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Abstract. Recurrence quantification analysis (RQA) was developed in
order to quantify differently appearing recurrence plots (RPs) based on
their small-scale structures, which generally indicate the number and
duration of recurrences in a dynamical system. Although RQA measures
are traditionally employed in analyzing complex systems and identifying
transitions, recent work has shown that they can also be used for pairwise
dissimilarity comparisons of time series. We explain why RQA is not only
a modern method for nonlinear data analysis but also is a very promising
technique for various time series mining tasks.
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1 Introduction and Background

A recurrence plot (RP) is an advanced technique of nonlinear data analysis
[3]. Technically speaking, a recurrence plot R visualizes those times when the
trajectory x of a dynamical system visits roughly the same phase space [3]:
Ri,j = Θ(ε − ‖xi − xj‖), where ε is the similarity threshold, ‖ · ‖ a norm, Θ(·)
the unit step function, and i, j = 1 . . . N is the number of states. In addition,
a cross recurrence plot (CRP) shows all those times at which a state xi ∈ R

m

in one dynamical system co-occurs yj ∈ R
m in a second dynamical system [3]:

Ri,j = Θ(ε − ‖xi − yj‖), where the dimension m of both systems must be the
same, but the number of states can be different.

The recurrence quantification analysis (RQA) is a method of nonlinear data
analysis which quantifies the number and duration of recurrences of a dynamical
system presented by its state space trajectory [3]. RQA measures are derived
from RP structures and can be employed to study the dynamics, transitions, or
synchronization of complex systems [3,4]. The determinism measure (DETµ),
which is the fraction of recurrence points that form diagonal lines of minimum
length μ, has e.g. been successfully applied to detect dynamical transitions [4].

2 Recent Trends and Advances

In time series mining, many algorithms are based on analogical reasoning or
pairwise dissimilarity comparisons of (sub)sequences [13]. In general, the distance
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between time series needs to be carefully defined in order to reflect the underlying
dissimilarity of the data, where the choice of distance measure usually depends
on the invariance required by the domain [1].

Recent work [9–12] has introduced novel time series distance measures that
use recurrence quantification analysis (RQA) techniques. The main idea [9] is to
pairwise compare time series by (i) computing a cross recurrence plot (CRP) that
reveals all times at which roughly the same states co-occur and, subsequently, (ii)
quantifying the number and length of all diagonal line structures that indicate
similar subsequences. Figure 1(a-b) shows a toy example, where a labeled time
series is compared to two unlabeled data stream segments using CRPs as well
as corresponding RQA measures.

It has been shown [9,11] that traditional RQA measures, such as the average
diagonal line length and the determinism, can be used to compare time series that
exhibit similar segments or subsequences at arbitrary positions. Time series with
such an order invariance [9] can, for instance, be found in automotive engineering
[11], where vehicular sensors observe driving behavior patterns in their natural
occurring order and the recorded car drives are compared according to the co-
occurrence of these patterns. Although the recurrence plot-based distance [11]
was originally developed to determine characteristic driving profiles [12], this
approach can be used to find representatives in arbitrary sets of single- or multi-
dimensional time series of variable length [10].

In addition, it has been proposed to employ video compression algorithms for
measuring the dissimilarity between un-thresholded recurrence plots and accord-
ingly the time series that generated them [8]. This approach relies on the under-
lying assumption that video compression algorithms are able to detect similar
structures in images or recurrence plots, which correspond to time series pat-
terns. The result [8] show that the compression distance of recurrence plots
works especially well for time series that represent shapes. A follow-up study
[5] compared the performance of various MPEG video compression algorithms
and furthermore introduced a compression distance for cross recurrence plots.
Figure 1(c) contrasts two un-thresholded recurrence plots, which reveal struc-
tural dissimilarities between the examined time series.

Although recurrence plots have been adopted by the data mining community
[2,5,8–12], their computation and quantification generally involve operations
with quadratic time and space complexity. Hence, recent work [7,14] has intro-
duced approximate RQA measures, which exhibit significantly lower complexity
while maintaining high accuracy. Most important, these novel approximations
[7,14] enable us to efficiently use recurrence quantification analysis for relatively
long time series and fast time series streams. Figure 1(d) illustrates the fast
computation of the approximate determinism (aDET ) [7], which allows us, for
example, to filter or identify time series segments with a certain behavior in an
online fashion. The approximation of various RQA measures, such as laminarity
and determinism, is explained at full length in a recent publication [14]
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Fig. 1. Recurrence plot-based distances: (a) illustrates a time series mining scenario
that assumes a labeled sequence x and a data stream with unlabeled segments y and z.
In case (b) we compare time series x with segment y and z to assign labels. (b) shows
two cross recurrence plots that indicate similar states (ε = 0.1) for time series pairs
(x, y) and (x, z), where recurrence points are represented by ‘1’ entries and diagonal
line structures are highlighted in bold font. According to the determinism, DET 2

x,y =
4/9 > 4/12 = DET 2

x,z, the pair (x, y) is more similar than (x, z) [11], meaning x
and y might be from the same class. (c) shows another way to determine the pairwise
dissimilarity of time series. In this case (c) we create un-thresholded recurrence plots
(ε = 0), which facilitate pairwise comparisons by means of image processing and video
compression algorithms [5,8]. The images in (c) resemble each other in structure since
time series x and y have a similar shape. In case (d) we compute the approximate
determinism to assess the ‘complexity’ of our sample data stream at time interval z
and to filter/identify ‘ir-/relevant’ segments with a certain (nonlinear) behavior. (d)
illustrates the recurrence plot of segment z and it’s discretized version ζ = � z

2ε
�. In

our example (d) we achieve a fairly reasonable approximation of the determinism,
DET 2

z,z = 14/20 ≈ 10/18 = aDET 2
ζ,ζ . Although the discretization step introduces

some rounding errors, it allows us to approximate all traditional RQA measures in an
efficient way without even creating and quantifying the RP [7,14].
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3 Conclusion and Open Problems

Recurrence quantification analysis (RQA) is a method of nonlinear data analysis
for the investigation of dynamical systems, which has its origin in theoretical
physics [3,4]. Recently, RQA was adopted by the data mining community in
order to: (i) define novel time series distance measures [5,8,11] and (ii) process
massive data streams by means of approximate measures [7,14].

Although RQA has been successfully applied to data mining problems from
engineering [12] and climatology [6,14], there exist open problems which prevent
its widespread acceptance by the time series fraternity. The main problem with
traditional RQA is that it excludes curved structures, which prevents us from
comparing time series with local scaling or warping invariance [1]. This issue
might be addressed by feeding un-thresholded RPs [5,8] into convolutional neural
networks. In the case of the recently introduced approximate RQA [7,14], it is
necessary to investigate time series representations and discretization techniques
that enable us to bound the approximation error.
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