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Abstract—An interesting potential approach for nonlin-
ear time series analysis by exploiting the analogy between
the recurrence matrix, representing the recurrences in phase
space, and the adjacency matrix of a complex network to
characterize and analyze the dynamical transitions in the
phase space of complex systems is being emerging. In this
work, we present our preliminary results by applying this
method to a high dimensional phase space of a time-delay
system.

1. Introduction

Among modern data analysis techniques recurrence
analysis has its unique advantages and is being used as a
potential tool for time series analysis in almost all branches
of science and technology [1]. The analogy between the re-
currence matrix and the adjacency matrix has recently pro-
voked a flurry of investigations in employing complex net-
work measures to recurrences in phase space to analyse and
characterize dynamical transitions in phase space in terms
of network topology (cf.[2, 3, 4, 5, 6, 7]).

Recently, the network measures, namely link density (ρ),
average path length (L) and clustering coefficient (C), along
with the recurrence quantification analysis (RQA), namely
maximal diagonal line length (Lmax) and laminarity (LAM)
are estimated to capture the dynamical transitions in the
well-known logistic map [2], as shown in Fig. 1, in terms
of these measures. The dotted lines in these figures corre-
sponds to the four different dynamical regimes (i) period-3
window ata = 3.830, (ii) band merging ata = 3.679, (iii)
cross points of supertrack functions ata = 3.791 and (iv)
outer crisis ata = 4, which has been analysed in detail [2].

As a natural extension of these studies to high dimen-
sional phase space, we have applied the above measures
to a time-delay system, essentially an infinite-dimensional
system, and discuss our preliminary results and the diffi-
culties involved in it. In particular we consider a piecewise
linear time-delay system and apply these measures to anal-
yse the dynamical transitions in such a high-dimensional
phase space.

The plan of the paper is as follows. In Sec. 2, we intro-
duce the model system and discuss briefly about its dynam-
ical properties. We will point out the measures that have
employed in Sec. 3 We will present our preliminary results
and discuss the practical difficulty involved in analyzing

such a high dimensional phase space in Sec. 4. Finally, in
Sec. 5, we present our summary and conclusion.
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Figure 1: (a) Bifurcation diagram of the logistic map. Se-
lected RQA measures: (b) maximal diagonal line length
Lmax and (c) laminarityLAM, as well as complex network
measures: (d) link densityρ, (e) average path length (L)
and (f) clustering coefficient (C).

2. Scalar piecewise linear time-delay system

We consider the following scalar first order delay differ-
ential equation represented as

ẋ(t) = −ax(t) + b f (x(t − τ)) + c, (1)

wherea, b andc are parameters,τ is the time-delay andf
is an odd piecewise linear function defined as
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x, −0.8 < x ≤ 0.8
−1.5x + 2, 0.8 < x ≤ 4/3

0, x > 4/3.

(2)
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We have investigated the above system in detail including
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Figure 2: (a)The hyperchaotic attractor of the piecewise
linear time-delay system, (1), for the choice of the parame-
tersa = 1.0, b = 1.2, c = 0.001 andτ = 25.0

linear stability analysis, bifurcation analysis and transient
effects [8]. For the choice of the parametersa = 1.0, b =
1.2, c = 0.001 andτ = 25.0 with the initial condition
x(t) = 0.9, t ∈ (−τ,0), the scalar piecewise linear time-
delay system (1) exhibits hyperchaos (Fig. 2). The hyper-
chaotic nature of Eq. (1) is confirmed by the existence of
multiple positive Lyapunov exponents. The first ten largest
Lyapunov exponents for the above choice of the parameters
as a function of delay timeτ ∈ (2,29) are shown in Fig. 3,
which are calculated using the procedure of Farmer [9]. In
the following, we will briefly point out various RQA and
complex network measures that we have estimated in this
manuscript.

3. Measures of recurrence plots and complex networks

Recurrence plots (RPs) provide a visual impression of
the trajectory of a dynamical system in phase space. Sup-
pose that the time series{Xi}

N
i=1 representing the trajectory
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Figure 3: The first ten maximal Lyapunov exponentsλmax

of the scalar time-delay system, (1), for the parameter val-
uesa = 1.0, b1 = 1.2c = 0.001, τ ∈ (2,29)

of a system in phase space is given, withXi ∈ R
d. The

RP efficiently visualises recurrences and can be formally
expressed by the matrix

Ri, j = Θ(ǫ − ||Xi − X j||), i, j = 1, · · · ,N, (3)

whereN is the number of measured pointsXi, ǫ is a prede-
fined threshold,Θ is the Heaviside function and||.|| is the
Euclidean norm. Forǫ-recurrent states, that is for states
which are in anǫ-neighbourhood, we have the following
notion:

Xi ≈ X j ⇐⇒ Ri, j ≡ 1. (4)

The graphical representation of the matrixRi, j is called re-
currence plot (RP). The RP is obtained by plotting the re-
currence matrix, Eq. (3), using different colors for its binary
entries, for example by marking a black dot at the coordi-
nates (i, j), if Ri, j ≡ 1, and a white dot, ifRi, j ≡ 0. More
details about the RPs and RQAs along with their applica-
tions can be found in [1]. Now, we will directly introduce
the measures which we have used for our analysis:

1. Maximal diagonal length (Lmax) defined as

Lmax = max({li}
Nl

i=1), (5)

where,l is length of diagonal lines andNl is their total
number.

2. Laminarity defined as

LAM =

∑N
v=vmin

vp(v)
∑N

v=1 vp(v)
, (6)

wherep(v) is the distribution of the vertical lines of at
least lengthv.

3. Link density given as

ρ =
1

N(N − 1)

N
∑

i, j=1

Ai, j, (7)

corresponding to the global recurrence rate andAi, j =

Ri, j − δi, j, whereδi, j is the Kronecker delta.

4. Clustering coefficient,C =
∑

v Cv/N, where the local
clustering coefficientCv is defined as

Cv =

∑N
i, j=1 Av,iAi, jA j,v

kv(kv − 1)
, (8)

wherekv =
∑N

i=1 Av,i is the degree centrality giving the
number of neighbours of nodev.

5. The average length of shortest path between all pairs
of nodes is given by the average path length

L =
1

N(N − 1)

N
∑

i, j=1

di, j, (9)

wheredi, j is the shortest path connecting the nodesi
and j.
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More details and discussions on these measures and their
application to understand the dynamical transitions in the
phase space of complex systems can be found in Refs. [2,
3, 4].
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Figure 4: (a-c) Periodic attractor, its time series and its cor-
responding RP, respectively, for the value ofc = −0.1 and
(d-f) hyperchaotic attractor, its time series and its corre-
sponding RP, respectively, for the value ofc = −0.06.

4. Application to the time-delay system

To investigate the structural changes in the above men-
tioned measures corresponding to the dynamical transitions
in the phase space of the piecewise linear time-delay sys-
tem, we consider the same parameter values (a = 0.16, b =
0.2 andτ = 25.0) and the bifurcation diagram as in Fig.4 of
Ref. [8]. In our simulations, we have left sufficiently large
transients and analysed time series of lengthN = 100,000.
We have fixed the integration time step as∆t = 0.01, sam-
pling interval as∆ts = 100 and the threshold value for
ǫ = 0.13σ, whereσ is the standard deviation. The periodic
attractor projected in the phase space (x(t), x(t + τ̂)) with
τ̂ = 10 and its corresponding time series for the value of
c = −0.1 are shown in Figs. 4a and 4b, respectively. Simi-
larly, the chaotic attractor and its corresponding time series
for c = −0.06 are shown in Figs. 4d and 4e, respectively.
The RPs of the periodic (Fig. 4a) and the chaotic (Fig. 4d)
attractors are shown in Figs. 4c and 4f, respectively.

The bifurcation diagram in the range of the control pa-
rameterc ∈ (−0.1,−0.05) is shown in Fig. 5a. We have
calculated the values of the measures, mentioned in Sec. 3,
corresponding to the attractors in the phase space (x(t), x(t+
τ̂)) with τ̂ = 10. Equivalently one may also consider other
phase variablesx(t + M∆t), whereM = τ

∆t =
25
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Figure 5: (a) Bifurcation diagram of the scalar piece-
wise linear time-delay system for the parameter values
a = 0.16, b1 = 0.2, τ = 25 andc ∈ (−0.1,−0.05). Se-
lected RQA measures: (b) maximal diagonal line length
Lmax and (c) laminarityLAM, as well as complex network
measures: (d) link densityρ, (e) average path length (L)
and (f) clustering coefficient (C).

for the chosen values of the delay timeτ and the integration
time step∆t. However, more attention have to be paid for
choosing the threshold value ofǫ to avoid other recurrences
within the ǫ neighbourhood due to the tangential motion,
namely, the sojourn points. This plays a vital role in deter-
mining the resulting structures in the above measures.

The maximal diagonal line length (Lmax) is depicted in
Fig. 5b as a function ofc corresponding to the bifurcation
diagram (Fig. 5a). As expectedLmax is very large (nearly
equal to the length of the considered time series after the
sampling) in the periodic regimes. However,Lmax does not
acquire low values in the chaotic regime, when compared
to the logistic map (Fig. 1b) as expected due to the highly
disconnected diagonal lines in the RP for a chaotic attrac-
tor in general. Nevertheless, the scenario is different in the
case of chaotic/hyperchaotic attractors of time-delay sys-
tems as such systems will have trajectories with large pe-
riods as confirmed by the long diagonal lines in the RP of
the chaotic attractor (Fig. 4f). It is also to be accounted
that small amplitude to the large value ofLmax is also con-
tributed by the sojourn points.

The laminarity (LAM), illustrated in Fig. 5c, in the peri-
odic regime should be almost around zero (as in Fig. 1c of
Logistic map) as there should not be any clusters of recur-
rence points in the periodic regime. However the large val-
ues ofLAM, throughout the range ofc and in the periodic
regime in particular, is due to the recurrence of a large num-
ber of tangential motions within theǫ neighbourhood. Due
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to high dimensional phase space of the time-delay systems,
the projection of the trajectory in certain phase space may
remain static for long time, while it is evolving in some
other phase space. This may be avoided by considering
more number of phase space/variables in embedding, while
constructing the recurrence matrix and choosing appropri-
ate phase space.

The link density (ρ), shown in Fig. 5d, quantifies the av-
erage phase space density. It acquired large values in the
periodic regime and low values in the chaotic regime as ex-
pected corresponding to large recurrences in the periodic
regime (Fig. 4a) and comparatively low recurrences in the
chaotic regime (Fig. 4d). However, as mentioned earlier
the sojourn points will have small contribution to the am-
plitude ofρ. The average shortest path length (L) and the
clustering coefficient (C) are plotted in Figs. 5e and 5f,
respectively. In the periodic regimes, the different periods
correspond to different disconnected components, as they
never occur at the same point in phase space, with each
components being a fully connected network as each pe-
riodic trajectory/behavior represents the same state in the
phase space. HenceL should acquire the value unity andC
should take the largest possible value (C = 1) in the peri-
odic regime as in Figs. 1e and 1f, respectively, for the case
of the Logistic map. The average shortest path length takes
the small value and the clustering coefficient takes largest
value in the periodic regime as can be seen in Figs. 5e and
5f, respectively. However,L is slightly above andC is less
than unity in the periodic regime because of the presence
of sojourn points. In chaotic regime,L acquires larger val-
ues andC takes lower values than in the periodic regime as
expected.

5. Summary and Conclusion

We have presented our preliminary results by extending
the concept of recurrence network to a high dimensional
system, namely a scalar piecewise linear time-delay sys-
tem. In particular, we have estimated some of the recur-
rence quantification and network measures based on the
recurrences in the phase space of the time-delay system.
We have found that these measures characterize and quan-
tify dynamical transitions in high-dimensional state space
similar to that observed in the well-known logistic map.
However, applying the recurrence network concept to re-
trieve exactly the dynamical and the statistical properties
involved in the high-dimensional state space is a difficult
task. One has to carefully analyse the phase spaces of
infinite-dimensional systems such as time-delay systems
to choose more appropriate phase spaces, in which most
of the dynamical transitions occur, to be considered in the
embeddings to construct the recurrence matrix to avoid any
artifact.
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