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A major issue in using recurrence plots (RPs) to study dynamical systems is the choice of
neighborhood size for thresholding the distance matrix that creates the plot. This is particularly
important for continuous dynamical systems as temporal correlations of the trajectory might
provide redundant information for recurrence analysis. We suggest an alternative procedure for
creating RPs using the local minima provided by the distance profile, which approximately
corresponds to the recurrence information in the orthogonal direction. The local minima-based
thresholding yields a clean RP of minimized line thickness, that is compared to the plot obtained
by the standard radius bases thresholding. New definitions of line segments arising from the
local minima-based method are outlined, which yield consistent results with those derived from
standard methods. Our preliminary comparison suggests that the newly introduced thresholding
technique is more sensitive to small changes in a system’s dynamics. We demonstrate our method
via the chaotic Lorenz system without the loss of generality.

Keywords: Distance function; local minima thresholding; recurrence quantification analysis;

continuous dynamical system.

1.

Recurrence is a fundamental property of most
dynamical systems: as a system evolves in time,
it comes arbitrarily close to points previously vis-
ited in phase space [Poincaré, 1890]. The pattern
of recurring states is a meaningful source of infor-
mation about the dynamics of the system [Marwan
et al., 2007; Webber Jr. & Zbilut, 2005]. Recurrence
plots (RPs) and recurrence quantification analysis
(RQA) are methods for visualizing and measuring
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the recurrent patterns exhibited by a dynamical sys-
tem. The creation of a recurrence plot requires first
calculating a distance matrix, followed by a thresh-
olding procedure to qualify point pairs in phase
space as being recurrent with one another. This
paper focuses on a new method for performing this
thresholding operation that takes into account the
information provided by the local minima of the dis-
tance profile. Before going further we begin with a
general overview of RPs and RQA.
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A recurrence plot can be constructed from any
time series, either by starting with an explicitly
defined phase space or by reconstructing the
phase space from an empirical signal [Takens,
1981; Abarbanel et al., 1993]. The phase space
reconstruction involves creating additional phase
space dimensions by using time-delayed copies of
the one-dimensional time series. Two parameters
are used for this operation, the time delay 7
and the embedding dimension m (necessary to
completely “unfold” the attractor). The optimum
embedding parameters for m and 7 are often guided
by approaches such as the false nearest neighbor
and mutual information methods, respectively
[Abarbanel et al., 1993; Hegger et al., 1999].

The first step of creating a recurrence plot
is to construct the distance matrix by calculat-
ing the distance between every possible point pair
in phase space (i.e. the state vectors). The result
of this operation is an N x N matrix of dis-
tances where NN is the number of points in the
phase space. Given a trajectory of a dynamical sys-
tem consisting of different states x; € R™ (i.e.
a sampled trajectory from system X of dimen-
sion m, where 7 indicates the time of observation),
the corresponding distance matrix D is defined as
follows

Dij=lxi—x4l, 4j=1,...,N, (1)
where || - || is the distance between two observations
in phase space (e.g. Euclidean or Maximum norm).
The dynamical behavior of an m-dimensional sys-
tem is now mapped into a two-dimensional matrix.
For illustration, we will use the Lorenz system
henceforth [Lorenz, 1963]

Cw,9,2) = (oly — ), 2(p— 2) — .2y — 2),

(2)

with 0 = 10, p = 28 and # = 8/3. The distance
matrix can be displayed as an image, where each
axis shows the sampled time points of the phase
space, and the distance between any two points is
represented with a color map [Fig. 1(c)].

The distance matrix is symmetrical about the
main diagonal (the line of identity LOI) by default
since D; ; = Dj;. The distance topology of these
various types of dynamical systems can be under-
stood as ridges and valleys running at 45° angles

through the distance plots. Valleys reveal similar-
ities or recurrences of trajectories in the temporal
evolution of the system. The majority of recurrence
quantification measures as well as the estimation
of dynamical invariants center around quantify-
ing these diagonal line segments [Fig. 1(d)], but
require a clear definition of what is recurrent and
what is not. Therefore, each point in the distance
matrix will be qualified as being either recurrent or
nonrecurrent by thresholding the distance matrix.
Points that are close to one another are consid-
ered as recurrent, and points that are far from
one another as nonrecurrent, resulting in a binary
matrix [Fig. 1(d)].

An ideal thresholding procedure is optimal
insofar as it renders patterns of recurrence with
utmost clarity. Keeping too many recurrence points
results in a redundancy of recurrent information,
and renders recurrence patterns less distinct. Keep-
ing too few recurrence points results in a loss
of recurrence information by removing recurrences
that are informative of the system’s dynamics.
Moreover, the ideal recurrence criterion should not
consider subsequent points on the same trajectory
as recurrent, i.e. X;,X;t+1,..., (which cause thick-
ening of diagonal lines in the RP). We will refer
to these subsequent points as tangential motion. In
the case of discrete systems, thickness of diagonals
are often related to laminar states which are help-
ful for the understanding of the system. However, in
the case of continuous systems, they often provide
redundant information related to temporal correla-
tions of the trajectory. Hence, we should exclude the
effects of the tangential motion on recurrence anal-
ysis at least for continuous systems. In this paper,
we introduce an alternative way to threshold the
distance matrix Eq. (1) by taking into account the
local minima of the properly defined distance func-
tion. Therefore, in the following we focus on thresh-
olding the distance matrix for continuous dynamical
systems.

In Sec. 2, we will discuss some details about the
standard thresholding techniques utilized in the lit-
erature. In Sec. 3, we present a local minima-based
thresholding algorithm, which additionally (Sec. 4)
requires a new definition for line segments. In Sec. 5,
we show the efficiency of our method by distin-
guishing different dynamical regimes in the chaotic
Lorenz system. Finally in Sec. 6, we draw some
conclusions based on this work and discuss future
directions of research.
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Fig. 1.
plot (fixed threshold e = 4, Euclidean norm).

2. The Standard Thresholding
Method for Creating Recurrence
Plots

Recurrence quantification analysis, the estimation
of dynamical invariants, or synchronization analysis
require a binary RP [Marwan et al., 2007]. The most
commonly used thresholding procedure to obtain
RPs involves the application of a distance threshold
€ to the distance matrix [Figs. 1(c) and 1(d)]. Any
pair of states (x;,%;) in phase space whose distance
is less than an € value is considered to be recur-
rent, while any point pair whose distance is larger
than this e value is classified as nonrecurrent. This
is formally expressed by

R(¢) = ©(e - D), (3)

where O is the Heaviside function, D is the distance
matrix and R is the recurrence matrix. The thresh-
old € spans a neighborhood around each state x;,
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(a) A realization of the Lorenz oscillator, (b) its phase space representation, (c) distance matrix and (d) recurrence

and other states x; falling into this neighborhood
are considered to be recurrent. For our current pur-
pose, we will focus only on the Lo Euclidean dis-
tance metric with a fixed threshold ¢, since this is
the most widely used method. By visualizing this
matrix with, black (R;; = 1) and white (R; ; = 0)
dots we see that different types of dynamics cause
different types of line structures [Marwan et al.,
2007].

The goal of choosing € is to retain as much
unique and dynamically informative information as
possible while minimizing the presence of redun-
dant information that will negatively affect the
appearance of the recurrence structure. These two
goals are frequently difficult to satisfy simultane-
ously, which means choosing an appropriate ¢ can
be difficult [Marwan, 2011]. Because the quantifi-
cation of the recurrence structure is sensitive to
the choice of €, the parameter must be chosen
with care. Several approaches have been suggested
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[Marwan et al., 2007; Schinkel et al., 2008; Marwan,
2011]. Webber and Zbilut [2005] recommended
using several e values and then using the follow-
ing three rules of thumb to choose an appropri-
ate € (for the definition of the following mentioned
RQA measures we refer to [Marwan et al., 2007]).
(1) The € value should lie in the scaling region vis-
ible by plotting € values by RR in log—log coordi-
nates. (2) The total number of recurrences should
be kept low, in the range of 1-2%, and (3) The
€ value may sometimes coincide with the first
notch in the ¢ by DET graph, which can be used
to further guide the choice of the e. Determina-
tion of the optimal threshold follows from inspec-
tion and judgment of the above criteria. e¢ by
DET graph indicates whether the inclusion of addi-
tional recurrent points via a larger ¢ value adds
to the pre-existing deterministic structure as indi-
cated by an increase in DET. The appropriate €
value lies in the first decrease of DET observed
by increasing e. However, this notch is not always
present, and so cannot reliably be used to deter-
mine the € value in every case. Other approaches
suggest using e values to cover 10% or even 5%
of the maximal phase space diameter [Zbilut &
Webber, 1992; Schinkel et al., 2008] or to be 5-
10% of the standard deviation [Marwan et al.,
2007].

The original definition of a RP uses a different
criterion, where the number of points falling into the
neighborhood of the state x; is constant [Eckmann

Time

Fig. 2.
are compositions of many parallel diagonal lines.

et al., 1987]. Other recurrence criteria involve
dynamical properties. For example, in perpendic-
ular RPs two points x; and x; are recurrent if the
jth point is within the neighborhood of 7 and lies
on a plane that is perpendicular to the tangen-
tial flow at the ith vector point [Choi et al., 1999].
In an iso-directional RP recurrences are related to
trajectories which run parallel and in the same
direction [Horai & Aihara, 2002]. Such approaches
are refinements of the standard method that uses
a definitional criteria to further restrict the set
of points initially qualified as recurrent using a
distance threshold in order to exclude recurrences
coming from tangential motion. A review and com-
parison of different recurrence criteria is beyond the
scope of this paper (see [Marwan et al., 2007] for
a more detailed discussion). Nevertheless, most of
these methods need at least one parameter: the
recurrence threshold e or the number of nearest
neighbors.

By taking a closer look at RPs, the issues
surrounding the choice of an appropriate € value
become apparent. As e is increased, more recurrent
information is captured, but the thickness of the
diagonal lines in the RP also increases. The thick-
ness of diagonals is sometimes related to laminar
states of the system [Marwan et al., 2002; Marwan,
2011]. However, it may also reflect tangential
motion (so-called “sojourn points”), which should
be excluded [Marwan et al., 2007]. A diagonal line in
a recurrence plot corresponding to (pseudo)periodic

Time
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(a) RP of the Lorenz oscillator (¢ = 4, Euclidean norm) and (b) a magnified segment showing that the diagonal lines
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motion should be exactly one point thick, capturing
an interval for which trajectories at different points
in time remain proximate [Zou et al., 2007]. How-
ever, the typical RP construction method causes
diagonal lines which exceeded one-point thickness
(Fig. 2). Bands of thickness about diagonal line seg-
ments constitute redundant information that can
introduce artifacts into the line-based measures
of recurrence analysis [Zou et al., 2007]. There-
fore, the aim is to achieve a balance between
(1) not removing relevant dynamical information
while (2) minimizing redundant information (keep-
ing diagonal segments thin). This makes the thresh-
old parameter difficult to set in a fully optimized
manner.

3. Local Minima Based Thresholding

We now propose an alternative way of threshold-
ing which ensures thin diagonal lines (of almost one
point thickness).

For continuous dynamical systems, recurrence
behavior with respect to any m-dimensional point
x; is describable as either moving closer to or fur-
ther from point x;. The pattern of decreasing and
increasing distances in the distance matrix relative
to x; will have the form of a relatively smooth func-
tion with local maxima and local minima of this
distance function denoting points where the direc-
tion of motion changes (i.e. diverging or converg-
ing to x;). Hence, the local minima in the distance
functions are of particular interest because they cor-
respond to the local closest returns of a segment
of the phase space trajectory and will be used to
define a recurrence. Over successive time the local
minima of the individual distance functions form
valleys in the distance matrix parallel to the LOI.
These valleys correspond to trajectories that are
parallel to one another (even if such trajectories are
not proximal).

Since valleys tend to run along lines that are at
45°, the best way to uncover them in the distance
matrix is to evaluate the distance profile d; at time ¢

dZ(T) = D7;+T77;,7- with

:—N 2-__
T + 21 5

that runs perpendicular to the LOI (i.e. anti-
diagonals of the distance matrix). In addition, this
choice of using anti-diagonals maintains the sym-
metry of the distance matrix. To define a recur-
rence in the plot we look for local minima in each
anti-diagonal of the distance matrix d;(7). Each
point found in this manner is qualified as a recur-
rence point [Fig. 3(b)] and captures the local closest
returns (valleys) of the distance matrix. This oper-
ation can be performed without choosing any par-
ticular € value and theoretically will capture every
parallel trajectory present in the signal regardless of
the distance between the trajectories. In compari-
son to standard thresholding, which results in diag-
onal lines of thickness greater than two [Figs. 3(a)
and 3(c)], the local-closest return results in lines of
thickness at most two® [Figs. 3(b), 3(d) and 4]. This
minimizes concern about the redundant information
contained in thick lines having a negative effect on
recurrence measures.

However, as the requirement for a recurrence is
now not one of distance but of “tendency to return”,
we find more recurrences than using standard defi-
nitions of recurrence [Figs. 3(c) and 3(d)]. Depend-
ing on the problem, we could use this RP with more
recurrences or again introduce a threshold, restrict-
ing the recurrences to closer states [Figs. 3(b), 3(d)
and 4(b)] in phase space. This constitutes our local
minima-based thresholding for RPs. Although we
lose the parameter-free approach by again apply-
ing a threshold, such an approach can still be ben-
eficial when compared to the standard recurrence
definition. For standard thresholding, the recur-
rence structures (in particular, the diagonal lines)
depend on the choice of €, the larger ¢ the more
recurrence points will appear in the RP and the
thicker the diagonal lines will be. However, for the
local closest returns, the recurrence definition is not
changing with e in general; the resulting RPs are
more independent on variations in e (Fig. 5). In
fact, the choice of € only excludes such recurrences
that come from phase space trajectories which are
far away, but will not change the appearance of
diagonal lines (e.g. their thickness). Note that this
idea is similar to the perpendicular RPs, where a
recurrence is defined for those points which fall
into the e-neighborhood and lie in the (m — 1)-
dimensional subspace of the phase space R™ which

!Line thickness of two is due to the fact the odd and even length anti-diagonals alternate and succeeding recurrences thus

appear at (4,7) and (4,5 +1) or (i + 1, 7).
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Fig. 3. A distance profile d;(7) through the distance matrix of the Lorenz oscillator. (a) Application of threshold ¢ = 4
(orange line) results in thick lines in the RP (c). (b) Recurrences defined by local minima (orange points). (d) Lines in the RP
having mostly thickness one. However, additional recurrences can be found coming from states which are far away in phase
space (grey bars). This can be overcome by using additional threshold (red dotted line in (b)).
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Influence of the threshold € on (a) the number of recurrences as expressed by the recurrence rate RR, and on (b) the

distribution of diagonal lines as expressed by the entropy of the length distribution of diagonal lines (ENT) for the example
of the Lorenz oscillator. Increasing € caused a larger variation in the recurrence structures for the standard method than for

the local minima-based thresholding method.

is perpendicular to the trajectory of this point [Choi
et al., 1999].

Line thinness is desired for (pseudo)periodic
signals and measures based on diagonal line seg-
ments, but interferes with measures based on ver-
tical line segments, as it largely precludes vertical
lines in the RP. The local minima-based thresh-
olding method captures the location of the valley
but does not retain information about the shape of
the valley, which is necessary for the detection of
laminar states.

4. Definition for Line Segment

The definition of recurrences in a RP by local min-
ima can cause “distortions” in the diagonal line
structures, i.e. lines can appear bowed or with
some jumps (Fig. 6). Such distortions can skew
diagonal line-related recurrence measures. There-
fore, the local minima-based thresholding requires
a modification for definitions of line segments.
Usually, the definition of a line segment requires
sequential recurrence points on diagonals that are
parallel to the LOI. Since this definition does not
work well with the local minima-based RP thresh-
olding, we propose a slight modification of the
definition of a line, allowing some deviations from
the 45° direction.

Here a line is conceptualized as any contigu-
ous patch of points in the RP, where the criteria of

contiguity specifies that recurrence points can be no
more than one sample away in both dimensions of
the recurrence matrix (i.e. R;+1j or R;j+1). Under
the standard method the number of points that
make up a line is equal to the number of samples
over which the two trajectories remain recurrent,
and the period of recurrence will be the same in
both dimensions of the distance matrix. Under the
new definition of line segments, lines can contain
more points that the temporal extents of the line
and lines can deviate from 45°. We define the length
of such a line as the maximal spatial extent in either
x or y-direction. For example, a line that visits
points starting from (50, 30) and ending at (60, 45)
has an extent of 10 in the x-dimension and of 15
in the y-dimension. The length of this line would
then be assigned the value of the larger extent, in
this case 15. This definition of line length was cho-
sen to be commensurate with the standard notion
that line length is informative of the temporal
period over which two trajectories remain recurrent
with one another. Other definitions are of course
possible.

Besides the new definition of line segments
given above, measures that capture nonlinear
features of line segments (such as curvatures,
slope variation) are also interesting and provide
additional information on the system’s dynam-
ics [Klimaszewska & Zbebrowski, 2009]. It should
also be noted that this new line definition can
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being parallel to the LOI.

be used with the standard distance thresholding
procedure. Preliminary tests have shown a marked
improvement in the sensitivity and accuracy of
RQA measures.

5. Efficacy of the Radius-Based and
Local Minima-Based Methods

We have presented an alternative way of captur-
ing recurrences in RPs. However, RQA in its cur-
rent instantiation is already a very powerful and
robust tool for studying dynamical properties of
time series. For the local minima-based method to
be useful it must at least match the efficacy of the
standard method in order to show that the bene-
fits it offers do not come with a corresponding cost.
To answer this question of efficacy, we have stud-
ied dynamical transitions in the Lorenz attractor,
Eq. (2), which shows a series of period doubling
bifurcations for o = 10, 5 = 8/3, and p varies within
the interval [146.7 166.1]. As p increases and exceeds
a critical value pg ~ 166.1, the system becomes
chaotic. We test the efficacy of the local minima
method against the standard method for the detec-
tion of different dynamical regimes (i.e. in periodic
and chaotic regimes). In particular, we have chosen
a value very shortly before and after the critical py,
ensuring almost periodic (p = 165.86) and chaotic
dynamics (p = 166.2).

The Lorenz system has been integrated using
the fourth order Runge-Kutta method with an

Time

1 1.5 2 25 3 35 4
Time

(b)

(a) Local minima-based RP for the Lorenz system and (b) a magnified part of it. Line structures can deviate from

integration step of 0.01 and 10 000 integration steps.
The last 2000 iterations of each realization were
used in the analysis. The sampling time was 0.01.
The test consisted of 1000 realizations of the dif-
ferent parameterizations. Each realization started
from random initial conditions in the range of 0
to 1. All three components of the Lorenz system
were used for calculation of RPs (i.e. no embedding
used).

For both methods, the e value for each run was
chosen to be 5% of the standard deviation of the sys-
tem. The local minima-based method also employed
the new definition of a line segment as any contigu-
ous set of recurrence points. The main diagonal was
removed for both the standard RP and the local
minima-based RP by removing a 10 point Theiler
window centered around the LOI.

To test the efficacy, we used an independent
samples t-test for each method on each measure to
determine if the method was able to statistically
discriminate between the two parameter settings.
For measures where both methods found statisti-
cal significance, we also included Cohen’s d as a
measure of effect size to compare the statistical
power of the two methods. The rule of thumb for
Cohen’s d is to interpret d < 0.2 as a small effect,
d ~ 0.5 as a medium effect and d > 0.8 as a large
effect.

We used four RQA measures in this analy-
sis [Marwan et al., 2007]: determinism DET, max-
imal diagonal line length Ly ax, mean diagonal line
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Time
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Fig. 7.
RPs for (c) p = 165.86, and (d) p = 166.2.

length L, and diagonal line length entropy ENT. We
chose this set of measures because they are expected
to be affected by the transition from order to chaos
and they are based on the diagonal line struc-
tures in the RP. We expect that as p is increased
we should see an increase in ENT due to the
increase in chaotic behavior and a decrease in DET,
L and Ly due to the growing divergence (i.e.
Lyapunov exponent) caused by extending chaotic
behavior.

For all four RQA measures, DET, L, Ly and
ENT, both methods reveal statistically significant
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Phase space portrait of the Lorenz system for (a) p = 165.86 and (b) p = 166.2, and corresponding local minima-based

differences (Tables 1 and 2). Both methods show
the expected decrease in DET, L and L.x and
the increase in ENT for the change of param-
eters from p = 165.86 to 166.2. The effect
size for the standard method is lower than that
for the local minima-based method for all RQA
measures, showing that our method has more
statistical power.

The results confirm that the local minima-
based method matches the performance of
the standard method. The effect size is even
better using the local minima-based method.
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Table 1. Means and standard deviations for the four recur-
rence measures obtained with the standard method, and cor-
responding t-values and Cohen’s d measure.

r=165.86 (%) r=166.2 (%) t-Value Cohen’s d
DET 99.80 (0.02) 99.76 (0.07) 27.7 0.9
L 21.5 (0.12) 16.2 (1.53) 155 4.9
Lmax 1661.0 (0) 249.3 (116.0) 544 17.2
ENT 6.55 (0.01) 6.65 (0.18) 24.6 0.8
Table 2. Means and standard deviations for the four

recurrence measures obtained with the local minima-based
method, and corresponding t-values and Cohen’s d measure.

r =165.86 (%) r=166.2 (%) t-Value Cohen’s d
DET  99.99 (0.01)  99.89(0.07)  67.5 2.1
L 52.5 (0.38) 26.5 (4.87) 238 7.5
Lmax  1659.0 (0) 252.3 (114.2) 551 17.4
ENT 5.43 (0.01) 5.90(0.14) 148 4.7

6. Conclusion

We have presented an alternative way of creating a
RP by using local minima in the distance matrix.
The advantages are that the local minima-based
thresholding produces RPs with thin lines (thick-
ness not larger than two), requires less computa-
tional effort than perpendicular or iso-directional
RPs [Choi et al., 1999; Horai & Aihara, 2002],
and the threshold parameter has less impact on
the results than it does with the standard method
(Fig. 5). Our method shows the same efficacy with
the standard method in its ability to differentiate
different dynamics by means of RQA. The local
minima-based thresholding procedure demonstrates
the potential of an unconventional general class of
recurrence definitions that directly leverage pat-
terns of distances in the distance matrix to capture
dynamic information.

Special emphasis should be placed on the
reduced dependency of choosing a distance thresh-
old. While an experienced researcher can navigate
the parametric subtleties of recurrence analysis with
a high degree of success, a novice to recurrence
analysis is likely to be put off by the method or
use it incorrectly. As recurrence quantification anal-
ysis continues to grow in popularity and breadth
of application, making the recurrence analysis more
accessible and easier to use will become increasingly
more important. Local minima-based thresholding
helps this cause by reducing the need to carefully
set parameters in order to obtain careful measures.

In this paper, we introduce an alternative way
to create recurrence plots, which is particularly use-
ful for continuous dynamical systems. Note that
for discrete systems (i.e. maps), we do not sug-
gest using this method. The presented preliminary
results provide insights which will be essential for
future research. In the following we outline some of
the interesting topics:

(1) A systematic comparison of existing RQA mea-
sures based on the traditional radius-based
thresholding to measures based on our method
should be performed. Comparing Fig. 4 to
Fig. 1(d), we see that the redundant informa-
tion represented by the thickness of lines has
been removed, which is helpful for reducing the
effects of “sojourn” points. With our new defi-
nition for line segments, it is obvious to see that
the line lengths become longer than they would
be using the standard line definition [Fig. 4(a)],
however, it remains unknown, to what extent
the new line definitions would alter RQA mea-
sures. In order to derive consistent results with
standard RQA measures, some other alterna-
tive definitions may be necessary, e.g. taking
into account the information provided by the
local curvature of the line segments.

(2) Our initial illustration of using the chaotic
Lorenz system can be applied to other contin-
uous systems as well, for instance, a system
with high dimensional chaos or contaminated
by observational noise. The sensitivity of our
method in representing different dynamics and
in identifying distinct dynamical transitions is
an important area of further work. For exam-
ple, measures for identifying laminarity, chaos-
to-chaos transition etc. would be excellent
candidates for testing our method.

(3) Applying an additional threshold € to restrict
the local minima of the distance function results
in a clean recurrence plot comparable to the
results of standard thresholding [Fig. 4(b)].
Dealing with real experimental data, which
often contains noise, will require the use of the
additional distance threshold. This means we
will be faced with the same problem of choos-
ing a threshold value € as when using the tradi-
tional method, although as demonstrated there
will be a reduced effect of threshold choice on
the recurrence measures (Fig. 5). The criterion
depending on the signal-to-noise ratio has to be
further justified.
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(4) Recently, the recurrence matrix Eq. (3) is
alternatively quantified by statistical measures
from complex network perspectives, i.e. regard-
ing Eq. (3) (modulus the main diagonal) as
an equivalent adjacency matrix built from an
unweighted undirected network [Marwan et al.,
2009; Donner et al., 2010]. In principle, all net-
work measures can be applied directly to the
recurrence matrix derived from local minima-
based RPs. However, the interrelationship
to the corresponding phase space properties
should be carefully interpreted. For example in
Fig. 4(a), the column-wise recurrence rate is
clearly overestimated comparing to Fig. 1(d).
Therefore the ratio between the column-wise
recurrence rate and the size of the neighbor-
hood is not a good indicator for the local den-
sity of the system any more. The clustering
coefficient should be interpreted with caution as
well.

(5) The performance of the local minima-based
RPs with cross recurrence plots [Marwan &
Kurths, 2002] or joint recurrence plots [Romano
et al., 2004] is still an open question.
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