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Abstract Recurrence quantification analysis (RQA) is an

established tool for data analysis in various behavioural

sciences. In this article we present a refined notion of RQA

based on order patterns. The use of order patterns is

commonplace in time series analysis. Exploiting this con-

cept in combination with recurrence plots (RP) and their

quantification (RQA) allows for advances in contemporary

EEG research, specifically in the analysis of event related

potentials (ERP), as the method is known to be robust

against non-stationary data. The use of order patterns

recurrence plots (OPRPs) on EEG data recorded during a

language processing experiment exemplifies the potentials

of the method. We could show that the application of RQA

to ERP data allows for a considerable reduction of the

number of trials required in ERP research while still

maintaining statistical validity.

Keywords ERP � Recurrence quantification �
Order patterns � N400

Introduction

Electroencephalograms (EEG) provide a non-invasive tool

to measure small-scale changes in the brains electric field

via electrodes placed on the scalp. The main advantage of

this method is its high temporal resolution, which allows

studying changes in the brain’s electric field over time. The

source of this measurable voltage change is the activation

of a vast number of neurons in the cortex. Neurons are

known to be nonlinear devices, since a certain threshold

has to be crossed for the neuron to fire (Kandel et al. 1995).

Certain patterns of this change are known to correlate with

higher cognitive tasks such as language processing. These

typical patterns are called event-related potentials (ERP)

and can provide valuable insights into information

processing in the brain (Donchin et al. 1978).

EEG data, though of high relevance in cognitive

research, poses a number of technical problems as it is very

noisy and shows strong non-stationarities. Since the

amplitude of the ERP component is very small, compared to

the background noise, a common approach is the use of

Grand Averages, i.e. a large number of measurements is

averaged in order to improve the signal-to-noise ratio

(SNR). While this procedure in general highlights the

component of interest, it may not be an appropriate means

of analysis, because the latency of the component of inter-

est, especially those related to higher cognitive processes

such as language, may vary in time (Kutas and van Petten

1994). Further, ERPs are defined in relation to a baseline.

The baseline is taken to be a period of inactivity and is most

commonly calculated from the prestimulus interval.

However, it has been argued convincingly, that these

preprocessing techniques are based on assumptions which

are not necessarily met when dealing with real-life EEG

data (cf. beim Graben et al. 2000; and references therein).

Therefore an important challenge is to develop data anal-

ysis techniques that require only a few measurements,

instead of large preprocessed ensembles.

To analyse EEG data with respect to its source of origin,

a highly complex nonlinear system—the brain—a number

of methods have been proposed amongst them symbolic
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dynamics (beim Graben et al. 2004), phase synchronisation

analysis (Allefeld and Kurths 2004) and recurrence quan-

tification analysis (RQA) (Marwan and Meinke 2004).

In this article we present an alternative version of RQA

based on order patterns (OP) and apply it to EEG data

obtained in a repetition of the meanwhile classical works of

Kutas and Hillyard (1980). Order patterns are used to

reencode the original EEG data as a series of symbols of

which then a recurrence plot (RP) is computed. (OP)RPs

capture information about the time dependent behaviour of

the underlying dynamical system which can be extracted in

well-defined measures of complexity. We will show that

RQA based on order patterns is a promising means of

analysis, because of its robustness against non-stationarit-

ies in the analysed data.

Data analysis based on recurrence plots

Recurrence is a fundamental property of complex dynam-

ical systems. Every such system will, after a sufficiently

long time, return to an arbitrarily small neighbourhood of a

previous state (Poincaré 1890).

Recurrence plots

The method of RPs was introduced to visualise this time

dependent behaviour of a dynamical system which can be

pictured as a trajectory x~ðtÞ ¼ x~i 2 R
d (i = 1, ..., N, t = i

Dt, where Dt is the sampling rate) in the d-dimensional

phase space (Eckmann et al. 1987). The main step of this

visualisation is the calculation of an N · N-matrix

Ri;jðeÞ ¼ 1 : x~i � x~j

�
�

�
�� e

0 : otherwise

�

x~i 2 R
d; i; j ¼ 1; . . .;N;

ð1Þ

where e is a cut-off distance and k � k a norm (e.g.

Euclidean or maximum norm). The main parameter is the

cut-off distance e which defines a box or sphere centred at

x~i: If x~j falls within this vicinity, the state will be close to x~i

and is considered to be a recurrence of the state x~i (Ri,j =

1). The binary values in Ri,j can be visualised by a matrix

plot with the colours black (1) and white (0).

Often there are only one-dimensional time series avail-

able. The phase space vectors xi for a one-dimensional time

series ui can be reconstructed using the Taken’s time delay

method x~i ¼ ðui; uiþs; . . .; uiþðd�1ÞsÞ with embedding

dimension d and delay s (Takens 1981), where the

dimension d can be estimated by using methods based on

false nearest neighbours (Kennel et al. 1992).

An RP exhibits characteristic large-scale and small-scale

patterns which are caused by typical dynamical behaviour

(Eckmann et al. 1987; Marwan et al. 2007), e.g. diagonals

(similar local evolution of different parts of the trajectory)

or horizontal and vertical black lines (state does not change

for some time). Depending on the nature of the underlying

system typical patterns can be observed (Fig. 1).

The information contained in an RP can be quantified by

measures of complexity based on the recurrence point

density, diagonal and vertical structures in the RP

(Marwan et al. 2007). The recurrence rate RR denotes the

recurrence point density. Measures based on diagonal

structures are the determinism DET (ratio of recurrence

points forming diagonal structures to all recurrence points),

the maximal length of diagonal structures Lmax, their

averaged length L and ENTR (the Shannon entropy of the

frequency distribution of the length of the diagonal lines).

Complexity measures based on vertical lines are the lam-

inarity LAM (ratio of recurrence points forming vertical

structures to all recurrence points), the maximal length of a

vertical line Vmax and its average TT, the so-called Trap-

ping Time.

These measures can be computed from the whole RP or

in moving windows (i.e. sub-RPs) moved along the main

diagonal of the RP. The latter allows studying changes of

these measures in time, which can reveal transitions in the

system.

It has been shown that the RQA measures based on

diagonal lines can detect transitions between chaos and

order (Trulla et al. 1996), while measures based on vertical

lines additionally indicate chaos-chaos transitions (Marwan

et al. 2002).

Despite the valuable knowledge about dynamical sys-

tems the RQA can provide, the above introduced measures

(among others) can also be used for purely diagnostical

purposes. In the present article we will exploit this

descriptive power of the method to discriminate different

experimental conditions of a language processing experi-

ment (cf. Table 1).

Order patterns recurrence plots

In Eq. (1) recurrence is defined by spatial closeness

between points of phase space trajectories x~i (or embedded

time series ui). Now we neglect the spatial distance in

phase space and define a recurrence by using the local

order structure of a trajectory. Given a one-dimensional

time series, we start to compare d = 2 time instances and

define the order patterns p as

pi ¼
0 : ui\uiþs

1 : ui [ uiþs

�

ð2Þ

with the scaling parameter s. This parameter ensures that
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the points considered in forming the order pattern p do not

show trivial dependencies. Next, for d = 3 there are six

different order patterns in the triple (ui, ui+s, ui+2 s) possible

(Fig. 2). In general the d components in

x~i ¼ ðui; uiþs; . . .; uiþðd�1ÞsÞ can form d! different patterns.

Tied ranks (ui = ui+s) are assumed to be rare and we

neglect them. From these order patterns we form a new

symbolic time series pi and define the order patterns

recurrence plot (OPRP) as (Groth 2005)

Ri;jðdÞ ¼
1 : pi ¼ pj

0 : otherwise

�

i; j ¼ 1; . . .;N: ð3Þ

Analogue to regular RPs from an OPRP the above

introduced measures of complexity can be calculated and

subjected to further statistical analysis. The main advan-

tage of the symbolic representation is the well-expressed

robustness against non-stationarity. The order patterns are

invariant with respect to an arbitrary, increasing transfor-

mation of the amplitude. Furthermore a robust complexity

measure based on this symbolic dynamics, the permutation

entropy, was proposed (Bandt and Pompe 2002) and

successfully applied to epileptic seizure detection (Cao

et al. 2004).

To illustrate the invariance against such an arbitrary,

increasing transformation of the amplitude we computed

the RP and the OPRP for a timeseries with 150 time points

derived from the logistics map (x(n+1) = axn(1�xn)). We

varied the control parameter a in such a way that for the

first and the last 50 time points the signal is periodic

(a = 3.4), while the intermediate signal represents chaos

(a = 3.89). In both the regular and the order patterns RP the

transition from period to chaos can be observed clearly

(Fig. 3a, b). In the next step added uniformly distributed

noise (interval 0–0.4) to the signal and again computed the

RP and the OPRP. While the OPRP (Fig. 3c) is virtually

identical with the one observed before, the regular RP turns

white (Fig. 3d) and does not detect the periodic behaviour

nor the transition from period to chaos. Note that from the

underlying signal we can hardly infer any information at all

since the noise strongly distorts the signal. Secondly, the

given signal is rather short (150 timepoints) which is

problematic for other means of analysis.

Materials and methods

The data used in this article has previously been examined

and was kindly provided by Allefeld et al. (2005). The

experimental setup was first introduced by Kutas and

Hillyard (1980) and is known to elicit an N400, a negative

going waveform in the EEG peaking at about 400 ms after

presentation of the verb relative to the control condition.

The N400 is generally associated with the process of

semantic integration (Friederici 2002).

Subjects

Sixteen subjects (8 female) participated in a language

processing study. All were right-handed, monolingual

native speakers of German aged 20–27. To underline the

capabilities of the method we focussed on one randomly

selected subject. We opted for this procedure since the

general assumption underlying ERP research is that the

(a) (b) (c)Fig. 1 Sample OPRPs of

different kinds of dynamical

systems. (a) noise, (b) a chaotic

system (the Lorenz attractor

with q = 28, b = 8/3, r = 10)

and (c) a periodic signal (sine

wave). The embedding

parameters were m = 3, s = 3

(a, c) and m = 3, s = 15 (b)

Table 1 Sample sentences used in the experiment described

Condition Example

A Control Der Priester wurde gerufen.

The priest was called.

B Semantic mismatch Der Priester wurde gepflanzt.

The priest was planted.

Sentences like the one in B are known to elicit a negative going

waveform in the EEG relative to a control sentence like A (Kutas and

Hillyard 1980)

Fig. 2 Order patterns for dimension d = 3 (tied ranks ui = ui+s are

assumed to be rare)
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brains response to a given stimuli is observable in every

(healthy) brain. Second, the present article is to be seen as a

proof of concept, rather than an ERP study, which is why

we consciously focussed on the methodological part our

work. Nonetheless, we were able to verify the results

illustrated here at other electrodes sites and with other

subjects. A more detailed analysis will be presented in a

forthcoming article.

Procedure

The stimulus material was presented in a word-by-word

fashion on a 17’’ computer screen. The language material

consisted of 52 pairs of sentences. From the correct

German sentences (condition A) the semantically mis-

matching counterparts (condition B) were constructed by

exchanging the terminal verb. The material used is
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Fig. 3 (OP)RPs for the

logistics map with varying

control parameters. Given an

uncorrupted signal, regular and

order patterns RPs detect the

transition from periodic to

chaotic behaviour. When the

signal is contaminated with

noise only the OPRP can still

detect this transition. A regular

RP does not detect any periodic

behaviour in the signal
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illustrated in Table 1. Words were presented for 400 ms

each with an interstimulus interval (ISI) of 100 ms. A

probe word was presented 800 ms after the last item.

Subjects had to indicate whether the probe word had

occurred in the given form in the preceding sentence by

pressing a button within 3.5 s. In this way it was ensured

that subjects had perceived the sentence correctly. The

probe words were either the verb or the noun of the

preceding sentence or a semantically related alternative.

The probe items were balanced for correctness and word

category. After a pause of 1 s the next trial started. Subjects

had to read a total of 104 sentences in each condition.

The EEG was recorded with a sampling rate of 250 Hz

from 59 Ag/AgCl scalp electrodes (impedances � 5 kX).

The EOG (Electrooculogram) was monitored to scan for

artifacts. If the subject had answered the probe question

correctly, artifact-free epochs from �600 to 1,300 ms

relative to the critical verb entered further analysis.

Data analysis

For the randomly chosen subject the EEG data of the whole

experiment entered the RQA (&100 measurements per

condition). The OPRPs of the EEG measurements were

computed and the RQA measures calculated (cf. above).

Prior to this computation no data preprocessing took place,

hence the data used is indeed raw EEG data. The time

delay s used for constructing the OPRPs was determined

using the mutual information (Roulston 1999). We com-

puted the mutual information of the original time series and

its lagged counterpart. The lag at which the mutual infor-

mation reaches its first local minimum is chosen as

embedding delay. The number of considered time instances

d was either 3 or 4. To gain a temporal resolution, we

applied a moving window technique with window sizes w

between 40 and 80 epochs. The stepsize s (the number of

epochs by which the window is shifted along the OPRP’s

main diagonal) was kept to one in order to achieve the

finest grained temporal resolution possible.

Results

For a first impression of the methods’ capabilities we

computed the RQA measures for every individual trial and

visually inspected the temporal evolution of the RQA

measures in condition A and B. For this preliminary

analysis the RQA parameters were d = 3, s = 3, w = 80,

s = 1. In the semantic mismatch condition (B) numerous

transitions in the critical time window of 300–500 ms post

stimulus could be found for a variety of RQA measures

(Fig. 4b, d, f), but we could hardly find such transitions in

the control condition (Fig. 4a, c, e).

Next, we estimated the 95% confidence interval (CI) of

the control condition (99 measurements in total) to which

we then compared single trials of the experimental condi-

tion B. We did this for the RQA measure RR and prepro-

cessed EEG data. Preprocessing included rereferencing to

the mean of the linked mastoids and baseline alignment

(300 ms prestimulus). For the RQA measure the experi-

mental condition B could easily be discriminated from the

control condition in the relevant time window (Fig. 5).

Note that the method is indeed only sensitive to the ERP

effect. The measures do not significantly deviate from the

control condition apart from the time window which is

known to reflect the N400 component (300–500 ms). For

the (preprocessed) EEG data it is virtually impossible to

distinguish experimental condition (B) from the control

condition (A).

Statistical analysis

The derived RQA measures were averaged over a small

number of trials (10–30) and for every epoch within the

relevant time window (�200 to 600 ms relative to the

stimulus onset) a pair-wise test was performed.

Instead of the usually applied t-statistic comparison we

ran a pairwise Monte-Carlo-Simulation (MCS) (Barnard

1963; Marriott 1979) of a permutation test (Good 2005)

since the RQA measures do not necessarily conform to a

Gaussian distribution and the requisite for applying a

parametric statistic is not met, at least when using sample

sizes of only 10–30. For every comparison we ran a total of

1,500 simulations. This is close to the suggested maximum

of simulations (Good 2005) and ensures validity of the

comparison.

The statistical comparison was performed for n = 30,

n = 20 and n = 10 trials in each condition for the measures

RR, DET, hL i, Lmax, ENTR and TT. The N400 component

can be identified easily by a significant deviation of the

measures (Fig. 6). The most remarkable fact is, that even

with as few as 10 trials we can detect and statistically prove

the existence of the N400 in the data at hand.

It could be argued that these results can be achieved

with EEG data. In order to have a frame of reference on

how effective the traditional analysis is, we applied the

exact same testing routine to the EEG data. We tested the

preprocessed EEG data (Fig.6h) as well as raw EEG data

(Fig. 6g). The raw EEG data could not serve to distinguish

the experimental condition at all. With the preprocessed

EEG data an overall tendency may be detected, yet the

statistical comparison did not only detect the effects in the

time window of the N400 but also showed various other

significant deviations. Apparently the number of trials is

not enough to effectively improve the SNR when using
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conventional analytical methods. Here the RQA measures

are far more effective. In the present data this is most

obvious with RR and TT. As the RQA measures were

computed from the raw EEG data the direct comparison

between Fig. 6a and g further stresses this point.

Note that when using the RQA we lose the notion of

polarity and therefore can only use time to identify the

effect of interest. This definitely is a drawback of the

method since polarity is usually used in characterising ERP

components. Therefore the RQA in its current version can

only be used for experimental paradigms featuring ERP

components that are clearly separated in time. Future ver-

sions of the RQA may overcome this problem.

On the other hand, though polarity is a key feature in

defining ERP components, it is not necessarily possible to

determine the actual polarity of a component. If the

polarity of a component cannot be determined on theoret-

ical grounds, grand averages are not able to either. In this

case nonlinear methods, such as symbolic dynamics, can

provide valuable additional information (beim Graben and

Frisch 2004). The various RQA measures defined may

possibly also provide such information.

Discussion

We presented an alternative version of RQA and success-

fully applied it to electrophysiological data recorded in a

language processing experiment. The results show that the

proposed method can enrich contemporary ERP research,

since it poses virtually no restriction on the EEG data at

hand and requires no data preprocessing. We were able to

find well known correlates of language processing, the

N400, in raw EEG data. Furthermore we did so with a

number of measurements that is far smaller than the one

needed for conventional analysis.

It could be argued that the dataset we investigated is too

small, but we think our approach is justified because this

article is to be seen as a proof of concept. While in this

article we focussed on the methodological part of our
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Fig. 4 Temporal evolution of

chosen RQA measures in

condition A and B in a

representative trial (trial 2) at all

electrode sites. The electrode

sites are given in Table 2 in the

appendix. In condition B

(Fig. 4(b, d, f)) numerous

transitions between 300 and

500 ms are found while the

control condition A lacks these

(Fig.4(a, c, e))
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research a forthcoming article will be directed at the

knowledge about cognitive processes which can be

obtained by applying the method proposed.

Further improvement of the method and a tailor-made

version of resampling statistics may allow for a focus on the

analysis of single trials. Though this is contrary to the

widely held opinion that a rather large number of EEG

measurements is required in ERP research, we could

show that it is indeed possible to focus on a small number of

trials.

Additionally, the introduced method may not only serve

as a diagnostic tool. Theoretical works on RPs and RQA
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Fig. 5 Comparison of single

trials (black line) in

experimental condition B versus

the averaged control condition

(grey line) for RR and

preprocessed EEG data. The

dashed line denotes the 95% CI

of the control condition
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(see Marwan et al. 2007; and references therein) allow for

interpreting the information obtained from (order patterns)

RPs within the framework of system theory and system

dynamics. As shown above (Fig. 6) the RQA measures in

general detected the effect of interest. Yet a certain varia-

tion within the measures is visible. As different RQA

measures are sensitive to different aspects of the underly-

ing dynamical system, it should be possible to characterise

different (language related) ERP components with respect

to system dynamics. Further work is required here to shed

more light on this aspect of language processing in special

and human cognition in general.
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Table 2 Electrode sites used in the language processing experiment (cf. Fig. 4)

# Electrode # Electrode # Electrode # Electrode # Electrode

1 A1 14 F3 27 FT8 40 CPZ 53 P10

2 A2 15 FZ 28 FT10 41 CP4 54 PO7

3 FPZ 16 F4 29 T7 42 CP6 55 PO3

4 FP1 17 F6 30 C5 43 TP8 56 POZ

5 FP2 18 F8 31 C3 44 TP10 57 PO4

6 AF7 19 F10 32 CZ 45 P9 58 PO8

7 AF3 20 FT9 33 C4 46 P7 59 O2

8 AFZ 21 FT7 34 C6 47 P5 60 O1

9 AF4 22 FC5 35 T8 48 P3 61 OZ

10 AF8 23 FC3 36 TP9 49 PZ

11 F9 24 FCZ 37 TP7 50 P4

12 F7 25 FC4 38 CP5 51 P6

13 F5 26 FC6 39 CP3 52 P8

The positions of the electrodes are in accordance with the international 10–20 system (Sharbrough et al. 1991)

Cogn Neurodyn

123


	Order patterns recurrence plots in the analysis of ERP data
	Abstract
	Introduction
	Data analysis based on recurrence plots
	Recurrence plots
	Order patterns recurrence plots

	Materials and methods
	Subjects
	Procedure
	Data analysis

	Results
	Statistical analysis

	Discussion
	Acknowledgements
	Appendix
	Electrode sites

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


