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The EEG is one of the most commonly used tools in brain research. Though of high relevance in research,
the data obtained is very noisy and nonstationary. In the present article we investigate the applicability of
a nonlinear data analysis method, the recurrence quantification analysis (RQA), to such data. The method
solely rests on the natural property of recurrence which is a phenomenon inherent to complex systems,
such as the brain. We show that this method is indeed suitable for the analysis of EEG data and that it
might improve contemporary EEG analysis.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction situations in which there is often only very few data available, it
Recurrence is a fundamental property of complex dynamical
systems (Marwan et al., 2007) and the human brain is such a
highly complex dynamical system. Modern, nonlinear data analysis
tools enable us to exploit the notion of recurrence in brain signal
analysis. In this paper we address the analysis of electroencephalo-
graphic (EEG) data based on recurrences.

EEGs non-invasively measure small-scale changes in the brain’s
electric field with a high temporal resolution, which allows studying
changes over time. Certain patterns of change are known to correlate
with higher cognitive functions such as information processing or
language comprehension. These typical patterns are called event-re-
lated potentials (ERP) and can provide valuable insights into infor-
mation processing in the brain (Donchin et al., 1978). Traditionally,
ERP waveforms are determined by computing an ensemble average
of a large collection of EEG trials that are time-locked to a stimulus.
One disadvantage of this averaging method is the high number of tri-
als needed to reduce the signal-to-noise-ratio (Kutas and Hillyard,
1984). This is crucial for example in clinical studies, studies with
children, and studies, in which repetition could influence perfor-
mance. The other drawback is that such averaging implies strong
assumptions on the initial state and background activities of the
brain. Therefore it is strongly desirable to find new ways of analysing
event-related activity on the basis of very few or even single trials.

Considering that recurrence quantification analysis (RQA) has
already been applied in wide range of research fields from climate
dynamics (Marwan et al., 2003), via protein sequences (Zbilut
et al., 2000b), astrophysics (Kurths et al., 1994), and heart rate var-
iability (Marwan et al., 2002), to engineering (Nichols et al., 2006),
ll rights reserved.
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could be one way of achieving this.
2. Method

2.1. Recurrence plots

Recurrence is an inherent property of dynamical systems. Every
such system will, given a sufficiently long time, return to an arbi-
trarily small neighbourhood of a previous state (Poincaré, 1890).
On the basis of this fundamental property, the data analysis tool
called recurrence plot (RP) has been devised by Eckmann et al.
(1987). The RP exploits the notion of recurrence in phase space
to visualise the time dependent behaviour of a dynamical system
which can be pictured as a trajectory ~xðtÞ ¼~xi 2 Rd (i ¼ 1; . . . ; N;
t ¼ iDt, where Dt is the sampling rate) in the d-dimensional phase
space.

The main step of this visualisation is the calculation of an
N � N-matrix

Ri;jðeÞ ¼
1 : k~xi �~xjk 6 e;
0 : otherwise;

�
~xi 2 Rd; i; j ¼ 1; . . . ; N; ð1Þ

where e is a cut-off distance and k � k a norm (e.g. Euclidean or max-
imum norm). The crucial parameter e defines a sphere or box cen-
tred at ~xi. If ~xj falls within this e vicinity, the state will be close to
~xi and is considered to be a recurrence of the state ~xiðRi;j ¼ 1Þ. The
binary values in Ri; j can easily be visualised in a matrix using the
colours black to denote 1 and white to denote 0 (for an illustrative
example refer Fig. 1).

If only a univariate time series ui is available, the phase space
vectors xi can be reconstructed using Taken’s time delay method
~xi ¼ ðui;uiþs; . . . ;uiþðd�1Þ sÞ with embedding dimension m and delay
s (Takens, 1981). The embedding parameters can be estimated
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Fig. 2. Order patterns for dimension d ¼ 3 (tied ranks ui ¼ uiþs are neglected).
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using standard methods of false nearest neighbours (dimension)
and mutual information (delay) (Kantz and Schreiber, 1997).

In Eq. (1) we define recurrence in terms of spatial closeness be-
tween points of phase space trajectories~xi or embedded time series
ui. We can neglect the spatial distance in phase space if we regard
recurrence by using the local order structure of a trajectory. Given
a univariate time series, we can start by comparing d ¼ 2 time in-
stances and define order patterns p as

pi ¼
0 : ui < uiþs;

1 : ui > uiþs;

�
ð2Þ

with the scaling parameter s. tau ensures that the points considered
in forming the order pattern p are not subject to trivial (linear)
dependencies. For d ¼ 3, there are six different order patterns in
the triple ðui;uiþs;uiþ2 sÞ (Fig. 2). Since tied ranks ðui ¼ uiþsÞ are as-
sumed to be rare, we neglect them. Therefore the d components
in ~xi ¼ ðui;uiþs; . . . ;uiþðd�1ÞsÞ provide an inventory of d! symbols or
order patterns. With these order patterns we can form a new sym-
bolic time series pi and define the order patterns recurrence plot
(OPRP) as (Groth, 2005)

Ri;jðdÞ ¼
1 : pi ¼ pj;

0 : otherwise;

�
i; j ¼ 1; . . . ; N: ð3Þ

The main advantage of the symbolic representation is its robustness
against non-stationarity. Order patterns are invariant with respect
to an arbitrary, increasing transformation of the amplitude. Further-
more, a robust complexity measure based on this symbolisation
technique, the permutation entropy, was proposed (Bandt and
Pompe, 2002) and successfully applied to epileptic seizure detection
(Cao et al., 2004). Another advantage is, that the parameter space
for the RQA is significantly reduced as we do not have to select a
threshold e, which cannot be estimated easily (Schinkel et al.,
2008). It should be pointed out here that, strictly speaking, embed-
ding is not necessary for the analysis of EEGs (Section 3) as the data
is recorded from multiple channels which can be used instead of
embedding (Thomasson et al., 2001). But by using order patterns,
i.e. a symbol space, this is not possible.

2.2. Recurrence quantification analysis

A recurrence plot exhibits characteristic large-scale and small-
scale patterns which are caused by typical dynamical behaviour
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(Eckmann et al., 1987; Zbilut et al., 2000a; Marwan and Kurths,
2005; Marwan et al., 2007). Depending on the nature of the under-
lying system, typical patterns can be observed (Fig. 3). The emer-
gence of these structures can be used for quantifying the
underlying system using a recurrence quantification analysis
(RQA). In the RQA the main focus lies on the following characteris-
tics, which we can relate to structural elements appearing in a
recurrence plot (Marwan et al., 2007):

(1) The probability that any state will recur. This corresponds to
the density of recurrence points in the RP, the recurrence rate
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(2) The probability that a recurrence (of any state) will further
recur. A further recurrence corresponds to segments of the
phase space trajectory which run parallel for some time,
i.e. the system evolves through the same states. This can
be derived from an RP as the fraction of recurrence points
forming diagonal line structures in the RP, the determinism
DET,
DET ¼
Plmax

l¼lmin
lPðlÞPlmax

l¼1 lPðlÞ
; ð5Þ

where PðlÞ is the histogram of the lengths of diagonal lines.
Stochastic systems have RPs with almost only single points,
whereas periodic systems have RPs with very long continu-
ous diagonal line structures. Chaotic systems usually have
longer diagonal line structures but also short ones or even
single points (Fig. 3). The term determinism is to be under-
stood in this line of thinking.
Time
12 14 16 18 20 22 24

trajectory of the Lorenz system (Lorenz, 1963) for standard parameters
hich falls into the neighbourhood (grey circle in (A)) of a given point at i is

ack point in the RP at the location ði; jÞ. A point outside the neighbourhood



Fig. 3. Sample OPRPs of different kinds of dynamical systems. (A) white noise, (B) a chaotic system (the Lorenz system with r ¼ 28; b ¼ 8
3 ;r ¼ 10) and (C) a periodic signal

(sine wave). The embedding parameters were m ¼ 3; s ¼ 3 (A and C) and m ¼ 3; s ¼ 15 (B).

Table 1
Sample sentences used in the experiment described. Sentences like C51 elicit a
negative going waveform in the EEG relative to a control sentence Kutas and Hillyard,
1980.

Condition Example

C50 Control Das Holz wurde gesägt (The timber was sawn)
C51 Semantic mismatch Das Holz wurde zitiert (The timber was quoted)
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(3) The mean and maximal duration of recurrences of any states.
This is the length of the parallel-running of close phase space
trajectories and corresponds to the mean and maximal length
of diagonal line structures appearing in the RP,

hLi ¼
Plmax

l¼lmin
lPðlÞPlmax

l¼lmin
PðlÞ

: ð6Þ

These lengths can also be understood as a measure for pre-
dictability of the system or divergence of states. The higher
the maximal positive Lyapunov exponent of the system, the
shorter the duration of recurrences, thus of these line lengths.
In fact, it can be shown that the line lengths of the diagonal
structures are directly related to the K2 entropy, which is
the lower limit of the sum of the positive Lyapunov expo-
nents (Thiel et al., 2004).

(4) The uncertainty of the knowledge that the system will further
recur. This is an information measure and corresponds to
the Shannon entropy of the probability distributions of the
diagonal line structures in the RP,

ENT ¼ �
Xlmax

l¼lmin

pðlÞ ln pðlÞ with pðlÞ ¼ PðlÞPlmax
l¼lmin

PðlÞ
: ð7Þ

These measures can be computed from the whole RP or in
moving windows (i.e. sub-RPs) moved along the main diago-
nal of the RP. The latter allows studying changes of these mea-
sures in time, which can reveal transitions in the system
(Trulla et al., 1996). Despite the valuable knowledge about
dynamical systems these complexity measures can provide,
they can also be used to discriminate experimental conditions
in cognitive science.

3. Material – semantic mismatch (N400)

The paradigm used here was first introduced by (Kutas and Hill-
yard, 1980) and features an N400, a negative deflection in the EEG,
when processing semantically anomalous sentences in comparison
to their semantically correct counterparts (Table 1).

3.1. Subjects and procedure

We re-analyse data that has already been analysed by Allefeld
et al. (2005). 16 subjects (eight female) participated in a language
processing study. All were right-handed, monolingual native
speakers of German aged 20–27. The stimulus material was pre-
sented in a word-by-word fashion on a 17 in. computer screen.
The language material consisted of 52 pairs of sentences (Table
1). From correct german sentences (C50) semantically mismatch-
ing counterparts (C51) were constructed by exchanging the termi-
nal verbs. Words were presented for 400 ms each with an
interstimulus interval of 100 ms. A probe word was presented
800 ms after the last item. Subjects had to indicate whether the
probe word had occured in the given form in the preceding sen-
tence by pressing a button within 3.5 s. This ensured that subjects
had perceived the sentence correctly. The probe words were either
the verb or the noun of the preceding sentence or a semantically
related alternative. The probe items were balanced for correctness
and word category. After a pause of 1 s the next trial started. Sub-
jects had to read a total of 104 sentences in each condition. The
EEG was recorded with a sampling rate of 250 Hz from 59 Ag/AgCl
scalp electrodes ðimpedances 6 5 kXÞ. The Electrooculogram
(EOG) was monitored to scan for artifacts. If the subject had an-
swered the probe question correctly, artifact-free epochs from
�600 to 1300 ms relative to the critical verb entered further
analysis.

3.2. Data analysis

In this example we used order patterns recurrence plots as de-
fined in Eq. (3). For the OPRPs of the EEG measurements the neces-
sary time delay s was determined channelwise using the mutual
information (Roulston, 1999). The estimated delay typically ranged
from 8 to 10 and we used the mode, s ¼ 9, as a fixed s for all suc-
cessive analysis. The number of considered time instances d was 3.
The RQA was computed in sliding windows with a size of 60 data
points ð240 msÞ and shifted by 1 data point ð4 msÞ. For plotting and
further analysis we aligned time to the centre of the moving win-
dow. Note that contrary to the usual procedure we neither base-
line-aligned nor re-referenced the data, which is a prequesite for
the traditional ERP analysis.

4. Results

For a first impression we visually inspected the temporal evolu-
tion of the complexity measures in condition C50 and C51. In the
semantic mismatch condition C51, numerous transitions in the
critical time window of 300—600 ms post-stimulus could be found
for a variety of RQA measures (Fig. 4 (B, D, and F)), whereas transi-
tions are hardly observable in the control condition (Fig. 4 (A, C,
and E)).
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As the aim of this paper is to show the real life applicability of
the method, we will focus on the simplest RQA measure, RR, for
further analysis. Even though other RQA measures also serve as
indicators (Fig. 4), they are not necessary for the purpose at hand,
the discrimination of experimental conditions. Further we con-
sciously focus on single trials. The paradigm used is well-known
and the existence of the N400 component is not in question (Ku-
tas and Hillyard, 1980). We want to show that the method is
capable of detecting the component in individual single channel
measurements. Therefore, we will compare the performance of
Fig. 4. Temporal evolution of chosen RQA measures in condition C50 and C51 in a repr
numerous transitions between 300 and 600 ms are found while the control condition C
RR to that of voltage measurements in terms of single trials.
The procedure for this is as follows: we estimate the 95% confi-
dence interval (CI) of the control condition C50 to which we then
compare the single trials of the experimental condition C51. For
the estimation of the CIs we use all measurements of one chan-
nel in the control condition separately for each subject. Using RR
we can easily discriminate condition C51 from the control condi-
tion C50 (Fig. 5, left column) in single trials. This pattern is con-
sistent across subjects (4 shown here). For exactly the same trials
this discrimination is not possible when using the voltage
esentative trial (trial 2) at all electrode sites. In condition C51 (Fig. 4 (B, D, and F))
50 lacks these (Fig.4 (A, C, and E)).
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measurements. The single trials do not leave the CI of the control
conditions (Fig. 5, right column). Note that the recurrence based
method is indeed only sensitive to the ERP effect. The measures
do not significantly deviate from the control condition apart from
the time window which is known to reflect the N400 component
ð300—600 msÞ. Furthermore, the RQA based analysis very cleary
shows that the N400 is not stable in time, the well-known la-
tency-jitter, which is present in all subjects but strongly varies
across subjects. This is problematic when averaging the data
since re-aligning the timescale is not trivial and might lead to
spurious or even wrong results.

We analysed the performance of the EEG voltage measure-
ments and RR in these comparisons (Fig. 5) on nine electrode sites
(F7, FZ, F8, P7, CZ, P8, PO3, PZ, PO4) individually for each subject
yielding a total of 14,256 comparisons. The outcome was classi-
fied into three groups. A comparison was classified as right if
Fig. 5. Comparison of single trials (coloured lines) in experimental condition C51 versus t
(right column) for four subjects. The shaded area denotes the 95% confidence interval of t
and line-style matched). (For interpretation of the references to colour in this figure leg
the experimental condition left the CI of the reference condition
only within the expected time window ð300—600 msÞ for at least
10 epochs ð40 msÞ. If the experimental condition left the CI out-
side the expected time window for too long, 50 epochs
ð200 msÞ consecutive or in total, the comparison was classified
as wrong. In the case of the EEG data a comparison was also clas-
sified as wrong if the CI was left in the wrong direction i.e. detec-
tion of a P-Effect instead of an N-Effect. For the RR this was not
necessary as the behaviour was consistent such that RR was
either higher in the experimental condition or not outside the
CI at all. If the CI was not left at all, the trial was counted as
not classifiable (none). A summary of the analysis is given in Ta-
ble 2. A detailed list split by subjects and electrodes is given in
Table 3 in the Appendix A.

The overall ability to classify the trials at all is rather poor
in both cases, 12.7% for EEG and 14.2% for RR. This is not
he averaged control condition C50 at CZ. RR (left column) and voltage measurements
he control condition. The trials in the left and the right column are identical (colour
end, the reader is referred to the web version of this article.)



Fig. 5 (continued)
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surprising given the difficulty of the task. Yet there is one
important difference. The vast majority of trials that could be
classified are classified properly when using RR. When using
the voltage measurements the situation is reversed. While only
� 1:5% of trials is classified correctly about seven times as
many trials are classified wrongly. This is a strong indication
that the recurrence based method is more powerful in terms
of single trial classification as not even a quarter of a percent
is classified wrongly.
Table 2
Overall performance of the the EEG voltage measurements and the RQA measure RR
in terms of single trial comparisons analogue to Fig. 5. RR is outperforming the voltage
measurements in terms of overall ability to classify and more importantly in correct
classification. A detailed list splitted by subjects and electrodes is given in Appendix
A.

Measure Right (%) None (%) Wrong (%)

EEG 1.45 88.26 10.29
RR 14.02 85.77 0.22
5. Summary and discussion

We have presented a method for brain signal analysis that rests
on the natural property of recurrence in dynamical systems. In the
present case recurrence was defined in terms of a trajectory’s local
rank structure. This rank structure is symbolically endoded as or-
der patterns. The main advantage of our approach is that it rests
on very few assumptions. It can be used as a diagnostical tool with-
out requiring any knowledge about the generation of an ERP. The
other major advantage of the method presented is, that it can de-
tect well-known ERP components, in our case the N400, even on
the scale of single measurements. A significant advance compared
to the traditional averaging method.

Given the promising results of the single trial analysis pre-
sented here, our current research is aimed at studying the func-
tional connectivity deriveable from EEG data by means of
recurrence quantification analysis (RQA). As the complexity mea-
sures obtained by the RQA are very sensitive to event-related
activity we expect to be able to extract consistent patterns
of connectivity on the basis of very few or even single trials.



Table 3
Single-trial comparisons by subject and electrode site for the EEG voltage measurements and the RQA measure RR.

Subject Electrode Right (EEG) None (EEG) Wrong (EEG) Right (RR) None (RR) Wrong (RR)

01 F7 2 81 13 11 85 0
01 FZ 1 84 11 23 73 0
01 F8 0 83 13 15 81 0
01 P7 1 79 16 15 81 0
01 CZ 1 84 11 22 74 0
01 P8 2 72 22 14 82 0
01 PO3 0 81 15 10 86 0
01 PZ 5 82 9 8 87 1
01 PO4 4 74 18 10 86 0
02 F7 2 96 2 10 90 0
02 FZ 5 84 11 11 89 0
02 F8 2 90 8 17 83 0
02 P7 1 94 5 23 76 1
02 CZ 2 90 8 16 84 0
02 P8 3 87 10 12 87 1
02 PO3 2 89 9 15 85 0
02 PZ 1 89 10 10 89 1
02 PO4 2 86 12 10 90 0
03 F7 3 81 13 20 77 0
03 FZ 1 90 6 14 83 0
03 F8 2 91 4 7 90 0
03 P7 2 80 15 18 79 0
03 CZ 1 86 10 19 78 0
03 P8 1 85 11 15 82 0
03 PO3 7 75 15 16 81 0
03 PZ 1 86 10 21 76 0
03 PO4 4 79 14 24 73 0
04 F7 1 95 7 14 88 1
04 FZ 3 83 17 12 91 0
04 F8 3 87 13 11 92 0
04 P7 2 93 8 16 87 0
04 CZ 1 90 12 16 87 0
04 P8 4 91 8 13 90 0
04 PO3 5 83 15 20 83 0
04 PZ 1 92 10 20 83 0
04 PO4 2 87 14 18 85 0
05 F7 0 86 9 15 80 0
05 FZ 3 80 12 16 79 0
05 F8 4 77 14 17 77 1
05 P7 2 69 24 3 92 0
05 CZ 1 84 10 14 80 1
05 P8 0 87 8 6 89 0
05 PO3 1 84 10 14 81 0
05 PZ 1 85 9 5 90 0
05 PO4 2 74 19 7 88 0
06 F7 0 90 10 13 85 2
06 FZ 0 91 9 21 79 0
06 F8 0 96 4 13 87 0
06 P7 0 90 10 10 89 1
06 CZ 0 92 8 21 79 0
06 P8 1 89 10 13 87 0
06 PO3 0 90 10 13 87 0
06 PZ 1 89 10 16 84 0
06 PO4 0 91 9 18 82 0
07 F7 1 92 7 17 83 0
07 FZ 5 81 14 14 85 1
07 F8 3 87 10 12 88 0
07 P7 2 89 9 19 81 0
07 CZ 3 86 11 16 84 0
07 P8 1 89 10 21 78 1
07 PO3 5 82 13 24 76 0
07 PZ 2 76 22 13 87 0
07 PO4 3 86 11 21 79 0
08 F7 0 89 10 6 93 0
08 FZ 0 91 8 10 89 0
08 F8 0 93 6 11 88 0
08 P7 2 94 3 5 94 0
08 CZ 0 87 12 9 89 1
08 P8 0 93 6 7 92 0
08 PO3 0 94 5 8 91 0
08 PZ 1 91 7 5 94 0
08 PO4 1 92 6 8 91 0
10 F7 0 94 5 20 78 1
10 FZ 3 85 11 14 85 0

(continued on next page)
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Table 3 (continued)

Subject Electrode Right (EEG) None (EEG) Wrong (EEG) Right (RR) None (RR) Wrong (RR)

10 F8 0 91 8 11 88 0
10 P7 7 83 9 17 80 2
10 CZ 1 90 8 13 86 0
10 P8 4 78 17 12 87 0
10 PO3 5 79 15 14 84 1
10 PZ 5 82 12 19 79 1
10 PO4 6 78 15 15 83 1
11 F7 2 85 11 10 88 0
11 FZ 1 85 12 19 79 0
11 F8 0 94 4 22 76 0
11 P7 0 93 5 13 85 0
11 CZ 1 89 8 15 83 0
11 P8 0 91 7 13 85 0
11 PO3 1 86 11 19 78 1
11 PZ 1 90 7 15 83 0
11 PO4 2 90 6 16 82 0
12 F7 2 90 10 17 85 0
12 FZ 2 84 16 12 90 0
12 F8 0 90 12 5 97 0
12 P7 0 87 15 5 97 0
12 CZ 2 85 15 12 89 1
12 P8 1 78 23 7 95 0
12 PO3 0 91 11 12 89 1
12 PZ 0 85 17 12 90 0
12 PO4 1 85 16 5 97 0
13 F7 3 87 11 13 88 0
13 FZ 0 95 6 7 94 0
13 F8 2 91 8 14 87 0
13 P7 1 82 18 14 87 0
13 CZ 2 86 13 17 84 0
13 P8 3 80 18 9 92 0
13 PO3 2 81 18 8 93 0
13 PZ 0 97 4 17 84 0
13 PO4 4 83 14 13 88 0
14 F7 0 89 9 10 87 1
14 FZ 1 89 8 20 78 0
14 F8 0 92 6 14 84 0
14 P7 1 90 7 16 81 1
14 CZ 0 89 9 16 82 0
14 P8 0 88 10 17 80 1
14 PO3 0 91 7 17 81 0
14 PZ 0 91 7 13 85 0
14 PO4 0 90 8 14 84 0
15 F7 0 89 5 21 73 0
15 FZ 0 90 4 17 77 0
15 F8 0 89 5 10 84 0
15 P7 1 88 5 17 77 0
15 CZ 1 86 7 16 78 0
15 P8 0 90 4 13 81 0
15 PO3 0 87 7 13 81 0
15 PZ 1 88 5 16 78 0
15 PO4 0 88 6 11 83 0
16 F7 0 93 9 12 90 0
16 FZ 3 95 4 20 81 1
16 F8 0 100 2 13 89 0
16 P7 1 94 7 14 87 1
16 CZ 1 92 9 16 86 0
16 P8 0 94 8 12 90 0
16 PO3 1 92 9 19 83 0
16 PZ 3 90 9 20 81 1
16 PO4 1 87 14 14 88 0
17 F7 0 92 8 12 87 1
17 FZ 0 89 11 7 93 0
17 F8 0 94 6 5 94 1
17 P7 0 87 13 14 86 0
17 CZ 1 92 7 7 93 0
17 P8 1 91 8 14 85 1
17 PO3 1 84 15 12 88 0
17 PZ 0 86 14 16 84 0
17 PO4 0 91 9 17 83 0
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Appendix A

A.1. Detailed single-trial comparisons

See Table 3.
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