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Abstract—An interesting potential approach for nonlin-such a high dimensional phase space in Sec. 4. Finally, in
ear time series analysis by exploiting the analogy betweeec. 5, we present our summary and conclusion.
the recurrence matrix, representing the recurrences segpha
space, and the adjacency matrix of a complex network to :
characterize and analyze the dynamical transitions in the o8|
phase space of complex systems is being emerging. In thig s
work, we present our preliminary results by applying this o4
method to a high dimensional phase space of a time-delay o= (
system.

0.4

0.3

a 0.2

0.1

0 . 0
35 36 37 38 39 4 35 36 37 38 39

IS

1000

1. Introduction
800

Among modern data analysis techniques recurrence; 6%
analysis has its unique advantages and is being used as a4oo
potential tool for time series analysis in almost all breagh 200
of science and technology [1]. The analogy between the re- o
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currence matrix and the adjacency matrix has recently pro- P e AT
voked a flurry of investigations in employing complex net- o4 1
work measures to recurrences in phase space to analyse and, , 0.95 l “
characterize dynamical transitions in phase space in terms; o oo
of network topology (cf.[2, 3, 4, 5, 6, 7]). 502
Recently, the network measures, namely link dengixy ( 01 0.85
average path lengtt.] and clustering cd&cient (C), along oL@ 05 "
with the recurrence quantification analysis (RQA), namely ~ *° *¢ 37,%% 29 ¢ 3 %0 AT a8 38 e

maximal diagonal line length_¢4x) and laminarity LAM)
are estimated to capture the dynamical transitions in tHegure 1: (a) Bifurcation diagram of the logistic map. Se-
well-known logistic map [2], as shown in Fig. 1, in termslected RQA measures: (b) maximal diagonal line length
of these measures. The dotted lines in these figures cortemx and (c) laminarit. AM, as well as complex network
sponds to the four tlierent dynamical regimes (i) period-3 measures: (d) link density, (e) average path length.X
window ata = 3.830, (ii) band merging ad = 3.679, (i) and (f) clustering coicient C).
cross points of supertrack functionseaat 3.791 and (iv)
outer crisis ab = 4, which has been analysed in detail [2].

As a natural extension of these studies to high dimer Scalar piecewiselinear time-delay system
sional phase space, we have applied the above measures
to a time-delay system, essentially an infinite-dimendiona We consider the following scalar first order delastet-
system, and discuss our preliminary results and tifie- di ential equation represented as
culties involved in it. In particular we consider a piecesvis x(t) = —ax(t)+bf(x(t-1))+c, (1)
linear time-delay system and apply these measures to anal- . )
yse the dynamical transitions in such a high-dimension4/n€rea b andc are parameters; is the time-delay and

phase space. is an odd piecewise linear function defined as
The plan of the paper is as follows. In Sec. 2, we intro- 0, X< -4/3
duce the model system and discuss briefly about its dynam- -15x-2, -4/3<x<-08
ical properties. We will point out the measures that have f(x) = X, -08<x<08 )
employed in Sec. 3 We will present our preliminary results -15x+2, 08<x<4/3
and discuss the practicalficulty involved in analyzing 0, x> 4/3.
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We have investigated the above system in detail includingf a system in phase space is given, withe RY. The
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RP dficiently visualises recurrences and can be formally
expressed by the matrix

Ri,j = ®(E_ ||X| - X]”), is ] = 1a T Ns (3)

whereN is the number of measured poirXs € is a prede-
fined threshold® is the Heaviside function and|| is the
Euclidean norm. Foe-recurrent states, that is for states
which are in ane-neighbourhood, we have the following
notion:

Xi ~ Xj — Ri,j =1 (4)

The graphical representation of the maikix is called re-
currence plot (RP). The RP is obtained by plotting the re-
currence matrix, Eq. (3), usingftiérent colors for its binary
entries, for example by marking a black dot at the coordi-
nates {, j), if R;; = 1, and a white dot, iR; ; = 0. More

Figure 2: (a)The hyperchaotic attractor of the piecewisgetails about the RPs and RQAs along with their applica-
linear time-delay system, (1), for the choice of the paramdions can be found in [1]. Now, we will directly introduce

tersa=1.0,b=1.2,¢=0.001 andr = 25.0

linear stability analysis, bifurcation analysis and tians
effects [8]. For the choice of the parametars: 1.0,b =
1.2,c = 0.001 andr = 250 with the initial condition
X(t) = 0.9,t € (-,0), the scalar piecewise linear time-

the measures which we have used for our analysis:

1. Maximal diagonal lengthL{-ax) defined as

delay system (1) exhibits hyperchaos (Fig. 2). The hyper-
chaotic nature of Eq. (1) is confirmed by the existence of
multiple positive Lyapunov exponents. The first ten largest
Lyapunov exponents for the above choice of the parameters
as a function of delay time € (2, 29) are shown in Fig. 3,
which are calculated using the procedure of Farmer [9]. In
the following, we will briefly point out various RQA and
complex network measures that we have estimated in this

manuscript. 3

3. Measures of recurrence plotsand complex networks

Recurrence plots (RPs) provide a visual impression of
the trajectory of a dynamical system in phase space. Sup-
pose that the time seriéxi}i’i , representing the trajectory
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Figure 3: The first ten maximal Lyapunov exponetsx
of the scalar time-delay system, (1), for the parameter val-
uesa=1.0,b; =1.2c=0.00L 7 € (2,29)
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Lmax = max({li %), ®)
where| is length of diagonal lines arf, is their total
number.

2. Laminarity defined as
N VPV,
LAM = —ZV‘NVm" i ), (6)
Zv:l Vp(V)

wherep(V) is the distribution of the vertical lines of at
least lengthv.

. Link density given as

1 N
PTNIN-D) 2 A "

ihj=1

corresponding to the global recurrence rate Afd=
Ri j — 6i,j, whereg; j is the Kronecker delta.

. Clustering cofficient,C = ', C,/N, where the local

clustering co#ficientC, is defined as

BN AUAGAL
R ©

wherek, = Zi’il Ay is the degree centrality giving the
number of neighbours of node

The average length of shortest path between all pairs
of nodes is given by the average path length

1 N
L=—— ) d,
N(N - 1) .121 ")

whered; j is the shortest path connecting the nodes
andj.
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More details and discussions on these measures and their -0.4 0.04

application to understand the dynamical transitions in the 0.03
phase space of complex systems can be found in Refs. [2,5 |« 002
I ;
3, 4]. 12 0.01
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‘ lected RQA measures: (b) maximal diagonal line length
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Figure 4: (a-c) Periodic attractor, its time series andats ¢ and (f) clustering caicient C).

responding RP, respectively, for the valuecof —0.1 and

(d-f) hyperchaotic attractor, its time series and its corre _ . _
sponding RP, respectively, for the valuecot —0.06. for the chosen values of the delay timand the integration
' ' time stepAt. However, more attention have to be paid for

choosing the threshold value ofo avoid other recurrences
within the e neighbourhood due to the tangential motion,
namely, the sojourn points. This plays a vital role in deter-
H]ining the resulting structures in the above measures.

4. Application tothetime-delay system

To investigate the structural changes in the above me
tioned measures corresponding to the dynamical transition The maximal diagonal line length ) is depicted in
in the phase space of the piecewise linear time-delay sysig- 5b as a function of corresponding to the bifurcation
tem, we consider the same parameter valaesQ.16,b =  diagram (Fig. 5a). As expectdgn is very large (nearly
0.2 andr = 25.0) and the bifurcation diagram as in Fig.4 ofequal to the length of the considered time series after the
Ref. [8]. In our simulations, we have left§iciently large Sampling) in the periodic regimes. Howevefay does not
transients and analysed time series of ledgth 100,000. acquire low values in the chaotic regime, when compared

We have fixed the integration time stepsts= 0.01, sam- 0 the logistic map (Fig. 1b) as expected due to the highly
pling interval asAts = 100 and the threshold value for disconnected diagonal lines in the RP for a chaotic attrac-

€ = 0.130, whereo is the standard deviation. The periodictor in general. Nevertheless, the scenario ifedent in the
attractor projected in the phase spagg@)(x(t + 7)) with ~ case of chaotjbyperchaotic attractors of time-delay sys-
# = 10 and its corresponding time series for the value d€Ms as such systems will have trajectories with large pe-
¢ = 0.1 are shown in Figs. 4a and 4b, respectively. simitiods as confirmed by the long diagonal lines in the RP of
larly, the chaotic attractor and its corresponding timéeser the chaotic attractor (Fig. 4f). It is also to be accounted
for c = —0.06 are shown in Figs. 4d and 4e, respectivelythat small amplitude to the large valuelofa is also con-
The RPs of the periodic (Fig. 4a) and the chaotic (Fig. 4dyibuted by the sojourn points.
attractors are shown in Figs. 4c and 4f, respectively. The laminarity LAM), illustrated in Fig. 5c, in the peri-
The bifurcation diagram in the range of the control paedic regime should be almost around zero (as in Fig. 1c of
rameterc € (-0.1,-0.05) is shown in Fig. 5a. We have Logistic map) as there should not be any clusters of recur-
calculated the values of the measures, mentioned in Secr8nce points in the periodic regime. However the large val-
corresponding to the attractors in the phase spgte X(t+ ues ofLAM, throughout the range @fand in the periodic
7)) with 7 = 10. Equivalently one may also consider otheregime in particular, is due to the recurrence of a large num-

phase variablex(t + MAt), whereM = £ = %051 = 2500 ber of tangential motions within theneighbourhood. Due
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However, applying the recurrence network concept to re-

trieve exactly the dynamical and the statistical propsrtie

involved in the high-dimensional state space is fadlilt

task. One has to carefully analyse the phase spaces of

infinite-dimensional systems such as time-delay systems

to choose more appropriate phase spaces, in which most

of the dynamical transitions occur, to be considered in the

embeddings to construct the recurrence matrix to avoid any

artifact.
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