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Abstract. The generalized recurrence plot is a modern tool for quantification of complex spatial patterns.
Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton
patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regu-
larity of spatial structures. We show by basic examples of fully regular patterns of different symmetries
that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries.
We overcome this crucial problem by checking additional structural elements of the generalized recurrence
plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quan-
tity of determinism applying it to more irregular circular patterns which are generated by the complex
Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems.
So, we are able to reconstruct the main separations of the system’s parameter space analyzing single
snapshots of the real part only, in contrast to the use of the original quantity. This ability of the pro-
posed method promises also an improved description of other systems with complicated spatio-temporal
dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.

1 Introduction

A sufficient quantitative description of complex spatial
patterns is still an open question which arises in many
fields, such as fluid dynamics, climatology, biology, ecol-
ogy, and social sciences. Often we ask for such quantities
in order to automatically detect regime shifts in systems
by means of their spatio-temporal dynamics assuming a
coupling of spatial patterns and rhythm. A promising
framework solving this problem is the recurrence plot
(RP) analysis [1,2] with its library of measures, the re-
currence quantification analysis [2] and the recurrence
network analysis [3–5]. One of the most useful quantity
of those is the measure of determinism (Δ) describing
the level of regularity. There are several methodologies
to construct a RP from spatial data: (1) the spatial RP
[6,7], (2) in particular the generalized RP (GRP) [8], and
(3) its more computationally performant approximation
assuming an isotropic spatial structure [9–13]. The spa-
tial RP separately analyzes the recurrence in regular de-
fined subgroups of the spatial data for a spatially re-
solved view, whereas the GRP gives a global view on
the recurrence of spatial patterns avoiding the selection
of the subgroups. These approaches have been already
successively applied to the description of complex spa-
tial structures of trabecular bones during bone loss in

a e-mail: maik.riedl@pik-potsdam.de

osteoporosis [8]; Turing patterns [9,12–14]; patterns gen-
erated by the Belousov-Zhabotinsky reaction, the com-
plex Ginzburg-Landau equation (GLE), or an extension
of the Rosenzweig-MacArthur model [9,12,15]; the chloro-
phyll distribution in ocean colonies of plankton given by
remote sensed ocean colors [9]; and fractals [9]. Despite
this success a crucial open question remains: comparing
the GRP with the classical RP approach, we expect that
fully regular spatial structures lead to Δ = 1. However,
in fact we find Δ values smaller than 1 [8]. In this work
we will treat this problem of underestimation and finally
provide a solution. We will show that we have to check ad-
ditional structures in the GRP which differ from such the
regular Δ is based on (Sect. 2). Further we will show that
these structures correspond to specific symmetries of the
spatial patterns and that their consideration substantially
improves the description of them, especially in the case of
complex circular patterns, in relation to the original GRP
approach (Sect. 3).

2 Method

2.1 Generalized recurrence plot (GRP)

Let us consider a D-dimensional data field. The ele-
ments of this field are m-dimensional vectors xi which
have to be arranged in a regular D-dimensional grid
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Fig. 1. (a) Possible cases of recurrence of a target pattern in a 2-dimensional data field where the local neighborhood of the
states in the target pattern is preserved: R0 ≡ shift, R90 (R180, R270) ≡ shift + 90◦(180◦,270◦) rotation, Ry (Rx, Rd1, Rd2)
≡ shift + reflection on the vertical (horizontal, first diagonal, second diagonal) axis. (b) Recurrence of a target state in a
larger pattern of equal states which corresponds to a vertical structure of 1 in the GRP (first D coordinates of the representing
elements of the GRP are constant).

where the D-tuples i = (i1, . . . , iD) determine the loca-
tion of the vector in the grid. An example of this general
case is a snapshot of a system which is distributed in a
2-dimensional spatial space. The elements of the resulting
2-dimensional data field represent the state vectors of the
system at the different positions in this spatial space at the
considered time stamp. We encode the pairwise similarity
of the vectors xi by constructing the GRP:

Rij = θ(ε − ‖xi − xj‖) (1)

where ‖ • ‖ denotes the norm of the vector space and ε
defines the threshold of the distance where two states are
no longer assumed as similar. The Heaviside function θ(•)
encodes this condition of similarity and is 1 for distances
smaller than ε; otherwise it is 0. That is, the GRP is a
2D-dimensional binary matrix where Rij = 1 indicates
the assumed similarity of two states at the locations i and
j in the data field. Zero stands for non-similar states [8].

2.2 Structures of the GRP

In relation to the classical RP, we consider D-dimensional
structures in the GRP which are built by neighbored 1.
The current quantification of the GRP is a straight ex-
tension of the classical RP which is mainly based on two
classes of such structures, diagonal and vertical structures.
So, Δ is the proportion of recurrences within the diag-
onal structures among all recurrences within the GRP.
The diagonal structures have the same orientation as the
hyper-surface of identity in the GRP and relates to the
occurrence of a D-dimensional pattern at two positions
of the D-dimensional data field with equal orientation.
For D = 2, this case is illustrated by the target pattern
and the pattern R0 in Figure 1a, for example. This can
be interpreted as a shift of the pattern from one posi-
tion of the data field to another one where the mapping
preserves the spatial relation of the states in the subsets.
That is, if two elements are neighbors in the reference
then the mapped elements are neighbors, too, in the sec-
ond subset. But this property is not only given by the shift

operation (R0 in Fig. 1a) but also given by combinations
of rotation, reflection and shift as illustrated by the pat-
terns R90, R180, R270, Ry, Rx, Rd1, Rd2 in Figure 1a.
These last recurrences are also encoded in the GRP be-
cause of the point-wise test of recurrence (Eq. (1)). They
also build 2-dimensional structures in the GRP which are
different from the diagonal ones. So, these diagonal-like
structures decreases the proportion of 1 in the diagonal
structures among all points in the GRP and might be the
cause of the aforementioned underestimation of Δ in the
case of regular patterns. We hypothesize that the addi-
tional consideration of these diagonal-like structures will
fit this problem.

Let us demonstrate this for D = 2 explicitly. For the
simplest formulation, especially in the case of rotations,
we consider D-dimensional cuboids of different sizes, i.e.
squares in this case, which build the more complex shapes
of the D-dimensional diagonal and diagonal-like structures
of neighbored 1 in the GRP. These squares are defined by

θ(B1 + B2)
b2∏

k1,k2=b1

R(i+k,j+k′) ≡ 1 (2)

B1 =
b2+1∑

s=b1−1

(1 − R(i+u,j+u′))

×
b2+1∑

s=b1−1

(1 − R(i+v,j+v′)) (3)

B2 =
b2∑

s=b1

(1 − R(i+w,j+w′))
b2∑

s=b1

(1 − R(i+z,j+z′)) (4)

u = (b1 − 1, s); v = (b2 + 1, s);

w = (s, b1 − 1); z = (s, b2 + 1) (5)

b1 =
{ −l/2 + 1 l is even
−l/2 + 1/2 l is odd (6)

b2 =
{

l/2 l is even
l/2 − 1/2 l is odd.

(7)
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Table 1. Transformed coordinates in relation to the map-
ping M of the target pattern in the two dimensional field (cf.
Fig. 1a). If k, u, v, w, and z have the form x = (x1, x2) then
their transformations, k′, u′, v′, w′, and z′, are:

Mapping M Transformation of the coordinates
l is odd l is even

R0 (x1, x2) (x1, x2)
R90 (x2,−x1) (x2,−x1 + 1)
R270 (−x2, x1) (−x2 + 1, x1)
R180 (−x1,−x2) (−x1 + 1,−x2 + 1)
Ry (x1,−x2) (x1,−x2 + 1)
Rx (−x1, x2) (−x1 + 1, x2)
Rd1 (x2, x1) (x2, x1)
Rd2 (−x2,−x1) (−x2 + 1,−x1 + 1)

The conversion of the vectors k, u, v, w, and z, i.e. k′, u′,
v′, w′, and z′, is given in Table 1 in relation to the different
mappings. Compositions of these basic mappings have not
to be explicitly considered since they can be represented
by the basic mappings.

The terms B1 and B2 are the boundary conditions of
the squared patch in the GRP. One can see that the origi-
nal diagonal structure is a special case in this formulation
(first line in Tab. 1). In contrast to previous work [8], the
reference point of the quadratic patches, i.e. i or j, is the
central point in the case of an uneven size l and otherwise
the point in the patch next to the center with the smallest
coordinates. So the conversions of the coordinates (Tab. 1)
do not depend on the size of the patches which helps to
separate the shift given by the vector (i, j) in equation (2)
from the other operations determined by (k, k′). The for-
mulation of the considered structures for arbitrary values
of D are given in the Appendix (Appendix A).

For the sake of completeness, the second basic struc-
tures of the classical recurrence quantification analysis [2],
the vertical structures of 1, are also considered. They are
given by

θ

(
D∑

a=1

B′
a

)
b2∏

k1,...,kD=b1

R(i,j+k) ≡ 1 (8)

B′
a =

b2+1∑

s1,...,sD−1=b1−1

(1 − R(i,j+u))

×
b2+1∑

s1,...,sD−1=b1−1

(1 − R(i,j+v)) (9)

where b1 and b2 are defined by equations (6) and (7), re-
spectively. i, j, u, and v are D tuples of coordinates where
in the last two ones the ath component is fixed at b1 − 1
and b2 + 1, respectively. The remaining components are
the running indexes in equation (9), s1,. . . ,sD−1. For this
kind of recurrence structure, the orientation of the pat-
tern plays no role because of the fact that the considered
D cuboid consists of equal states.

2.3 Extended quantification of the recurrence
structures

Quantifying the diagonal like structures of 1 in the GRP,
we extend the established measure Δ in the following way

ΔM =

∑N
l=lmin

lDPM (l)
∑N

l=1 lDPM (l)
(10)

where M indicates the considered mapping (see Tab. 1).
In this more general formulation, the original measure Δ is
given by ΔR0. Here, lD is the volume of the D dimensional
cuboid, i.e. the enclosed number of points of the GRP,
and PM (l) is the histogram of cuboids’ size l. N is the
maximum size of the quadratic patches. A sufficient value
of lmin diminishes artificial contributions which are caused
by broad areas of quiet similar values in the data field [2].
Beside this correction, lmin can also use to determine the
minimal spatial scale of interest. So, ΔM is the portion
of 1 in the GRP which lie in cuboids of size longer than
lmin−1 which relates to the considered mapping M . In our
analysis of two-dimensional data fields, we set lmin = 2.

Calculating ΔM , a boundary effect has to be respected.
It results from boundary 1 in the GRP which are not able
to build a full D dimensional cuboid because of the cutting
edges. The larger the possible cuboids are the more prob-
ably is their cutting. This leads to an underestimation of
the number of these larger cuboids in the histogram PM (l)
(Eq. (10)) and an overestimation of the number of smaller
cuboids which are built from the remaining bounding 1.
That is, the boundary effect causes an underestimation of
ΔM (Eq. (10)). Therefore, we propose a correction which
diminishes this boundary effect and guarantees consistent
values of ΔM , e.g. ΔR0 = 1 in the case of always re-
currence. The idea of this correction is the limitation of
the maximal size lmax of the considered cuboids splitting
larger structures of 1 in the GRP which are at risk of
cutting. Further, this lmax is used to define the range of
the border of 1 in the GRP which are expected to be re-
mains of cutting and therefore are not rated as center of
countable cuboids. So, the underestimation of the larger
cuboids and the overestimation of the smaller cuboids is
diminished in the construction of PM (l) (Eq. (10)). lmax

has to be set between lmin (Eq. 10) and N which de-
fines the indexes of the bordering 1, i < lmax/2 + 1/2
or i > N − lmax/2 + 1/2. An illustration of this correc-
tion is given for the example of the one-dimensional case
(Fig. 2). Here, a 4×4 recurrence matrix with only 1 is dis-
played by black dots (Fig. 2a). For D = 1, the cuboids are
lines. Counting the diagonal lines of specific length marked
by the black solid lines, we get PR0(l) of equation (10)
(Fig. 2b). Although only lines of length 4 are probably,
the cutting leads to diagonal lines of length 1, 2, and 3.
If we set lmax to 3 then the larger diagonal, the main di-
agonal, is split into two parts of length 3 and 1. Further,
the range of the center of the countable lines is defined
and only contains the inner points (cf. Fig. 2c). Now, the
resulting histogram PR0(l) only shows one line and the
corresponding value of Δ is 1 (for lmin = 2) as we expect
for always recurrence.
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Table 2. Quantities of the GRP for the different pattern (cf. Fig. 3): ΔM – determinism which relates to the specific mapping
M (see Tab. 1 and Eq. (10)); h – recurrence rate; Λ – laminiarity (Eq. (B.1)); ΔΣM , – cumulative detection of the determinism
considering all mappings (Δall), only rotations (M = R0, R90, R180, and R270; Δrot), and only reflections (M = Ry, Rx, Rd1,
Rd2; Δref ).

Pattern
ΔM ΔΣM h Λ

R0 R90 R180 R270 Ry Rx Rd1 Rd2 all rot ref
CONSTANT 1 1 1 1 1 1 1 1 1 1 1 1 1

NOISE 0.06 0 0.01 0 0.01 0 0.01 0.02 0.15 0.1 0.09 0.1 0
STRIPE1 1 0 0 0 0 1 0 0 1 1 1 0.2 0
STRIPE2 0.99 0 0 0 0 0 1 0 1 1 1 0.07 0
STRIPE3 0.82 0 0.75 0 0.75 0.82 0 0 1 1 1 0.18 0
STRIPE4 0.56 0.51 0.47 0.51 0.51 0.51 0.56 0.47 0.98 0.98 0.98 0.13 0
STRIPE5 0.73 0.05 0.73 0.05 0.73 0.73 0.05 0.05 1 1 1 0.2 0.07
STRIPE6 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.99 0.99 0.99 0.2 0
CIRCLE 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.94 0.91 0.91 0.19 0

1 2 3 4

P(l)

l

(a) (b)

t

t

t
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P‘(l)

l

lmax = 3(c) (d)

0

2

0

3

Fig. 2. Recurrence plot of a series of four 1 (a) and the corre-
sponding histogram of the line lengths P (l) (b). The definition
of the maximum allowed length lmax leads to a split of longer
lines and the determination of allowed lines characterized by
the black color (c). Condition of these lines is that their center
is in the interval [lmax/2+1/2, N−lmax/2+1/2] marked by the
dashed lines. Only these lines are used to build the corrected
histogram of line length P ′(l) (d).

3 Application to different spatial patterns

3.1 Regular patterns and noise

First, let us apply this extended quantification of the GRP
and the Laminarity (Λ), a further important measure of
the RP basing on vertical line structures (Appendix B),
to regular 2-dimensional spatial patterns as well as noise
(Fig. 3, Appendix C) where D = 2 and m = 1. The size of
the squared data field is set to N = 30. For each STRIPE
pattern, ε (Eq. (1)) is set to the smallest non-zero distance
between the states resulting in recurrence rates (h) which
are shown in Table 2. The use of a fixed threshold ε guar-
antees that all pairs of equal states are valued, whereas the
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Fig. 3. Examples of 2-dimensional white noise (NOISE)
and regular spatial patterns (Appendix C): with asymmetric
shape of the states in one direction (STRIPE1) and two di-
rections (STRIPE2), with symmetric shape in one direction
(STRIPE3) and two directions (STRIPE4), with asymmet-
ric shape in one direction and a reflection along the vertical
median line (STRIPE5), with asymmetric shape in two di-
rections and reflections along the vertical and horizontal me-
dian line (STRIPE6), with concentric circles around the middle
(CIRCLE).

determination of ε by means of a fixed h can leave out of
consideration parts of this pairs. In the case of only equal
values in the data field (CONSTANT), this error is max-
imal, since the fixed value of h would always be smaller
than the expected value of 1. The pattern CIRCLE and
NOISE do not show this high amount of equal values as
the STRIPE patterns. Therefore, we choose here a greater
value of ε than the minimal non-zero distance in order to
get values of h which are in the range of the STRIPE pat-
tern (cf. Tab. 2). Correcting the boundary effect of ΔM ,
the maximal size is set to lmax = 10 grid points.

The results are given in Table 2. First of all, the first
column shows the aforementioned problem of the original
quantification of the GRP by means of Δ (Δ ≡ ΔR0). De-
spite the correction of the boundary effect, the values of
ΔR0 are clearly smaller than 1 as for STRIPE3 to CIR-
CLE although the value one is expected for these regular
patterns. Except the constant pattern (different Λ, Tab. 2)
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and the noise (no symmetries), an increasing number of
symmetries reduces the value of ΔR0, but bears non-zero
values of other components of Δ, e.g. ΔR180 = 0.75 for
STRIPE3. Unfortunately, these non-zero components can-
not be added in order to get the expected value of 1 for the
overall determinism, due to a strong overlapping of the dif-
ferent structures of 1 in the GRP. So the recurrence struc-
tures, related to ΔR0 and ΔRx, share the same 1 in the
GRP in the case of STRIPE1, for example. In particular, it
seems, that each rotational mapping (R0, R90, R180, and
R270) has a corresponding operation in the group of reflec-
tions (Rx, Ry, Rd1, and Rd2) resulting in the same values
of ΔM (cf. Tab. 2). In order to overcome this overlapping,
ΔΣM is determined by a cumulative quantification where
the single ΔM are successively calculated using the re-
maining recurrence points which are not part of a valued
cuboid in the GRP by the previous step. This cumulative
detection ΔΣM leads to values which are equal or close to
the expected 1 in the case of regular patterns (Tab. 2). In
particular, the consideration of all mappings Δall do not
lead to an improvement in comparison to the only use of
the rotational mappings Δrot as well as the group of re-
flections Δref . This finding relates to the aforementioned
observation that there are corresponding operations in the
two groups. Beside this, the results also show the equiv-
alence of ΔR90 and ΔR270 (Tab. 2), since the mapping
R270 is the inverse of R90 if we consider not only a clock-
wise rotation but also an anti-clockwise one. The case of
noise shows that the selected value of lmin = 2 is enough
to diminish random effects for D = 2. Finally, the values
of ΔM and ΔΣM are similar in almost all cases for a fixed
recurrence rate of 0.2. Only the case STRIPE2 leads to
a high laminarity resulting in additional non-zero parts
of ΔM .

3.2 Complex GLE

In the previous section, we tested the proposed extension
of the GRP quantification on regular spatial patterns and
random ones. But in nature we find a whole spectrum
of spatial patterns which are between these extrema. A
prominent theoretical generator of such complex patterns
is the complex GLE which is one of the most-studied non-
linear systems in physics generalizing a variety of phe-
nomena in spatially extended systems from spiral waves
to turbulence [16]. We want to demonstrate the ability
of the proposed method by a differentiation of the com-
plex spatial patterns resulting from the dynamics of the
complex GLE in order to get information on the observed
system. The system is defined by:

∂tA(x, y, t) = A(x, y, t) + (1 + ib)ΔA(x, y, t)

− (1 + ic)|A(x, y, t)|2A(x, y, t) (11)

where A is a field of complex numbers. The parameters b
and c characterize linear and nonlinear dispersion, respec-
tively. Simulating this system, we use an exponential time-
differencing fourth-order Runge-Kutta scheme [17] with
time steps of size 1/8. The size of the squared field is 128
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Fig. 4. Real part of the 1500th time step of simula-
tions of the complex Ginzburg-Landau equation (Eq. (11)).
The parameters (c, b) are: (a) (0,−0.25), b) (−0.3,−2.75),
(c) (0.3,−1.25), (d) (0.4,−2.5), e) (0.7,−2.25), (f) (1.2,−2.75),
and (g) (1.9,−0.75).

elements which equidistantly sample the spatial range of
[0, 100] × [0, 100]. We consider periodic boundary condi-
tions and the initial condition is set to white noise with
standard deviation of 0.1. Typical examples of resulting
spatial patterns are shown in Figure 4.

The pictures illustrate typical spatial patterns which
reflect different states of the system. In Figure 4a, the
plane is dominated by large monotonic areas with a small
number of defects, i.e. vortices. This pattern relates to un-
bounded states which can be found in the region of b = c
of the parameter plane. Crossing the eponymous line OR
from that region (Fig. 5a), we reach an oscillatory regime
where spiral-like structures appear and the distances be-
tween their cores, the defects, are in a stable equilibrium
which is also called bounded state. Here we find the spa-
tial pattern shown in Figures 4b–4g, for example. A lasted
change of the parameters b and c toward the line of the
Eckhaus instability (EI, cf. Fig. 5a) leads to more and
more distinctive spirals (Fig. 4c). In the case of random
initial conditions, this development ends at line T (cf.
Fig. 5a) in frozen states, also called vortex glass (Fig. 4d),
where quasi-stationary patterns are formed. This property
results from a convective transport of perturbations away
from the spirals’ cores which is theoretical given between
the lines of EI and the absolute instability (AI, cf. Fig. 5a).
Beyond the line T, defects are persistently created and an-
nihilated and they less and less emit spiral waves for the
change of b and c to the right upper corner of Figure 5a.
Representative spatial pattern of this defect turbulence
are given in Figures 4e and 4f, for example. Beside this
defect turbulence, you can find phase turbulence in the
region of the Benjamin-Feir-Newell line (BF, cf. Fig. 5a)
where no defects occur (Fig. 4g). The range of this re-
gion strongly depends on the size of the considered data
field. For a more detailed description of the mentioned
states we refer to Aranson and Kramer [16] and Chaté
and Manneville [18]. However, applying the GRP analy-
sis to these patterns we expect that the unbounded states
are characterized by a high laminarity and a determinism
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error of the values in (e). The lines in (b)–(f) are adapted from panel a and characterize dominant gradients in the gray scale
plots. The different colors of the line are only used for a higher contrast.

near one, whereas spiral-like structures and turbulence
patterns should have a small value of Λ and a medium
value of Δ. Taking the random initial conditions into ac-
count, we simulate five runs for each considered combi-
nation of the parameters (c = −0.5,−0.4,−0.3, . . . , 2 and
b = −3,−2.75,−2.5, . . . , 0.5). For the real part of the last
time stamps of each run, we construct the GRP from the
central square of each snapshot with the size of 64 sample
points in order to avoid boundary effects of the simulation.
The threshold is fixed to ε = 0.1 to get recurrence rates
in the range from 0.1 to 0.2 as in the regular examples
(compare Fig. 5b with Tab. 2). We calculate h, ΔR0, Δrot

and Λ with lmin = 2, and lmax = 10 for the boundary cor-
rection. Finally, the expected values and their standard
errors (standard deviation divided by the square root of
five) of these measures are estimated over the five runs
and plotted in Figures 5 and 6.

We see, that the gradients of the traditional measure
ΔR0 indicate the line OR, and the region which is enclosed
by AI and BF (Fig. 5c). These lines also bound the areas
where the standard error of this measure is increased. In
comparison with that, the value of the extended quanti-
fier Δrot is clearly larger than ΔR0 in the region below OR
(Fig. 5e). Here the gradients indicate the transition lines

OR and AI, where AI diverges for decreasing values of b.
Further the standard error of Δrot is remarkable smaller
than the standard error of ΔR0 despite the higher mean
values (Fig. 5f). The comparison of Λ and ΔR0 (Figs. 6a
and 5c, respectively) indicates that ΔR0 is strongly af-
fected by the monotonic areas (Fig. 4) which are quanti-
fied by Λ. If we assume that the measure of determinism
consists of the quantification of monotonic areas in the
snapshots and recurrent structured parts then the subtrac-
tion of Λ from the measure of determinism should uncover
the contribution of the latter. But the negative values of
ΔR0 − Λ in Figure 6c show that the partly consideration
of the recurrent structures by ΔR0 leads also to an un-
derestimation of the contribution of the laminar areas to
the measure of determinism. In contrast to that, the use
of Δrot exhibits the assumed behavior where the difference
Δrot − Λ reveals the expected contributions of the struc-
tured patterns (Figs. 4c–4g) to the determinism (Fig. 6e).
So, the structured patterns (Figs. 4c–4g) are characterized
by a medium value of Δrot − Λ which is greater than in
the case of noise (see Tab. 2) but remarkable smaller than
one. Further, the higher ordered spiral structures leads to
higher values of Δrot − Λ (≈0.4) than the turbulent pat-
terns (≈0.2 to 0.3) (Fig. 6e). We see that the lines OR,
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Fig. 6. (a) Mean value of the laminarity, Λ (b) standard error of the means in (a), (c) mean value of the difference of ΔR0

(Fig. 5c) and Λ (d) standard error of the means in (c), (e) mean value of the difference of Δrot (Fig. 5e) and Λ (f) standard error
of the means in (e). For each parameter combination there are five independent runs where the real part of the last time stamp
is analyzed. The error is given by the ratio of the standard deviation and the square root of five. The lines display transition
lines of Figure 5 a which are reflected by the most clear gradients. The colors are chosen for the highest contrast.

the part of BF below the crossing with T and the part
of T above this crossing delineate areas of specific levels
of determinism. So, we find the highest values of Δrot −Λ
in the region between OR and the combination of BF,
and T which is associated with dominant spiral patterns.
The progression from values up to 0.2 to 0.4 reflects the
increase of this dominance. Only in the range of c ≈ −0.5,
there is a slight difference where the gradients indicate
a steeper decrease of OR. Another interesting section is
enclosed by BF and T in the lower range of the param-
eter b. Here, we identify higher fluctuations in the mean
values of Δrot − Λ (Fig. 6e) and higher errors (Fig. 6f)
which indicate a coexistence of different patterns getting
by chance for the five runs. These errors are comparable
to these ones along the rest of the drawn lines (Fig. 6f)
where intermittent behavior is assumed. Finally, there are
weak gradients in the lower right corner of the parameter
space enclosed by T and BF, the section of turbulence,
which indicate different patterns (Figs. 6a and 6e). This
tendency is highlighted in Figure 7. Here, a band of lower
values of Δrot −Λ (≥0.25) goes along the borders and en-
closes an area of higher values in the lower right corner
(Fig. 7b). In contrast to this behavior, Λ is continuously
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Fig. 7. Zoom of the region of turbulence in Figures 6a and 6e,
respectively.

increasing from higher values of b to lower ones (Fig. 7a).
This increase reflects a rising scale of the spatial patterns
which is indicated by the snapshots in Figures 4f and 4g.
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The shown discriminations impair, if noise affects the
patterns. So, the Δ and Λ decreases, if the recurrence
threshold remains unchanged. Therefore, we suggest an
adaptation of the threshold by means of strategies which
are given in Marwan et al. [2] for the classical recurrence
plot analysis.

4 Conclusion

In this work we have proposed an extended quantification
of the GRP by additionally taking into account spatial
recurrence by means of rotational symmetry which sub-
stantially improves the original approach, which only con-
siders recurrence by means of translational symmetry, and
therefore completes the description of circular spatial pat-
terns. This extension is crucial for a consistent description
of complex patterns by means of the GRP as shown in the
examples of the complex GLE. In particular, the examples
of regular patterns show that a sufficient evaluation of the
spatial regularity, i.e. the predictability, needs the consid-
eration of rotational symmetries in addition to the simple
translation (Fig. 3). These symmetries result in additional
structures formed by 1’s in the binary matrix of the GRP
causing the found underestimation of Δ which is the base
of the diagonal structures. A combined consideration of
these structural elements leads to values of the determin-
ism of Δrot ≈ 1, which are consistent with the theoretical
definition. But this combination has to take into account
the overlapping of the structures of 1’s in order to avoid
multiple counting (Tab. 2). The systematic analysis of the
more complicated spatial patterns of the complex GLE
shows that the extended quantity Δrot is more stable than
the classical measure Δ (compare Figs. 5d and 5f). Fur-
ther, it demonstrates the improved description of circular
patterns by means of clearly larger values of Δrot in the
parameter range of spiral waves and turbulence (below line
OR in Figs. 5c and 5e). Therefore, Δrot allows a distinc-
tion between contributions of constant parts in the data
field to the determinism, approximated by Λ, and actual
patterns, quantified by Δrot − Λ, in contrast to Δ (com-
pare Figs. 6c and 6e). That is, there is a clear separation
of the three main regimes: unbounded states, turbulence,
and spiral waves; and the expected increase of the deter-
minism of the related actual patterns, from the first to the
third regime.

There are, however several important open points for
future research, in particular the analysis of the influences
of the method’s parameters. Further, we have to investi-
gate the consequences for other measure, which are based
on the diagonal structures in the GRP, such as the aver-
age size of the diagonal elements. Finally, the calculating
algorithm of Δrot needs more optimization than the one
of Δ in order to improve its computational performance.

However, it is worth to remind that all these distinc-
tions shown in the last section are only based on sin-
gle snapshots of the real part of the Ginzburg-Landau-
equation. This circumstance underlines the power of the
proposed method and promises an improved description
of dynamical systems originated from fluid dynamics, cli-
matology, biology, ecology, and social sciences.

This work was supported by the Volkswagen Foundation
(Grant No. 88462), the DFG RTG 2043/1 “Natural Hazards
and Risks in a Changing World”.

Appendix A: General definition of diagonal
like structures of GRP

The general formulation of the group of recurrence pat-
terns with the classical diagonal elements as special case
(Eq. (2)) are defined by:

θ

(
D∑

a=1

Ba

)
b2∏

k1,k2=b1

R(i+k,j+k′) ≡ 1 (A.1)

where b1 and b2 are defined by equations (6) and (7), re-
spectively, and i, k, and j are D tuples of whole numbers.
The boundary conditions are

Ba =
b2+1∑

s1,...,sD−1=b1−1

(1 − R(i+u,j+u′))

×
b2+1∑

s1,...,sD−1=b1−1

(1 − R(i+v,j+v′)) (A.2)

where a goes from 1 to D. u and v are D tuples of whold
numbers, too, where the ath component is fixed at b1 − 1
and b2 + 1, respectively. Their components before the ath
one, s1 to sa−1, run from b1 to b2 whereas the components
after that run from b1−1 to b2 +1. The tuples k′, u′, and
v′ are transformation of k, u, and v, respectively, and
correspond to the considered mapping which preserve the
relative positions of the grid points among themselves in
the D dimensional cuboid. There are

D−1∏

i=0

2(D − i) (A.3)

of such operations. The related transformations we get by
combining the components of the original tuple or their
negative versions (in the case of odd values of l) in a new
tuples of the same length where each component or its
negation may appears only once. For even values of l the
negative components of the new tuple are extended by
adding one.

Appendix B: Quantification of the vertical
structures of GRP

The vertical structures of 1 in the GRP are quantified by
the laminarity

Λ =

∑N
v=vmin

vDP (v)
∑N

v=1 vDP (v)
(B.1)

where P (v) is the histogram of the size v of the D dimen-
sional cuboids. vmin is equivalent to lmin in equation (10)
and is set to 2 in our study.
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Appendix C: Regular patterns

The considered regular patterns are:

– Constant values.
The grid is filled with ones.

– White noise (e.g. Fig. 3a).
The grid is filled with realizations of pairwise indepen-
dent equal distributed random numbers in the range
of [0, 1].

– Asymmetric regular pattern in one direction
(STRIPE1, Fig. 3b).
fij = mod(i, p)
for all i = 1, . . . , N and j = 1, . . . , N . The period is set
to p = 5 data points.

– Asymmetric regular pattern in two directions
(STRIPE2, Fig. 3c).
fij = mod(i, p1) + mod(j, p2)
for i = 1, . . . , N and j = 1, . . . , N . The periods in both
directions are p1 = p2 = 10 data points.

– Symmetric regular pattern in one direction
(STRIPE3, Fig. 3d).
fij = |mod(i, p) − 2mod(i, p/2)|
for i = 1, . . . , N and j = 1, . . . , N . The period is p = 10
data points.

– Symmetric regular pattern in two directions
(STRIPE4, Fig. 3e).
fij = (|mod(i, p1) − 2mod(i, p1/2)|
+ |mod(j, p2) − 2mod(j, p2/2)|)/2
for i = 1, . . . , N and j = 1, . . . , N . The periods in both
direction are p1 = p2 = 10 data points.

– Asymmetric regular pattern in one direction reflected
on a vertical line (STRIPE5, Fig. 3f).
fij = mod(mod(|i − (N + 1)/2|, (N + 1)/2), p)
for i = 1, . . . , N and j = 1, . . . , N . The period is p = 5.

– Asymmetric regular pattern in two directions reflected
on a vertical line and a horizontal one (STRIPE6,
Fig. 3g).
fij = mod(mod(|i − (N + 1)/2|, (N + 1)/2)
+ mod(|j − (N + 1)/2|, (N + 1)/2), p)
for i = 1, . . . , N and j = 1, . . . , N . The periods are
p1 = p2 = p = 5 data points.

– Circles (Fig. 3h).
fij = mod(sqrt((mod(|i − (N + 1)/2|, (N + 1)/2))2
+ (mod(|j − (N + 1)/2|, (N + 1)/2))2), p)
for i = 1, . . . , N and j = 1, . . . , N . The period is p = 5
data points.
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