
Chapter 6
Approximate Recurrence Quantification
Analysis (aRQA) in Code of Best Practice

Stephan Spiegel, David Schultz and Norbert Marwan

Abstract Recurrence quantification analysis (RQA) is a well-known tool for study-

ing nonlinear behavior of dynamical systems, e.g. for finding transitions in climate

data or classifying reading abilities. But the construction of a recurrence plot and

the subsequent quantification of its small and large scale structures is computational

demanding, especially for long time series or data streams with high sample rate. One

way to reduce the time and space complexity of RQA are approximations, which

are sufficient for many data analysis tasks, although they do not guarantee exact

solutions. In earlier work, we proposed how to approximate diagonal line based

RQA measures and showed how these approximations perform in finding transi-

tions for difference equations. The present work aims at extending these approxima-

tions to vertical line based RQA measures and investigating the runtime/accuracy of

our approximate RQA measures on real-life climate data. Our empirical evaluation

shows that the proposed approximate RQA measures achieve tremendous speedups

without losing much of the accuracy.
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114 S. Spiegel et al.

6.1 Introduction

In recent years, recurrence quantification analysis (RQA) has gained popularity in

the time series community [1–3], where recurrence plot-based tools have been devel-

oped (i) to measure the pairwise (dis)similarity between temporal measurements

based on co-occurring patterns [3, 4], (ii) for classification purposes in different

scientific disciplines [5–9], (iii) to detect regime transitions [10–12], or even (iv) to

study interrelationships and synchronization between different dynamical systems

[13–15].

Since the quantification of recurring patterns is computational expensive, speedup

techniques [16] and approximations [17] have been proposed. Speedup techniques

commonly use distributed computing that ensures exact RQA results, e.g. by per-

forming parallel processes on multiple Graphic Processing Units (GPUs), whereas

approximation techniques estimate the RQA measures by means of less computa-

tional expensive algorithms. Given a time series with about one million data points,

distributed computing with two GPUs has been shown to reduce the RQA calcula-

tion time by 1–2 orders of magnitude [16]. However, this work demonstrates that

the proposed approximations [17] are able to reduce the RQA calculation time (for

the same one million measurements) by 4 orders of magnitude. This tremendous

speedup makes the approximation approach extremely valuable for many real-life

data analysis tasks, although it does not yield exact results.

In this work we extend the approximation approach [17] to vertical line based

measures, assess the runtime of our approximate RQA measures for relatively long

time series (from climate impact research), and investigate the use our approximate

RQA measures for transition detection.

6.2 Background and Notation

6.2.1 Recurrence Plots (RPs)

Recurrence plots (RPs) have been introduced to study the dynamics of complex sys-

tems that is represented in anm-dimensional phase space by its phase space trajectory

𝐱i ∈ ℝm
(assuming discrete sampling, i = 1,… ,N) [18]. A phase space trajectory

can be reconstructed from a time series ui (t = iΔt, where Δt is the sampling time)

by different embedding schemes. The most frequently used scheme is the time delay

embedding [19],

𝐱i =
(
ui, ui+1,… , ui+(m−1)𝜏

)
, (6.1)

with m the embedding dimension and 𝜏 the embedding delay. Both parameters can

be estimated from the original data using false nearest neighbors and mutual infor-

mation [20]. In the following we only consider the trajectory 𝐱 and no longer the

underlying time series u. That means the process of creating x from u by time delay
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embedding is considered to be completed. Later on, we will apply time delay embed-

ding to the trajectory x again. It is important to distinguish between both embedding

procedures. The first is used for reconstruction purposes and the latter is used to

express RQA-measures in a way that allows fast computation.

A RP is a 2-dimensional representation of those times when the phase space tra-

jectory 𝐱i recurs. As soon as a dynamical state at time j comes close to a previous

(or future) state at time i, the recurrence matrix 𝐑 at (i, j) has an entry one [20]:

Ri,j ∶= 𝛩(𝜀 − ‖𝐱i − 𝐱j‖), i, j = 1,… ,N, (6.2)

where ‖ ⋅ ‖ is a norm (representing the spatial distance between the states at times i
and j), 𝜀 is a predefined recurrence threshold, and 𝛩 is the Heaviside function (ensur-

ing a binary𝐑). The RP has a square form and usually the identityRi,i ≡ 1 is included

in the graphical representation, although for calculations it might be useful to remove

it [20]. The graphical representation of the RP allows to derive qualitative character-

izations of the dynamical systems. For the quantitative description of the dynamics,

the small-scale patterns in the RP can be used, such as diagonal and vertical lines.

The histograms of the lengths of these lines are the base of the recurrence quantifi-

cation analysis (RQA) developed by Webber and Zbilut and later by Marwan et al.

[7, 21, 22].

6.2.2 Recurrence Rate (RR)

The simplest measure of RQA is the density of recurrence points in the RP, the

recurrence rate:

RR ∶= 1
N2

N∑
i,j=1

Ri,j, (6.3)

that can be interpreted as the probability that any state of the system will recur.

6.2.3 Determinism (DET)

The fraction of recurrence points that form diagonal lines of minimal length 𝜇 is the

determinism measure:

DET (𝜇) ∶=
∑N

l=𝜇 l ⋅ D(l)∑N
i,j=1 Ri,j

=
∑N

l=𝜇 l ⋅ D(l)∑N
l=1 l ⋅ D(l)

(6.4)
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where

D(l) ∶=
N∑

i,j=1

{ (
1 − Ri−1,j−1

)
⋅
(
1 − Ri+l,j+l

)
⋅
l−1∏
k=0

Ri+k,j+k

}

is the histogram of the lengths of the diagonal lines. The understanding of ‘deter-

minism’ in this sense is of heuristic nature.

6.2.4 Average Diagonal Line Length (L)

The average length of all diagonal lines (of at least length 𝜇) in the RP is

L(𝜇) ∶=
∑N

l=𝜇 l ⋅ D(l)∑N
l=𝜇 D(l)

, (6.5)

and can be interpreted as the mean prediction time. As the diagonal lines in the RP

are related to the divergence behavior of the phase space trajectory, its relationship

with the Lyapunov exponents are obvious. Indeed, there is clear link between the

distribution of the diagonal line lengths and the K2 entropy of the system [23].

6.2.5 Laminarity (LAM)

Similar to the measure DET , the fraction of recurrence points that form vertical

lines of a certain minimum length 𝜇 can be calculated. The corresponding measure

is called laminarity:

LAM(𝜇) ∶=
∑N

l=𝜇 l ⋅ V(l)∑N
l=1 l ⋅ V(l)

, (6.6)

with

V(l) ∶=
N∑

i,j=1

{ (
1 − Ri,j−1

)
⋅
(
1 − Ri,j+l

)
⋅
l−1∏
k=0

Ri,j+k

}
,

the histogram of the lengths of the vertical lines in the RP. Vertical (as well as hor-

izontal) lines appear when states do not change or change only very slowly, as it is

typical for intermittence and laminar regimes [7].

Further measures have been introduced that incorporate such line length distribu-

tions and also network properties [20, 24]. All these measures can be used to classify

different dynamical regimes and to detect their transitions.
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6.3 Approximate Recurrence Quantification Analysis

In this section we propose an alternative way of computing the RQA measures intro-

duced previously. Our idea can be expressed as follows: (1) We propose two novel

quantification techniques, namely pairwise proximities PP and stationary states SS,

which account for diagonal and vertical lines by means of an embedded trajectory. (2)

Based on PP and SS we introduce alternative formulations of the traditional RQA

measures that are equivalent to the original formulations, provided that the phase

space norm that measures the spatial distances (e.g. in (6.2)) is the maximum-norm,

defined by ‖𝐲‖∞ = maxi |𝐲i|. (3) Using these new formulations, the RQA measures

can be computed quickly if the similarity threshold is zero (𝜀 = 0). (4) If the similar-

ity threshold is greater than zero, we first discretize the data and then set the threshold

to zero in order to make use of fast algorithms that are facilitated by our alternative

formulations. In this case—due to discretization—we only get an approximation of

the exact RQA measures.

In earlier work [17] we have proven the equivalence between our alternative

and the original formulation of the RQA measures and, furthermore, analyzed the

approximation error theoretically. Moreover, we have provided detailed informa-

tion on the discretization and employed algorithms [17], which have complexity of

(N log(N)). Our implementation of the discretization and employed algorithms can

be found in Sect. 6.4.

Important Note. In this section we assume that the similarity threshold is zero.

That means the recurrent states we aim at quantifying are only states that are equal.

This case is relevant if the trajectory 𝐱 is discrete-valued or has been discretized

beforehand in order to compute the approximate RQA-measures. To be more clear

on the role of the threshold, we define PP and SS for general 𝜀 ≥ 0, but the reader

may imagine that in application of the fast (approximate) RQA algorithms we have

𝜀 = 0.

Given a phase space trajectory 𝐱, the number of pairwise proximities PP can be

defined as follows:

PP(𝜈) ∶=
N−𝜈+1∑
i,j=1

𝛩(𝜀 − ‖𝐱(𝜈)i − 𝐱(𝜈)j ‖), (6.7)

where 𝐱(𝜈) is a time-delay embedded version of the trajectory 𝐱 with embedding

dimension 𝜈 ∈ ℕ and time-delay 1, i.e.,

𝐱(𝜈)i = (𝐱i,… , 𝐱i+𝜈−1), i = 1,… ,N − 𝜈 + 1. (6.8)

We want to emphasize that the key idea of our quantification techniques (PP and SS)

is to embed the trajectory, since recurrent states of embedded trajectories indicate

recurrent sequences in the original trajectory 𝐱 if the phase space norm is ‖ ⋅ ‖∞. To

see this, assume that, for instance, the recurrence plot of the embedded trajectory

𝐱(2) indicates a recurrence point at position (i, j), that means
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‖𝐱(2)i − 𝐱(2)j ‖∞ ≤ 𝜀.

By definition of ‖ ⋅ ‖∞ and the trajectory embedding, this is equivalent to

‖𝐱i − 𝐱j‖∞ ≤ 𝜀 and ‖𝐱i+1 − 𝐱j+1‖∞ ≤ 𝜀,

which exactly means that the recurrence plot of the original trajectory 𝐱 contains a

diagonal line of length 2 starting at position (i, j). Note that this equivalence is not

true for arbitrary norms.

Our implementation of the general time delay embedding, (6.1), can be found in

Sect. 6.4.1.

As shown in [17], if 𝜀 = 0, the measure of pairwise proximities PP(𝜈)
can also be

interpreted as the sum over the squared frequencies of recurring states, which can be

determined using the histogram h(𝐱(𝜈)) of the embedded trajectory:

PP(𝜈) = h(𝐱(𝜈)) ⋅ h(𝐱(𝜈)). (6.9)

In (6.9) the histograms are represented as vectors containing the frequencies of the

elements in 𝐱(𝜈) and the dot denotes the inner product, defined by u ⋅ w =
∑

i uiwi.

This relation is the key for the fast computation of the RQA-measures since the

histograms can be obtained in O(N log(N)), where N is the length of the trajectory

𝐱. It is important to note that (6.9) does only hold for 𝜀 = 0. This is the reason why

the data has to be discretized if 𝜀 > 0 is required.

Based on our definition of pairwise proximities PP we can introduce alterna-

tive formulations for the original diagonal line based RQA measures introduced in

Sect. 6.2. In the following we discuss an alternative formulation for recurrence rate

RR, determinism DET , average diagonal line length L, and laminarity LAM.

Before moving on to more advanced recurrence quantification measures, we want

to provide an image representation of pairwise proximities PP. Figure 6.1 shows

the recurrence plot 𝐑 of a discrete-valued sample trajectory 𝐱 and its corresponding

histogram h(𝐱(𝜈)) for trajectory embedding dimension 𝜈 = 1 (note that 𝐱(1) = 𝐱). The

pairwise proximities PP(1)
are equal to the total number of recurrence points in 𝐑

and are given by the sum over the squared frequencies:

PP(1) = h(𝐱(1)) ⋅ h(𝐱(1)) = 32 + 52 + 22 = 38

6.3.1 Reformulation of Recurrence Rate (RR)

The pairwise proximities PP(𝜈)
for trajectory embedding dimension 𝜈 = 1 can be

interpreted as the number of recurrence points, which are traditionally expressed

by the sum over all recurrence plot entries
∑N

i,j=1 Ri,j (see 6.3). To compute the
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Fig. 6.1 Recurrence plot 𝐑
of trajectory 𝐱 =
(3, 2, 2, 1, 2, 2, 2, 1, 1, 3) with

similarity threshold 𝜀 = 0
(left) and its histogram h(𝐱𝜈)
for embedding dimension

v = 1 (right), showing the

frequencies of recurring

states. The pairwise

proximities PP(1)
equal the

total number of recurrence

points in 𝐑 and are given by

the sum over the squared

frequencies (see 6.9)

recurrence rate, the number of recurrence points is divided by the size of the recur-

rence plot, which is the squared length N2
of the time series under study. Hence, the

alternative way of computing the recurrence rate RR can be formalized as followed:

RR = PP(1)∕N2
. (6.10)

For our sample trajectory 𝐱 (shown in Fig. 6.1) with pairwise proximities PP(1) =
38 and length N = 10 the recurrence rate is:

RR = 38∕102 = 0.38

6.3.2 Reformulation of Determinism (DET)

The determinism DET can also be expressed in terms of pairwise proximities. Tra-

ditionally the determinism DET is described as the percentage of recurrence points

which form diagonal lines (refer to 6.4). In the previous Sect. 6.3.1 we have already

explained that the total number of recurrence points is equivalent to the pairwise

proximities PP(1)
. Hence, the denominator of DET is known and it remains the ques-

tion of how to compute the number of recurrence points that contribute to diagonal

lines of minimum length 𝜇. Our idea is to quantify the recurrence plot 𝐑(𝜇)
of the

embedded trajectory 𝐱(𝜇) in relation to the recurrence plot 𝐑 of the original trajectory

𝐱. First note that each point in 𝐑(𝜇)
indicates that there is a diagonal line of length

≥ 𝜇 in 𝐑. Consequently, only lines we are interested in remain in 𝐑(𝜇)
. However,

each diagonal line in 𝐑(𝜇)
is 𝜇 − 1 shorter than the corresponding line in 𝐑. Thus,

we need to add the missing points. Evidently, the number of missing points is exactly

given by “the number of diagonal lines of length ≥ 𝜇” times 𝜇 − 1, where “the
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number of diagonal lines of length ≥ 𝜇” in 𝐑 is given by (PP(𝜇) − PP(𝜇+1)). To sum

up, we have argued that

N∑
l=𝜇

l ⋅ D(l) = PP(𝜇) + (PP(𝜇) − PP(𝜇+1)) ⋅ (𝜇 − 1). (6.11)

By simplifying (6.11) we achieve our alternative formulation for the determin-

ism (proved in [17]), which is true for arbitrary similarity threshold 𝜀 ≥ 0 and arbi-

trary minimum diagonal line length 𝜇, provided that the phase space norm is the

maximum-norm ‖ ⋅ ‖∞:

DET (𝜇) = 𝜇 ⋅ PP(𝜇) − (𝜇 − 1) ⋅ PP(𝜇+1) … − N
PP(1) . (6.12)

Depending on whether or not we want to include the recurrence points of the main

diagonal in our calculation, we need to subtract N in the numerator (6.12).

Figure 6.2 illustrates how to employ the concept of pairwise proximities in order

to compute the determinism for our sample time series 𝐱 introduced in Fig. 6.1.

For example in Fig. 6.2, the determinism DET (2)
for minimum diagonal line

length 𝜇 = 2 can be described as the number of recurrence points that rest on high-

lighted lines divided by the total number of recurrence points (i.e. 14∕38). The total

number of recurrence points is given by PP(1)
(see Sect. 6.3.1) and the number of

recurrence points that form diagonals of minimum length 𝜇 = 2 can be expressed

in terms of PP(2)
and PP(3)

(see 6.12). In Fig. 6.2, single circles illustrate the recur-

rences that are given by our formulation of pairwise proximities PP(2)
for embedding

dimension 𝜈 = 2. By multiplying the length 𝜇 = 2 and number PP(2)
of the identi-

fied structures we quantify all recurrence points that rest on diagonal lines, including

those of overlapping structures. To subtract recurrence points of overlapping struc-

Fig. 6.2 Recurrence plot R
of time series 𝐱, where

highlighted lines indicate

diagonals that contribute the

determinism DET , single
circles illustrate recurrences

that are given by our

formulation of pairwise

proximities PP(2)
for

embedding dimension 𝜈 = 2,

and double circles show

recurrences that are

quantified by PP(3)
for 𝜈 = 3

respectively

marwan@pik-potsdam.de



6 Approximate Recurrence Quantification Analysis . . . 121

tures we compute the pairwise proximities PP(3)
of higher embedding dimension

𝜈 = 2 + 1, which are illustrated by double circles. Consequently, the determinism

DET (2)
for our sample time series 𝐱 is computed in the following way:

DET (2) = 2 ⋅ PP(2) − 1 ⋅ PP(3)

PP(1)(
=

2 ⋅ Single Circles − 1 ⋅ Double Circles
Total Number of Recurrences

)

= 2 ⋅ 8 − 1 ⋅ 2
38

= 14
38

≈ 0.37

6.3.3 Reformulation of Average Diagonal Line Length (L)

Given our new formulation for the determinism (see 6.12), the formalization of the

average diagonal line length L in terms of pairwise proximities PP is straightfor-

ward. Informally speaking, L is defined as the number of recurrence points that form

diagonals of minimum length 𝜇 divided by the number of diagonals of minimum

length 𝜇 (see 6.5). We have already shown how to compute the first term or numera-

tor in the previous Sect. 6.3.2. The second term or denominator can be computed by

PP(𝜇) − PP(𝜇+1)
, which is the number of diagonals with minimum length 𝜇. Since we

know that PP(𝜇)
accounts for all the diagonal line structures with minimum length 𝜇

including overlapping ones, we need to subtract the number of overlapping structures

which are quantified by the term PP(𝜇+1)
. Ultimately, under the same assumptions as

for DET , our alternative formulation of L can be formalized as followed:

L(𝜇) = 𝜇 ⋅ PP(𝜇) − (𝜇 − 1) ⋅ PP(𝜇+1) ⋯ − N
PP(𝜇) − PP(𝜇+1) . (6.13)

Same as for the determinism, we might not want to consider the main diagonal for our

calculation and, thus, need to subtract N (the time series length) from the numerator.

For our sample time series 𝐱 (shown in Fig. 6.2) we can compute the average

diagonal line length for 𝜇 = 2 as followed:

L(2) = 2 ⋅ 8 − 1 ⋅ 2
8 − 2

= 14
6

≈ 2.33

6.3.4 Reformulation of Laminarity (LAM)

The laminarity is the percentage of recurrence points which form vertical lines (see

6.6) and cannot be computed by means of the PP measure, since it quantifies diag-

onal line structures. Therefore, we need to introduce a novel measure for stationary
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states SS, which accounts for time intervals where the corresponding trajectory stays

in the same phase space. Stationary states SS which stay stable for 𝜈 time points can

be quantified in the following way.

SS(𝜈) ∶=
N−𝜈+1∑
i=1

N∑
j=1

𝛩(𝜀 − ‖𝐱(𝜈)i − 𝟏(𝜈)𝐱j‖), (6.14)

where 𝟏(𝜈)𝐱j = (𝐱j,… , 𝐱j) is the concatenation of 𝜈 copies of 𝐱j. Hence SS accounts

for states where all elements in 𝐱(𝜈)i = (𝐱i,… , 𝐱i+𝜈−1) are in a 𝜀-neighborhood of 𝐱j,
indicating that state 𝐱i stays stationary for 𝜈 time points.

Analogously to (6.9) we can compute the stationary states efficiently inO(N log(N))
using histograms if 𝜀 = 0:

SS(𝜈) = ℏ(𝐱(𝜈)) ⋅ ℏ(𝐱(1)), (6.15)

where ℏ(𝐱(𝜈)) is the stationary state histogram of the embedded trajectory, which—

that is important—only accounts for stationary states of exact length 𝜈 (including

overlapping structures in 𝐱); and ℏ(𝐱(1)) is the histogram of the original trajectory.

Attention should be paid to the calculation of the inner product between stationary

state histograms, since only frequencies of corresponding states are multiplied. For

example the frequency of the stationary state (1, 1) in 𝐱(2) is multiplied with the

frequency of state (1) in 𝐱. Furthermore, it is important to mention that although

non-stationary states may occur in an embedded trajectory (e.g. (2, 1), in 𝐱(2)), their

frequency in the corresponding stationary state histogram is always zero.

Given our new definition of stationary states SS and assuming that the phase space

norm is the maximum-norm ‖ ⋅ ‖∞, we can compute the laminarity LAM for a given

minimum vertical line length 𝜇 and an arbitrary threshold 𝜀 ≥ 0 as follows:

LAM(𝜇) = 𝜇 ⋅ SS(𝜇) − (𝜇 − 1) ⋅ SS(𝜇+1) ⋯ − N
SS(1)

, (6.16)

where the denominator SS(1) denotes the total number of recurrence points and the

numerator 𝜇 ⋅ SS(𝜇) − (𝜇 − 1) ⋅ SS(𝜇+1) denotes the number of recurrence points that

form vertical lines of minimum length 𝜇. The thoughtful reader might have noticed

that our new formulation of LAM and DET (6.16) and (6.12) resemble each other.

The difference is that DET accounts for diagonal lines using PP and LAM quantifies

vertical lines using SS. Therefore the proof of the LAM formula (6.16) is very similar

to the proof of the DET formula presented in earlier work [17].

Figure 6.3 illustrates how to compute the laminarity LAM(2)
for our sample trajec-

tory 𝐱. As defined in (6.16), the laminarity LAM(2)
for minimum vertical (or rather

horizontal) line length 𝜇 = 2 can be computed in terms of SS(1), SS(2), and SS(3).
For example in Fig. 6.3, the total number of recurrences points is described by the

term SS(1), which can also be interpreted as the sum over the square frequencies of

stationary states, given by the histogram ℏ(𝐱(1)) (see Table 6.1).
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Fig. 6.3 Recurrence plot of

trajectory 𝐱 with similarity

threshold 𝜀 = 0 and

highlighted vertical lines of

minimum length 𝜇 = 2. The

laminarity LAM(2) = 31∕38
is the percentage of

recurrence points that form

vertical lines of minimum

length 𝜇

Table 6.1 Stationary state

histograms for our sample

trajectory 𝐱 in Fig. 6.3,

showing the frequency of

states that are stationary over

𝜇 time points

State #

ℏ(𝐱(1)) [1] 3

[2] 5

[3] 2

ℏ(𝐱(2)) [1,1] 1

[2,2] 3

[3,3] 0

ℏ(𝐱(3)) [1,1,1] 0

[2,2,2] 1

[3,3,3] 0

Furthermore, the highlighted lines in Fig. 6.3 indicate all recurrence points that

form vertical structures of minimum length 𝜇 = 2, which can be quantified in terms

of SS(2) and SS(3). For our sample trajectory 𝐱 in Fig. 6.3, all stationary states SS(2)
that are stable for 2 time points are illustrated by single circles. Moreover, double

circles indicate stationary states SS(3) that are stable for 3 successive observations.

The terms SS(2) and SS(3) can be computed by means of (6.14) and expressed in terms

of the respective stationary state histograms ℏ(𝐱(1)), ℏ(𝐱(2)) and ℏ(𝐱(3)):

SS(1) = ℏ(𝐱(1)) ⋅ ℏ(𝐱(1)) = 38
SS(2) = ℏ(𝐱(2)) ⋅ ℏ(𝐱(1)) = 18
SS(3) = ℏ(𝐱(3)) ⋅ ℏ(𝐱(1)) = 5.

The corresponding stationary state histograms for our plot in Fig. 6.3 are shown

in Table 6.1. The multiplication of stationary state histograms is performed element-

wise using the inner product, i.e. multiplying the frequencies of unique states with the

corresponding stationary state counterparts and summing the results (see
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Algorithm 4). For our sample trajectory 𝐱, the inner product is ℏ(𝐱(1)) ⋅ ℏ(𝐱(2)) = 18,

since 3 ⋅ 1 + 5 ⋅ 3 + 2 ⋅ 0 = 18.

By multiplying the length 𝜇 = 2 and the number SS(2) of identified stationary

states we quantify all recurrence points that rest on highlighted lines, including those

of overlapping vertical structures. To subtract the recurrence points of overlapping

structures we compute the number of stationary states SS(3) with higher length 𝜇 =
2 + 1, leading to the following formalization: 2 ⋅ SS(2) − 1 ⋅ SS(3). Eventually, we can

compute the laminarity LAM(2)
for the plot in Fig. 6.3 by dividing the amount of

recurrence point that form vertical lines by the total number of recurrences SS(1):

LAM2 = 2 ⋅ SS(2) − 1 ⋅ SS(3)
SS(1)(

=
2 ⋅ Single Circles − 1 ⋅ Double Circles

Total Number of Recurrences

)

= 2 ⋅ 18 − 1 ⋅ 5
38

= 31
38

≈ 0.82.

Given our proposed definition of stationary states SS (6.14), we can also restate

other vertical line based measures, such as trapping time TT or longest vertical line

length Vmax. However, this goes beyond the scope of this study.

6.4 Approximate Recurrence Quantification
Analysis with MATLAB

Before we present our empirical results we want to discuss the implementation of

our proposed approximate recurrence quantification analysis. The provided source

code will help other researchers to reproduce our results and to continue with further

ideas right where we left off. We decided to provide MATLAB code since it is very

compact and often used in academia. However, our code snippets can also be exe-

cuted in Octave, which is an open source alternative to MATLAB. Please note that

our code is protected by copyright laws and is not provided for commercial use. If

you plan to use our implementation for academic purpose (e.g. for reproduction of

experimental results or further enhancements of the introduced concepts) we kindly

remind you to cite this chapter.

In the following subsections we explain our implementation of: (i) time delay

embedding (according to Takens’ theorem), (ii) discretization (e.g. of a multivariate

time series or an embedded phase space trajectory), (iii) pairwise proximities (for

diagonal line based measures), (iv) stationary states (for vertical line based mea-

sures), and (v) our experimental protocol for the approximate recurrence quantifica-

tion analysis of the Potsdam time series of hourly air temperature [16].
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6.4.1 Time Delay Embedding

Our implementation of the time delay embedding is used for the following purposes:

(i) given a sequence of temporal observations we aim at embedding the recorded

time series into the phase space using predetermined parameters for the embedding

dimension and time delay, (ii) given a (reconstructed) phase space trajectory we aim

at embedding it (once again) in order to quantify recurring segments PP(𝜈)
and sta-

tionary intervals SS(𝜈) with a certain number of time points 𝜈.

In general our time delay embedding function accepts an input time series of size

n × d, where n denotes the number of time points and d represents the dimensional-

ity of the data. The function call furthermore requires us to specify the embedding

dimension m and time delay 𝜏. It is important to note that, in contrast to the time

series embedding (i), the trajectory embedding (ii) always assumes unit time delay

(𝜏 = 1) [17]. The output of our time delay embedding function is a time series of size

[n − (m − 1) ∗ t] × [d ∗ m]. What makes our fTDE implementation time efficient is

the fact that the for loop in Line 11 does not run over the length n of the time series,

but iterates over the embedding dimension m which is usually much smaller.

1 function X = fTDE(x,m,t)
2 %FTDE time delay embedding (C) Spiegel. et al.
3 % x .. time series [n times d]
4 % m .. embedding
5 % t .. dalay
6 % X .. time series [n-(m-1)*t times d*m]
7

8 [n,d] = size(x);
9

10 X = zeros(n-(m-1)*t,d*m);
11 for i = 1:m
12 a = i+(t-1)*(i-1);
13 b = a+n-1-(m-1)*t;
14 X(:,d*(i-1)+1:d*i) = x(a:b,:);
15 end
16 end

6.4.2 Discretization

In most real-life time series applications we aim at analyzing temporal data with con-

tinuous values. Since our concept of pairwise proximities PP and stationary states

SS mainly relies on histograms, we need to apply some kind of binning to the contin-

uous values beforehand. In our approach we first discretize the original time series

and then create a histogram for the previously discretized data.
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Our implemented discretization function requires an input time series of size

n × d and the specification of a similarity threshold 𝜀, which defines the size of the

bins. In earlier work [17] we proposed to perform the discretization according to

the size of the 𝜀-neighborhood in the following manner: x̃ = ⌊x∕2𝜀⌋ (see Line 23).

The discretization is done element-wise and effects the approximation error of the

subsequent recurrence quantification analysis [17].

17 function x = fDiscrete(x,eps)
18 %FDISCRETE Discretize Time Series (C) Spiegel et al.
19 % x .. time series [n-times-d]
20 % eps .. similarity thresholds [1-times-d]
21

22 if eps>0
23 x = floor(x*diag(1./(2*eps)));
24 end
25 end

6.4.3 Pairwise Proximity

Given a (reconstructed and subsequently embedded) phase space trajectory, we can

use the concept of pairwise proximities PP(𝜇)
to quantify recurring segments of cer-

tain length 𝜇 that correspond to diagonal line structures in a recurrence plot. Having

quantified the number of length of recurring segments, we can compute all diago-

nal line based RQA measures in a straightforward manner. For example in Sect. 6.3

we have explained how to use pairwise proximities PP to calculate the determinism

DET and average diagonal line length L.

Our implementation of the pairwise proximities function takes an input time

series of size n × d and returns the number recurring d-dimensional states, which

(in our case) are the result of phase space reconstruction and subsequent trajectory

embedding. The pairwise proximities function requires a time series with discrete

values, since we aim at finding unique states (Line 31). Having identified unique

states, we create a histogram that captures the frequency of the unique state in the

next step (Line 32). Finally, we calculate the sum over the squared frequencies, which

is equivalent to the inner product (dot-product) of the histogram with itself (Line 33).

26 function pp = fPProximities(x)
27 %FPPROXIMITIES pairwise proximities (C) Spiegel et al.
28 % x .. time series [nx-times-d]
29 % pp .. pairwise proximities
30

31 [˜,˜,ix] = unique(x,’rows’);
32 hx = hist(ix,min(ix)-1:max(ix)+1);
33 pp = dot(hx,hx);
34 end
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6.4.4 Stationary States

The idea of stationary states SS is an extension of earlier work [17] on approximate

recurrence quantification analysis, but the concept is novel in that it enables us to

quantify vertical line structures in an efficient way (without creating the recurrence

plot). Although our definition of stationary states SS (6.14) resembles our definition

of pairwise proximities PP (6.7), there is an important difference between the two

concepts. In contrast to pairwise proximities PP, the computation of stationary states

SS(𝜈) with length 𝜈 is performed by comparing an embedded version of the recon-

structed phase space trajectory 𝐱(𝜈) with the original trajectory 𝐱(1) (see 6.14). This

is due to the fact that we aim at identifying states that are stationary over a segment

of 𝜈 time points (as explained at full length by our running example in Sect. 6.3.4).

Our implementation of the stationary state function requires as input the recon-

structed phase space trajectory and its embedded version, regardless in which order.

In Line 43–44 we identify stationary states by extracting those rows from the cor-

responding time series matrix, where all entries are the same. For this purpose we

calculate the root mean squared value for each row vector, that is sqrt(sum(x.∧

2,2)/d), and check for which row values the remainder after division by 1 equals 0,

using the modulo operator (𝚖𝚘𝚍(𝚟𝚊𝚕𝚞𝚎, 𝟷)= = 𝟶). In case that the remainder equals

0 we know that the corresponding row solely contains one and the same discrete

entries.

Having identified the rows that contain only same entries, we create a stationary

state histogram for the reconstructed phase trajectory as well as for its embedded

version (see Line 46–47). By multiplying both histograms using the inner product

(Line 48) we eventually get the number of stationary states that are steady for a

certain time interval, whose length is given by the embedding dimension.

35 function ss = fSStates(x,y)
36 %FSSTATES stationary states (C) Spiegel et al.
37 % x .. time series [nx-times-d1]
38 % y .. time series [ny-times-d2]
39 % ss .. stationary states
40

41 [˜,d1] = size(x);
42 [˜,d2] = size(y);
43 x = x(mod(sqrt(sum(x.ˆ2,2)/d1),1)==0,1);
44 y = y(mod(sqrt(sum(y.ˆ2,2)/d2),1)==0,1);
45

46 hx = hist(x,min([x;y])-1:max([x;y])+1);
47 hy = hist(y,min([x;y])-1:max([x;y])+1);
48 ss = dot(hx,hy);
49 end
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6.4.5 Approximate RQA

Having explained the implementation of time delay embedding, discretization, pair-

wise proximities, and stationary states, we are now in the position to introduce our

experimental setup. First of all we load the Potsdam time series (Line 54), set the

predefined parameters [16] (Line 57), and apply the time delay embedding (Line 59)

to reconstruct the phase space trajectory. Afterwards we discretize the reconstructed

trajectory (Line 62), which is a prerequisite for computing the approximate RQA

measures. In the next step we embed the reconstructed and discretized trajectory

(Line 63–64) in order to quantify the pairwise proximities (Line 66–68) and station-

ary states (Line 70–72). Given the number of pairwise proximities and stationary

states for different embedding dimensions we are able to approximate the discussed

diagonal and vertical line based RQA measures (Line 75–78). The results and run-

times of our experiments are presented in Sect. 6.5.

50 function fApproxRQA
51 %FAPPROXRQA approximate RQA (C) Spiegel et al.
52

53 % load Potsdam time series
54 x = load(’../Data/temp_pdm_1893-2011.txt’);
55

56 % set (predefined) parameters
57 eps = 1; m = 5; tau = 3; minL = 2;
58

59 x = fTDE(x,m,tau); % time delay embedding
60 [n,˜] = size(x); % length of trajectory
61

62 x1 = fDiscrete(x,eps); % discretized trajectory
63 x2 = fTDE(x1,minL,1); % trajectory embedding
64 x3 = fTDE(x1,minL+1,1); % trajectory embedding
65

66 pp1 = fPProximities(x1); % pairwise proximities
67 pp2 = fPProximities(x2); % pairwise proximities
68 pp3 = fPProximities(x3); % pairwise proximities
69

70 ss1 = pp1; % stationary states
71 ss2 = fSStates(x1,x2); % stationary states
72 ss3 = fSStates(x1,x3); % stationary states
73

74 % compute approximate RQA measures
75 RR = pp1/(n*n);
76 DET = (minL*pp2 - (minL-1)*pp3) / (pp1 + 10ˆ-10);
77 L = (minL*pp2 - (minL-1)*pp3) / (pp2 - pp3);
78 LAM = (minL*ss2 - (minL-1)*ss3) / (ss1 + 10ˆ-10);
79 end

marwan@pik-potsdam.de



6 Approximate Recurrence Quantification Analysis . . . 129

6.5 Empirical Results

The goal of our empirical evaluation is twofold: (i) we assess the runtime of original

and approximate RQA measures for relatively long time series (with about a million

data points); and (ii) investigate the correlation between original and approximate

RQA measures for the purpose of finding transitions in time series streams using

the sliding window technique. Both experiments are performed on the same real-life

data set described in Sect. 6.5.1.

6.5.1 Data

For illustrating the approximation approach and to evaluate it we use the measured

time series of hourly air temperature in Potsdam [16], which covers the period from

1893 until 2014 and contains 1,069,416 data points. This time series is one of the

longest, non-interrupted, hourly climate records in the world. The Potsdam time

series is divided into two intervals (1893–1974 and 1975–2014), because the warm-

ing trend of the annual mean temperature shows an abrupt change in 1975 [16].

However, recurrence quantification analysis has shown that, in contrast to longer

time-scales, the short-term dynamics, and, thus, the short-term weather predictabil-

ity, has not (yet) changed due to climate change [16]. Moreover, between 1975 and

1976 the measurement protocol has changed from manual to electronic recording.

Such changes could be systematically influencing the measurements and should be

visible by recurrence quantification. We, therefore, apply a windowing approach in

order to investigate a potential shift in the recurrence properties after 1975. This

approach can be further used to detect regime transitions in the local weather regime

of Potsdam, but this is focus of a separate future study.

6.5.2 Experimental Protocol

We conducted experiments on (i) the runtime and (ii) the accuracy between original

and approximate RQA measures.

Our experiments on (i) runtime were performed on different intervals of the Pots-

dam time series, namely 1893–1974, 1975–2014, and 1893–2014, as well as on

yearly intervals (sliding window analysis). Before analysis the time series has been

normalized to zero mean and standard deviation one. The original RQA measures

have been calculated using three different implementations, basing on C++ for (i)

single thread and (ii) multi thread CPU, and on Python (pyRQA) for (iii) GPU com-

puting [16, 25]. The approximate RQA measures have been calculated by our own

MATLAB implementation as described in Sect. 6.4.5, while the runtime has been

determined for each measure individually (using one CPU). The runtime comparison
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of both original and approximate RQA measures for all three time intervals can be

found in Sect. 6.5.3.

Our evaluation on (ii) the accuracy between original and approximate RQA mea-

sures is presented in Sect. 6.5.4. For these experiments we considered the Potsdam

time series in its entire length (1893–2014) and slide a ‘1-year’ window with ‘1-year’

step size from the beginning to the end. This approach is often referred to as sliding

window technique and is commonly used to detect transitions in time series [20]. For

each window we compute both original and approximate RQA measures (and using

different recurrence thresholds to demonstrate the effect of the threshold), which

gives us the temporal changes of the RQA measures under study. Given these tem-

poral changes, we are able to compare the variations of the original and approximate

RQA measures. For comparison we are using the Pearson correlation coefficient, the

root mean square error, and the relative root mean square error. A high correlation,

i.e., both measures vary in a similar way would confirm our hypothesis that the loss

in accuracy is still a reasonable trade-off with the gain of speed and that the proposed

approximations can be used to find transitions in time series streams.

6.5.3 Results on Runtime

Table 6.2 shows the runtimes of various RQA implementations. It is important to

mention that the runtimes are merely an indicator for the performance of the exam-

ined implementations, since the experiments were performed under different condi-

tions (using various hardware setups and programming languages).

The runtime experiments were conducted on a computer cluster (PIK HLRS2015

—Lenovo/IBM NeXtScale nx360M5), consisting of compute nodes with Intel Xeon

E5-2667v3 2 × 8 core CPUs at up to 3.2 GHz and 64 GB main memory. It further-

more includes NVIDIA Tesla K40 nodes that provide GPU processors running at

up to 745 GHz, 2880 stream processors and each supplied with 12 GB of mem-

ory. The cluster runs on a 64-bit version of Suse Linux Enterprise Server 11 SP3

with version 7.0.28 of CUDA. The CUDA platform was utilized for the experiment

that employ the OpenCL/Python implementation. One CPU node of the cluster was

Table 6.2 Runtime (in sec) for RQA calculation for Potsdam temperature time series

Data set 1893–1974 1975–2014 1893–2014

Data points 718,776 350,640 1,069,416

Single thread (CPU) 9,978.00 2,373.00 22,067.00

16 thread OpenMP

(CPU)

782.00 188.00 1,743.00

OpenCL (1x GPU) 439.00 104.00 995.00

Approximation (CPU) 1.83 0.79 2.88
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Table 6.3 RQA results for Potsdam time series for three different epochs calculated using

maximum-norm, embedding dimension 5, embedding delay 3, threshold 0.75, and Theiler

window 0

Data set 1893–1974 1975–2014 1893–2014

Data points 718,776 350,640 1,069,416

RR 0.15 0.15 0.15

RR approx. 0.12 0.12 0.12

DET 0.92 0.92 0.92

DET approx. 0.89 0.90 0,89

L 7.6 7.7 7.7

L approx. 6.9 7.2 7.0

LAM 0.96 0.95 0.96

LAM approx. 0.91 0.91 0.91

exploited for the single-thread and 16 core multi-thread (OpenMP) implementation,

using C++ programming language. The approximation experiment was performed

on the same hardware using MATLAB 2011b.

Although the runtime experiments were conducted with varying hardware setups

and programming languages, the results give some indication of the speed-up factor

achieved by our proposed approximation techniques. However, the approximation

error is not to be neglected. Table 6.3 demonstrates the results for the original and

approximate RQA measures, which also confirm the previous climatological find-

ings and interpretations given in [16].

Although the results presented in Table 6.3 slightly differ for the original and

approximate RQA measures, it is more important that the variation (tendency) of

these measures is similar. This is considered in more detail in the next section.

6.5.4 Results on Correlation

In several applications, such as RQA based transition detection, the absolute values

of the RQA measures are less important than the tendency of their variation with

time. Here we compare the ability of the approximation approach to uncover vari-

ations that are similar to ones found by the exact measures. We apply both (exact

and approximate) RQA measures to the Potsdam temperature series using a sliding

windowing technique (non-overlapping windows with length of 1 year), which is the

standard approach for detecting transitions or regime changes.

In Fig. 6.4 we find a similar variation between the RQA measures calculated using

the exact as well as the approximation approaches. Figure 6.4a was derived with the

same recurrence threshold 𝜀 = 0.75 that was taken for the analysis of the whole Pots-

dam time series (see Table 6.3). This threshold is considered as baseline here, mean-

ing that the exact RQA measures show desired characteristics. Visually, the most
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Fig. 6.4 Windowed RQA results for Potsdam time series calculated using a non-overlapping slid-

ing window of length 1 year, maximum-norm, embedding dimension 5, embedding delay 3, Theiler

window 0 and (a) threshold 0.75, (b) threshold 0.5. a Baseline similarity threshold: 𝜀 = 0.75, b
Lower Similarity Threshold: 𝜀 = 0.5
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Table 6.4 Correlation coefficient, root mean square and relative error between exact and approx-

imate RQA measures for Potsdam temperature series as shown in Fig. 6.4

𝜀 = 0.75 Correlation RMSE rel. RMSE

(%)

𝜀 = 0.5 Correlation RMSE rel. RMSE

(%)

RR 0.79 0.034 17 RR 0.94 0.013 16

DET 0.81 0.028 3 DET 0.88 0.064 7

L 0.84 0.79 7 L 0.82 0.526 8

LAM 0.67 0.054 6 LAM 0.78 0.124 13

similar variation (and amplitude) is for the measure L, followed by DET , whereas

the amplitude of the LAM measure has the largest deviation. This is quantitatively

confirmed by the correlation coefficient and the error measures (Table 6.4). The high-

est correlations, thus the best coincidence of the variation, have the measures L and

DET , whereas LAM has the lowest correlation. In contrast, the relative error is small-

est for DET but largest for RR.

The values of the correlation and the errors can be controlled by changing the

threshold 𝜀 (Fig. 6.5). For L and LAM, we find the best correlation for recurrence

thresholds between 0.4 and 0.6 in units of the signal’s standard deviation. The root

mean square error decreases for Lwhere it increases for LAM with decreasing thresh-

old. The threshold that leads to the overall best correlation is 𝜀 = 0.5 (Fig. 6.4b),

the corresponding windowed analysis is illustrated in Fig. 6.4b. Hence, if we choose

this threshold for the sliding window analysis, then the mean correlation between the

exact and the approximate RQA measures is greater than 0.85, which indicates a very

strong linear relationship. But how does the choice of a lower threshold influence the

sliding window analysis? Visually, the corresponding exact measures in Fig. 6.4 vary

in a similar fashion, they only obey a different scale. This observation is confirmed

by Table 6.5, all corresponding exact measures have a correlation of about 0.99 for

the baseline threshold 𝜀 = 0.75 compared with the lower threshold 𝜀 = 0.5. In sum-

mary, the choice of a lower threshold can keep nearly the entire information on the

variation of the exact RQA measures, and at the same time can significantly improve

the approximate RQA in that the correlation between the exact and the approximate

RQA measures increases.

From the climatological point of view, both approaches reveal some variation

in the dynamics represented by the temperature time series. A general shift after the

time point of the change in recording procedure 1975 is not visible. However, besides

several short periods of decrease in the measures, around 1975 a clear drop can be

identified and might be more an indication of a sudden change in the general climate

regime by passing a tipping point [26] than of a change in the recording procedure.

A future study will investigate these variations more systematically and should also

consider significance tests [10].
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Fig. 6.5 Correlation coefficient, root mean square error (RMSE), and relative RMSE between

exact and approximate RQA measures with varying thresholds 𝜀, for our sliding window analysis

of the Potsdam temperature series as shown in Fig. 6.4. a Individual RQA measures, b Mean over

all RQA measures from (a)

6.6 Conclusion and Future Work

This chapter extends our theoretical work on approximate recurrence quantification

analysis (aRQA) [17] and includes some practical considerations that occur when

analyzing real-life data such as the Potsdam temperature time series [16]. We have
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Table 6.5 Correlation between exact RQA measures for threshold 𝜀 = 0.75 and exact RQA mea-

sures for 𝜀 = 0.5 for Potsdam temperature series as shown in Fig. 6.4

RR DET L LAM

Correlation 0.9953 0.9915 0.9877 0.9942

not only discussed the formulation of diagonal line based measures by means of

pairwise proximities (PP) [17], but also introduced our novel idea of stationary states

(SS) that enables us to reformulate vertical line based RQA measures. In addition

to our new formulation of the original RQA measures, we furthermore presented

an efficient implementation that allows fast computation of the approximate RQA

measures based on histograms.

Our experiments on relatively long time series (with about a million measure-

ments) demonstrated that the proposed approximation is not only up to four orders

of magnitude faster than single thread (exact) computations, but also gives results

that are very close to the original measures. Furthermore, we were able to show

that our approximate RQA measures strongly correlate with the corresponding exact

RQA measures (when applying the sliding window technique) and, therefore, can be

used for an efficient transition detection. The presented empirical results are also in

agreement with our theoretical analysis [17] in that the error of the approximation is

decided by the discretization or strictly speaking depends on the similarity threshold

and the distribution of the data under study.

In future work we are going to investigate the discretization more deeply and

develop time series representations that enable us to bound the approximation error.

Moreover, we will transfer our idea of pairwise proximities (PP) and stationary states

(SS) to cross recurrence plots (CRPs) and corresponding measures.
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