic with 
minor variations in the period, as indicated by the slight 
curvature of the diagonals in the RP (see synthetic example 
shown in Fig. 3d), although this curvature could also suggest 
inaccuracies in the age model, rather than real variations in 
the cyclicity. The pronounced cyclicity is reflected in the 
RP and in the RQA measures by a very high predictability, 
but on time scales that are certainly not relevant to humans, 
because it is orders of magnitude longer than the lifetime of 
individual humans. However, the transitions between the dry 
and wet episodes were very rapid which has probably caused 
significant stress to human populations.

The third type of variability occurs between 16 and 10 
kyr BP, including parts of the AHP (~ 15–5 kyr BP). During 
this interval we find episodes of relative stability, both wet 
and dry, separated by abrupt transitions at ~ 13.2 kyr BP 
and ~ 11.8 kyr BP. There is also evidence of a weak cyclic-
ity with a general (but complicated) trend towards lower 
predictability. The onset of the AHP in the Chew Bahir area 
was relatively rapid (covering ~ 240 yrs, Trauth et al. 2018), 
which is in agreement with similar records from elsewhere, 
as a result of large-scale deglacial forcings (i.e. changes of 
Atlantic sea-surface temperatures causing meridional shifts 
of the African easterly jet and the monsoon belt, and changes 
in the atmospheric concentration of greenhouse gases caus-
ing changes in atmospheric temperatures, Shanahan et al. 
2015). The onset and termination of the dry episode during 
the Younger Dryas (YD) were also rapid transitions (over 
less than 100 yrs, Trauth et al. 2018), again very similar to 
other sites in N and NE Africa (e.g. Shanahan et al. 2015; 
Trauth et al. 2018).

The climate variability within the AHP and the long-term 
transition that it represents clearly affected human communi-
ties and has fueled massive changes in the population size 
and structure such as the profound socio-economic trans-
formations that have been documented for N and NE Africa 
(e.g. Marshall and Hildebrand 2002; Brooks 2006; Clark 
et al. 2016; Lahr 2016; Marchant et al. 2018). A well-studied 
example is provided by demographic reconstructions that 
have been made for the Saharan Holocene. These reconstruc-
tions show a temporal delay between the onset of humid 
conditions (based on sedimentary dust flux records) and 
human reoccupation of former desert areas, with associated 
societal changes seen as a response to the environmental 
changes (Manning and Timpson 2014; Gatto and Zerboni 
2015; Clark et al. 2016).

Having adapted to the wet climate of the AHP, humans 
certainly had to cope with the very rapid transition towards 
extreme dryness at the onset of the YD dry episode. Highly 
mobile groups of hunter-gatherers responded to short-term 
arid pulses by vertical migration as documented by the set-
tlement patterns in what are assumed to have been refuge 
areas such as the SW Ethiopian Highlands (e.g. Foerster 
et al. 2015). The YD is followed by a short interval of rela-
tive stability between 10 and 8 kyr BP, followed by a dry 
episode centered around 7.5 kyr BP. This event, which is 
synchronous with the prolonged pause in the Green Sahara 
conditions 8 kyrs ago (within the uncertainty of our age 
model, see Trauth et al. 2015), coincides with a temporary 
abandonment of sites previously occupied by Neolithic 
humans (Tierney et al. 2017).

The fourth type of variability occurs between 8 and 4 kyr 
BP. This interval includes the transition from the humid cli-
mate of the AHP to the subsequent dry climate. The termi-
nation of the AHP was a result of weaker, insolation-driven 
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forcing (and hence more complex and time-transgressive 
responses) than that which produced the DO cycles, the 
onset of the AHP, or the onset/termination of the YD dry 
episode (Shanahan et al. 2015). This was nevertheless com-
pared to those produced by more subtle changes in orbital 
forcing, but certainly not abrupt compared to human time 
scales, i.e. human lifespan or a little more, as it continued for 
approximately 990 years (Trauth et al. 2018). The termina-
tion of the AHP occurred at different times in other areas, 
suggesting a strong influence of Indian Ocean SSTs on the 
East African climate (Shanahan et al. 2015). Most of the 
transition at the end of the AHP is characterized by wet con-
ditions, interrupted by at ~ 14 dry events that have recurred 
every 160 ± 40 years and lasted 20–80 years (Trauth et al. 
2015). Compared to the low-frequency cyclicity of climate 
variability during the DO cycles, this type of cyclicity occurs 
on time scales equivalent to a few human generations. In 
other words, it is very likely (albeit speculative) that people 
were conscious of these changes and adapted their lifestyles 
to the consequent changes in water and food availability 
(Marshall and Hildebrand 2002; Clark et al. 2016).

An interesting aspect of this variability is the nature of 
the transitions close to the threshold in the system response, 
and how the environment switches from one stable mode to 
another. A rapid change of climate in response to a relatively 
modest change in forcing appears to be typical of tipping 
points in complex systems such as the Chew Bahir basin 
(Lenton et al. 2008; Ditlevsen and Johnsen 2010). If this 
is the case then the 14 dry events at the end of the AHP 
could represent precursors of an imminent tipping point that 
would have allowed a prediction of climate change in the 
Chew Bahir basin at that time. A deeper analysis of our 
data is however required to understand whether the wet-dry 
climate transition in the area was due to a saddle-node bifur-
cation in the structural stability of the climate, or whether it 
was induced by a stochastic fluctuation (Lenton et al. 2008; 
Ditlevsen and Johnsen 2010). The time interval after the 
termination of the AHP (< 4 kyr BP) leads into present-day 
conditions in the Chew Bahir basin.

6  Conclusions

We have used a recurrence quantification analysis (RQA) on 
environmental records from short cores collected during a 
pilot study within the Chew Bahir basin to characterize the 
Chew Bahir palaeolake as a dynamical system composed of 
interacting components. The different types of variability 
and transitions in these records were classified to improve 
our understanding of the response of the biosphere to cli-
mate change, and especially the response of humans in the 
area. This classification and the corresponding responses of 
the biosphere will enable the detection of similar types of 

variability and transitions in the long (~ 280 m) ICDP core 
collected in the Chew Bahir basin within the Hominin Sites 
and Paleolakes Drilling Project (HSPDP) and allow us to 
investigate whether or not these types are typical for and 
exclusive to the basin.
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