
Eur. Phys. J. Spec. Top. (2023) 232:151–159
https://doi.org/10.1140/epjs/s11734-022-00684-6

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Recurrence analysis discriminates martial art movement
patterns
B. G. Straiotto1,a, N. Marwan2, D. C. James1, and P. J. Seeley1

1 School of Applied Sciences, London South Bank University, London SE1 0AA, UK
2 Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, 14412 Potsdam, Germany

Received 3 June 2022 / Accepted 27 September 2022 / Published online 10 October 2022
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2022

Abstract We aimed to determine whether the combined application of principal components and recur-
rence quantification analyses might serve to discriminate both spatial and temporal differences between
backwards-forwards movement patterns. Elite (n = 9) and nonelite (n = 9) martial artists were recorded
using motion capture techniques and features of whole-body movement defined at the segment level were
investigated by principal components analysis. For both groups of subjects, four movement components
explained > 90% of the variability in the data. Given our interest in temporal patterning, the time series
derived from scores for each of the principal components were subsequently subjected to recurrence quan-
tification analysis, participant by participant. For the first movement component, statistically significant
differences between groups were detected for the recurrence measure determinism (p < 0.05). For the
third movement component, statistically significant differences were detected for the recurrence measures
laminarity and maxline (p < 0.01). Hence use of a combination of principal components and recurrence
techniques revealed quantitative differences between movements of the two subject groups, differences that
may represent more skilled motor control in the elite group related to the functional importance of these
apparently simple movement patterns.

Abbreviations

AP Anterior–posterior
CoM Centre of mass
%DET % Determinism
DIS Distributed
ENT Entropy
%LAM % Laminarity
MAXL Maxline
ML Medio-lateral
PCA Principal components analysis
PM Principal movement
RP Recurrence plot
RQA Recurrence quantification analysis
SEM Standard error in the mean
V Vertical
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1 Introduction

Human movements are the consequence of many neu-
ral, muscular and skeletal components working together
to achieve the desired outcome. Whilst a typical study
may involve an investigation of body kinematics, the
aim ultimately is to understand the mechanisms under-
pinning a movement and the neuromuscular strategies
and synergies that serve to express the spatial and
temporal features of intersegment coordination. The
essence of some movements may be captured by the use
of simple kinematic techniques applied to, for example,
a single limb; in other cases, investigation of the entire
set of body segments is required.

Given our interest in whole-body coordination in
the movements of martial artists, we adopted the
approaches of previous researchers [1–3] for this study
and applied principal components analysis (PCA) to
the centre of mass coordinates of the set of body
segments. This method has conceptual and practical
advantages: it reduces a high-dimensional dataset to a
lower-dimensional set of independent components that
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is taken (on the basis of the extent of variation) to rep-
resent the more important features of the data struc-
ture [4]. Whilst the starting data variables are nor-
mally highly correlated, the derived principal compo-
nents are independent of each other. The contributions
of the original variables to a given principal compo-
nent are represented by their derived coefficients. In
our case, these coefficients were related to the centre of
mass body segment coordinates, and the set of coeffi-
cients indicated the forms and extents of collaboration
amongst body segments over the entire time course of
a particular principal movement.

It appeared quite unsatisfactory that the tempo-
ral dynamics of investigated movements had not been
accounted for in deriving coefficient values, though time
courses of the derived components were contained in the
corresponding unidimensional scores [3]. We, therefore,
investigated the temporal structures of these scores by
plotting and quantification of recurrences [5].

The recurrence method is a nonlinear approach
to analysis that involves unfolding time series data
within a multidimensional manifold [6]. It has provided
insights into quite a variety of systems and situations
from variations in body posture to ecological and cli-
mate transitions to metal fracture [6–16]. The steps in
recurrence analysis are represented in Fig. 1d–g. Time-
dependent signals that have been re-represented in mul-
tidimensional space are characterized as the pattern
of revisits of the movement trajectory to sub-regions
of that space. The revisits are known as recurrences
and are a fundamental property of dynamical systems
[5, 17]. The fundamental equation for the recurrence
matrix is provided below and described in detail in Ref.
[5]:

Ri,j = θ(ε − ‖−→xi − −→xj‖), i, j = 1, . . . N, (1)

where R is the recurrence matrix, θ is the Heaviside
function, ε is a predefined threshold distance, ‖•‖ is a
norm, −→xi and −→xj are the measured states (represented
by m-dimensional state vectors) of the system at times
i and j, and N is the number of observed states. Recur-
rence quantification analysis (RQA) produces a series
of measures quantifying the small-scale graphical pat-
terns in a recurrence plot (RP), thereby allowing in-
depth description of (in our case) movement patterns,
both generally and in relation to athletic performance
(Fig. 1f and g) [5, 17]. The RQA measures are presented
in Sect. 2 and reviewed in Sect. 4.

Analysis of movement patterns of taekwondo players
has been the subject of various studies aimed at inform-
ing coaches on technique development and player per-
formance in competition. Researchers have, for exam-
ple, investigated intra-limb coordination [18–20], pat-
terns of kicking [21] and impact force characteristics for
the most common kicks [22, 23]. We extended the inves-
tigation of taekwondo movement to the backwards-
forwards movements that are the basis for the develop-
ment of defensive and attacking actions by a player. We
have previously carried out simple kinematic analyses
of backwards-forwards movements and have found no

differences between nonelite and elite groups of players.
We, therefore, applied the alternative and more elabo-
rate analytical approach presented in this report (PCA
followed by RQA) to investigate potential differences in
these movements for players of nonelite and elite sta-
tus. The recurrence method was applied to determine
differences in the temporal organization of PCA data.
In summary, we asked whether an alternative form of
data analysis might discriminate taekwando movement
patterns by skill level with the aims of assisting coach-
ing practice and relating taekwando coordination to
its underlying neuromuscular control. We postulated
differences in coordination patterns between elite and
nonelite taekwondo players. Specifically, we hypothe-
sised that RQA measures of principal movements would
reveal differences in the temporal structure of coordi-
nation between players of different skill level.

2 Materials and methods

2.1 Participants and experimental protocol

Eighteen elite and nonelite taekwondo players were
recruited for this study (mean ± standard error in the
mean (SEM); elite (8 males and 1 female; age = 27.0
± 0.4 y, mass = 74 ± 1 kg, height = 1.7 ± 0.1 m)
and nonelite (9 males; age = 35.0 ± 0.1 y, mass = 86
± 3 kg, height = 1.8 ± 0.1 m). The elite taekwondo
players had competed at a minimum of A-class inter-
national and national levels for at least eight years.
The nonelite taekwondo players practised taekwondo
at a recreational level and had a maximum of three
years’ experience. The experimental protocol was given
approval by London South Bank University Research
Ethics Committee, and all players provided written
informed consent prior to taking part in the study.

The stance used during backwards-forwards move-
ment is called fixed stance. The legs are split one and a
half shoulder widths apart, and the body is turned side-
on to the opponent. The front foot is aligned with the
player-opponent axis while the back foot is twisted to
be approximately perpendicular to that axis. The body
weight is shared evenly by the two legs (Fig. 1a). The
players performed individualized warm-ups for 15 min.
Following this, after a brief rest period, players per-
formed the simplest of backwards-forwards movements
over a two-minute period from visual commands, mim-
icking a competition situation.

2.2 Data collection and analysis

To determine the movement kinematics of the tae-
kwondo player during backwards-forwards movements
12-mm diameter retroreflective markers were placed
on the skin over anatomical landmarks (Table A1,
Appendix A) and the 3D coordinates of these markers
were tracked using a motion capture system (Oqus 3-
Series, Qualisys AB, Gothenburg, Sweden). Each body
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Fig. 1 Graphical presentation of the methods applied to backwards-forwards movement data, illustrated for a single player.
a Backwards-forwards movement centre of mass displacements obtained from an articulated multi-segment system. b Cal-
culation of PCA on the centre of mass displacements of 15 rigid segments. c A principal movement (PM) describing the
behaviour of the whole body (PM2ML). d State space reconstruction in 3D of the structure of a dynamical system for a
single PM. e Calculation of the radius of the neighbourhood in which recurrent states occur. f Recurrence plot of one of
the PMs. g RQA measures used in this study: determinism (%DET), entropy (ENT), laminarity (%LAM) and maxline
(MAXL)
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segment (15 in total; Table B1, Appendix B) was mod-
elled in line with previously reported standards for
tracking the upper [24] and lower [25] extremities, with
slight modifications to suit this research [20]. Marker
trajectories were collected at 300 Hz. The data analysis
for backwards-forwards movement had four main steps:
(i) prescribing an articulated multi-segment system to
obtain centres of mass of each of the body segments
(Fig. 1a; Appendix B); (ii) principal components anal-
ysis (PCA) on the centre of mass coordinates of these
segments to identify the main movement patterns for
backwards-forwards movements (Fig. 1b and c); (iii)
examination of temporal variability using recurrence
techniques (RPs and RQA) by analysing the time series
formed by the principal component scores (Fig. 1d–g);
(iv) surrogate testing used to assess whether derived
recurrence quantification measures were representative
of bona fide nonlinear dynamics in the principal com-
ponent signals or the product of random noise.

Prior to processing for PCA, the first and last 10 s
of the centre of mass data were removed to eliminate
the influence of transient motions. The submitted data
length was 30,000 data points (100 s) for each player.
Segment masses were quantified as a 30,000 × 45 matrix
(frame [rows] × centre of mass [columns]). Each row of
the matrix was interpreted as a 45-dimensional pos-
ture vector representing the centres of mass at a given
point in time. The 45-dimensions represent medio-
lateral (ML), antero-posterior (AP) and vertical (V)
directions for each of the 15 segments. Representations
were cut off after the first four principal components
since the summed eigenvalues reached a conventional
standard of at least 90% of total variance [2] for both
groups. MATLAB software was used for PCA calcula-
tions (MATLAB 2013a and Statistics Toolbox 8.1, The
MathWorks Inc, Natick, MA, USA). The outputs from
PCA are referred to as one-dimensional principal move-
ments (PMs).

2.3 Data processing for recurrence plotting
and analysis

The time series obtained by projecting the data onto
the intrapersonal principal components were subjected
to recurrence plot and recurrence quantification analy-
sis (Fig. 1d–g). As the name suggests, both recurrence
plotting and analysis seek understanding of the tempo-
ral structure of a time series in terms of recurring pat-
terns in the data. The data are not, however, examined
in their original dimension, rather they are “unfolded”
into multiple dimensions. The first step in the process
is the selection of a time scale for the analysis (τ), the
second step is a derivation of the number of dimensions
to be employed (m) and the final step is the setting of
a distance criterion (ε, in m dimensions) for the revisit-
ing (i.e. recurrence) of a region of phase space along the
time-dependent data trajectory. The procedures have
been described in detail in Refs. [5, 17].

A time delay of τ = 7 was taken as the time of the first
local minimum of the mutual average information func-
tion for the time series [26]. The value for the embed-
ding dimension for recurrence analysis was set to 5
according to the false nearest neighbours method [17]. A
threshold (ε) value of 10% of the maximum phase space
diameter and the Euclidean norm were employed, these
being consistent with previous researches using recur-
rence analysis to evaluate human movement [6, 27–29].

A windowing technique was used to verify the con-
sistency of parameter estimation and to detect any
changes and transitions in the time series [30]. The data
were sectioned in large windows (10,000 points), each
33 s long. Adjacent windows were offset by 5000 points
yielding a 50% overlap. Five windows were used for the
recurrence plot and RQA calculations, which employed
the Cross Recurrence Plot Toolbox for MATLAB [31].

RQA produces a series of measures of complexity
that both quantify the small-scale graphical patterns
in an RP (Fig. 1f and g) [5, 17] and provide insight
into the dynamical features of a time series. The mea-
sures used in this study were as follows. (i) Determin-
ism (%DET) is a measure of the predictability of a data
series: higher percentage values indicating higher pre-
dictability. (ii) Entropy (ENT) is one quantification of
the degree of regular/irregular patterning (the orderli-
ness) in a data series, i.e. higher ENT values are associ-
ated with less regular patterns (at least when consider-
ing non-periodic signals, see Ref. [32]. (iii) Laminarity
(%LAM) gives a measure of states of low variation and
persistence (pauses, breaks) in a time series, i.e. %LAM
increases with the incidence of states of low variation
or high persistence. (iv) Maxline (MAXL) gives a mea-
sure of the stability of a system, higher values meaning
higher stability or longer persistence.

The variation of these measures was tested for statis-
tical significance by a surrogate test: (i) Fourier trans-
formation of the signal; (ii) randomization of the trans-
formed phase values (while amplitude values remained
constant); and (iii) inverse Fourier transformation [33].
The null hypothesis for this statistical test assumes
that the time series was the result of a linear Gaussian
stochastic process. The hypothesis test was carried out
by computing 150 surrogates on the PM score followed
by calculation of %DET, MAXL, ENT and %LAM val-
ues for each of the surrogate time series. These were
then compared statistically to their original counter-
parts. The null hypothesis was rejected at a level of
significance of α = 0.01 as proposed by Myers [34]. The
RQA measures derived from the original data were sig-
nificantly different (p < 0.01) from those of the surro-
gates (Fig. 2), which supports the validity of reporting
them as nonlinear measures of the principal movement
time series.

2.4 Statistical analysis

SPSS software (version 21; SPSS Inc, Chicago, IL,
USA) was used for the calculation of all statistics.
The eigenvalues for the first four principal movements
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Fig. 2 Outcomes of surrogation analysis for a single PM and a single player. The open circles are surrogate values of
%DET (a), MAXL (b), ENT (c) and %LAM (d). The solid circles represent the original data. The solid black lines indicate
the 99% significance border of the rank order statistics. The RQA measurements for the original data were significantly
different from those of the surrogates (p < 0.01)

(PMs) were normally distributed for both elite and
nonelite groups as assessed by Kolmogorov–Smirnov
tests (all p > 0.05) and there was homogeneity of vari-
ance as evaluated by Levene’s test (all p > 0.05). Inde-
pendent t-tests were therefore used to determine the
significance of differences between elite and nonelite
players. Kolmogorov–Smirnov tests showed that the
RQA measurements did not fit the normality of distri-
bution (p < 0.05). Therefore, data values were square
root transformed and independent t-tests were then
carried out to determine the significance of differ-
ences between elite and nonelite athletes. The window-
ing technique served to indicate that RQA measure-
ment values were approximately constant over the trial
period (i.e., there was no evidence of player fatigue) so
the average of all windows (n = 5) for each RQA mea-
surement was used in testing for differences between
elite and nonelite groups. The significance level was set
at α = 0.05.

3 Results

Table 1 reports the eigenvalues (mean ± SEM) for the
backwards-forwards movement task. The contribution
of the first component to overall variability was less for
elite players as compared with nonelite (37 ± 1% versus
46 ± 4%, respectively) with greater elite contributions
to the second to fourth components. The only signifi-
cant difference between elite and nonelite athletes was
found for the third component (19 ± 2% versus 16 ±
2%; p < 0.01).

The eigenvector coefficients shown in Fig. 3 are
arranged by group and provide information about the
extent to which individual coordinates for body seg-
ment masses contribute to the principal movements.
Qualitatively, and in contrast to eigenvalue results,
there are notable differences between coefficient val-
ues for elite and nonelite players. Data are presented
for antero-posterior (AP), medio-lateral (ML) and ver-
tical (V) axes of segment displacement. To represent
something of the character of each of the principal
movements we have named them after elite patterns
as: PM1AP-V, PM2ML, PM3AP+V and PM4DIS (dis-
tributed), “-”and “+” indicating the relative signs of
AP and V coordinate contributions. For PM1AP-V
coefficients, movement along the AP axis is the main
contributor for elite taekwondo performance. In con-
trast, nonelite backwards-forwards movement perfor-
mance is characterized less for the AP axis in favour of
greater vertical movement. While ML coefficients are
differentiated across body segments for elite players,
the corresponding components for nonelite are hardly
differentiated. The PM2ML coefficient profiles for elite
and nonelite taekwondo players are quite similar, with
the predominant movement occurring along the ML
axis.

For PM3AP+V coefficients, both groups of play-
ers make use of movement in all three directions and
magnitudes are roughly comparable, though less so for
V in the elite group. However, nonelite demonstrate
greater differentiation in movement in all three direc-
tions across body segments, particularly in the vertical
direction. Notable differences in PM4DIS coefficients
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Table 1 Eigenvalues of the first four principal movements for backwards-forwards movements for elite and nonelite tae-
kwondo players

First (PM1AP-V) Second (PM2ML) Third (PM3AP+V) Fourth (PM4DIS)

Elite 37 (± 1)* % 27 (± 1)% 19 (± 2)% 7 (± 1)%

Nonelite 46 (± 4)% 25 (± 1)% 16 (± 2)% 6 (± 1)%

p# 0.087 0.91 0.0040 0.36

* ± SEM; #independent samples t-test

Fig. 3 Eigenvector coefficients from PCA for body segment masses for the backwards-forwards movement task. Lightly
shaded, open and darkly shaded bars represent ML, AP and V movements, respectively. Columns represent average values
over the player group; error bars are corresponding ± SEMs. The masses are reported in order from head to foot

are comparatively greater utilisation of ML movement
in the pelvis and thigh for the elite group (Fig. 3).
Overall, the eigenvector coefficients serve to distinguish
in detail between patterns of elite and nonelite move-
ment at the segment level. (Given the principal focus
on recurrence analysis of movements for this paper, a
detailed analysis of eigenvector coefficients is not pre-
sented. Since the group sizes were comparatively small
and some players executed backwards-forwards move-
ments in a markedly idiosyncratic manner a full account
of coefficients would take this paper beyond its space
allocation.)

Examples of backwards-forwards movement recur-
rence plots for each of the four PMs from an elite and
nonelite player are illustrated in Fig. 4. Between players
and PMs, a variety of recurrence plot typologies were
demonstrated. These included homogenous, single iso-
lated, drift and disrupted patterns [5]. For each recur-
rence plot, four RQA measures (%DET, ENT, %LAM
and MAXL) were derived (Fig. 5).

For %DET (percent determinism, Fig. 5a), a signifi-
cant difference between groups was found for PM1AP-
V (p < 0.05). Here, the nonelite athletes demonstrated
greater predictability in operating backwards-forwards

movements (98.4 ± 1.0% vs 97.5 ± 1.0%). For ENT
(entropy, Fig. 5b), there were no significant differences
between groups across the four PMs. A significant dif-
ference between groups was found for %LAM (per-
cent laminarity, Fig. 5c) for PM3AP+V (p < 0.01).
Here, the elite athletes demonstrated greater %LAM in
their backwards-forwards movements (69 ± 8% vs 40 ±
10%). Finally, a significant group difference was found
for MAXL (maxline, Fig. 5d) for PM3AP+V (p < 0.01)
with elite athletes demonstrating greater stability of
backwards-forwards movement (1600 ± 300 points vs
430 ± 320 points).

4 Discussion

We sought and identified group-wide differences in the
spatial and temporal structures of backwards-forwards
movements of our taekwondo martial artists.

The PCA approach has various benefits in that the
entire movement is described without the use of pre-
selected variables [1, 3], rather movement is summarised
as a limited set of sub-movements, and the analysis
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Fig. 4 Recurrence plots from representative elite and nonelite players for the first four PMs for the backwards-forwards
movement task. Norm = Euclid; Delay = 7; Embedding dimension = 5; Threshold = 0.1. The horizontal and vertical axes
represent samples taken at intervals of 3.3 ms

Fig. 5 Results of RQA measurement for the first four PMs for the backwards-forwards movement task for elite (filled
square) and nonelite (open square) taekwondo players. a %DET, b ENT, c %LAM and d MAXL for PM scores averaged
over the five data windows (± SEM). x indicates a significant difference between elite and nonelite values on square-root-
transformed data

has the capacity to access hidden variables inherent to
the movement pattern. The set of PM coefficients pro-
vided valuable information about the degree to which
individual segment centre of mass coordinates con-
tributed to corresponding component movements and
to contrasts between elite and nonelite player groups.
The eigenvalues, however, provided only limited insight
into movement patterns and inter-group comparisons.

To make appropriate use of PCA, it appears impor-
tant to examine the eigenvector coefficients to under-
stand—contextually—the characteristics of each princi-
pal movement. This study has taken a somewhat differ-
ent approach to the application of PCA since previous
work has relied more heavily on eigenvalues and scores
for interpretation [4, 35, 36].
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Whilst PCA produces time series for movement com-
ponents (the scores), it does not access the tempo-
ral structure of the components. For this purpose, we
employed recurrence plots and recurrence quantifica-
tion analysis to identify facets of the movement com-
ponents that describe predictability, uncertainty, states
of stability and low variation. We were, thus, able to
gain insight into the movement patterns in some depth
and identify ways in which the elite and nonelite groups
differed in their execution of backwards-forwards move-
ments. A primary concern in relation to RQA relates
to the source of data variation. That is, is the varia-
tion in a time series deterministic or is it the result of
random noise? To this end we used the Fourier trans-
form surrogates to establish the existence of nonlinear
dynamics underlying our experimental data (Fig. 2).
We confirmed nonlinearity in our data set, leading us
to conclude that the observed player responses do in
fact reflect variation in movement due to neuromuscu-
lar control.

Movements of the elite group for PM1 ante-
rior–posterior and vertical axes were highly predictable
(%DET of 97.5%), though less predictable than those
of the nonelite group, and also more stable (higher
MAXL), representing an alternative dynamics pattern
(higher %LAM) also for PM3 anterior–posterior and
vertical axes. This behaviour is reflected in eigenvec-
tor coefficients for PM3 anterior–posterior and verti-
cal directions (Fig. 3). For the elite taekwondo players
anterior–posterior and vertical movements contributed
strongly to PM3 anterior–posterior and vertical, for
medio-lateral less so. The distribution of coefficient
values across body segments was also more uniform.
In contrast, nonelite players’ coefficient contributions
to anterior–posterior and vertical PM3 were similar
for medio-lateral, anterior–posterior and vertical axes,
though there was greater coefficient variation across the
body than for elites, and values for right and left limbs
were not equivalent. This relates to a lower MAXL value
and greater variation in time (lower %LAM) for PM3
anterior–posterior and vertical axes for nonelite taek-
wondo players.

The PM3 anterior–posterior and vertical results in
particular suggest that elite and nonelite players use
different approaches to manage the task variables. This
can be related to the controlled/uncontrolled manifold
perspective [37]. In this view [37], variables that do not
influence task outcome (the uncontrolled manifold) are
allowed to fluctuate. For example, in relation to work on
shooting, movement of the gun barrel along its axis is
not subject to control but movement perpendicular to
its axis, having a direct influence on the shot outcome, is
tightly controlled [38]. Backwards-forwards movements
are used by a taekwondo player to gauge the distance to
an opponent and to mount and escape attacks. A non-
elite player may use backwards-forwards movements in
a more passive way and be less inclined to arrange their
movements as a springboard for attack or for an active
defence that will involve an immediate counterattack,
i.e. their backwards-forwards movements may be tuned
less to function. The analysis through combined use of

PCA and recurrence analysis allows insights into the
relative importance of controlling or failing to control
particular movement variables.

Whilst statistically significant differences by group
were obtained in relation to some RQA measures
and principal movements, other data trends are wor-
thy of note. For %DET (Fig. 5a), there was a trend
of decreased predictability for anterior–posterior and
vertical for the movement series PM1 to PM4 (dis-
tributed). Entropy values decreased along this series
also (Fig. 5b). Fluidity of movement, as registered by
%LAM, was fairly consistent over principal movements,
except for medio-lateral PM2 for which increased tran-
sitioning was apparent in the movements of both groups
(Fig. 5c). Finally, the stability of movement (MAXL,
Fig. 5d) remained consistent across the series of prin-
cipal movements, except for medio-lateral PM2 where
instability was apparent in the movement of both
groups. Across the set of RQA measurements, medio-
lateral PM2 is distinctive.

Limitations to our study and report are acknowl-
edged. Whilst a body of data was collected under care-
fully controlled conditions, experimentation was mod-
est in scope in that each of the groups had only
nine participants. Comparisons, therefore, had lim-
ited statistical power. Assignment to groups was based
somewhat arbitrarily on taekwondo experience: some
“nonelite” individuals may have executed backwards-
forwards movements in an elite manner despite their
more limited experience. In addition, comparatively
large variation between the movement patterns of play-
ers was evident both from differences in RP patterns
(Fig. 4) and from comparatively large SEM values
(Fig. 5), and this naturally made statistical significance
more difficult to achieve.

We report, according to conventional standards, the
discrimination of movement patterns between our elite
and nonelite groups. There is group-level generality but
also player individuality in the movements recorded. In
some cases, elite variation was greater than nonelite and
in some cases it was less. One can therefore put forward
alternative views, namely that large elite variation was
functional and derived from experience and that large
nonelite variation was a result of lack of control and lack
of experience. Variation in backwards-forwards move-
ments within subject groups may simply be a represen-
tation of the individuality of the solution to a move-
ment “problem”, functional or not. Nevertheless, sta-
tistically significant group-level differences were noted.
A straightforward interpretation is that elite players
have refined these relatively simple movements through
extended training and competition experience. PCA,
through the sets of coefficient values, revealed qualita-
tive differences between elite and nonelite backwards-
forwards movements. The combination of PCA and
RQA revealed quantitative differences in temporal vari-
ation in the principal movements. Given the availability
of motion capture, coordination assessments of individ-
ual athletes may be carried out and these methods may
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be of assistance to coaches in analysing the movements
of their athletes.

Supplementary Information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epjs/s11734-022-00684-6.
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