
Fast Computation of Recurrences in Long Time
Series

Tobias Rawald, Mike Sips, Norbert Marwan and Doris Dransch

Abstract We present an approach to recurrence quantification analysis (RQA) that
allows to process very long time series fast. To do so, it utilizes the paradigm Divide
and Recombine. We divide the underlying matrix of a recurrence plot (RP) into sub
matrices. The processing of the sub matrices is distributed across multiple graphics
processing unit (GPU) devices. GPU devices perform RQA computations very fast
since they match the problem very well. The individual results of the sub matrices
are recombined into a global RQA solution. To address the specific challenges of
subdividing the recurrence matrix, we introduce means of synchronization as well
as additional data structures. Outperforming existing implementations dramatically,
our GPU implementation of RQA processes time series consisting of N ≈ 1,000,000
data points in about 5 min.

1 Introduction

Many different systems show recurring behavior and its study has attracted attention
in almost all scientific fields. The climate system can express recurring behavior due
to Milankovich cycles [1], seasonal changes, El Niño/Southern Oscillation, etc. The
study of these recurrences allows for a better understanding of the climate system;

T. Rawald (B) · D. Dransch · M. Sips
German Research Center for GeoSciences GFZ,
Berlin, Germany
e-mail: trawald@gfz-potsdam.de

D. Dransch
e-mail: dransch@gfz-potsdam.de

M. Sips
e-mail: sips@gfz-potsdam.de

N. Marwan
Potsdam Institute for Climate Impact Research, Potsdam, Germany
e-mail: marwan@pik-potsdam.de

© Springer International Publishing Switzerland 2014
N. Marwan et al. (eds.), Translational Recurrences, Springer Proceedings
in Mathematics & Statistics 103, DOI 10.1007/978-3-319-09531-8_2

17



18 T. Rawald et al.

its past as well as its future [2–4]. The cardiorespiratory system is investigated by its
recurrence properties to get insights in its mechanisms or to measure dysfunctions for
diagnosing life threatening conditions [5–9]. Recurrence analysis is promising for
investigating brain activity [10] and early detection of epileptic states [11]. Further-
more, it is applied to monitor engines and technological processes, like power gener-
ation gas turbines health, cutting processes or crack detection in materials [12–14].

Recurrence plots (RPs) and recurrence quantification analysis (RQA) are power-
ful methods for analyzing recurrences in measured time series [15]. Their application
in many fields have proven their potential for various kinds of analyses [16]. A recur-
rence plot is a two-dimensional representation of a time series when a m-dimensional
phase space trajectory recurs to former (or later) states. Recurrence of a state at time
i at a different time j is captured within a two-dimensional squared matrix r [15]:

ri, j = Θ
(
ε − ∥∥xi − x j

∥∥)
, xi ∈ R

m, i, j = 1 . . . N . (1)

Both of its axes represent the set of states in temporal order. N is the number
of considered states xi (length of phase space trajectory). ε is a threshold dis-
tance, ‖ · ‖ a norm, and Θ(·) the Heaviside function. A pair of states that fulfills
the threshold condition is assigned with the value 1 (recurrence point), whereas a
pair that is considered to be dissimilar is assigned with the value 0. Further details
about the reconstruction of phase space vectors from a scalar time series, the recur-
rence parameters, as well as the typical visual characteristics of RPs can be found
in [15].

Small scale structures in the RP, like diagonal lines, are used to define measures of
complexity establishing the recurrence quantification analysis (RQA) [15, 17, 18].
As an example, we present the RQA measure percent determinism (DET ):

DET =
∑N

l=dmin
l HD(l)

∑N
i, j=1 ri, j

. (2)

It is the fraction of recurrence points that form diagonal lines; HD(l) is the number
of diagonal lines of exactly length l and dmin is a minimal length necessary to be
a diagonal line. This measure characterizes the deterministic nature of a dynamical
system from a heuristic point of view (further discussions can be found in [15, 19]).
Further measures quantify average line lengths or the complexity of the line length
frequency distributions HD(l) (diagonal lines) and HV(l) (vertical lines).

The time complexity of basic RQA measures is O(N 2), where N denotes the
number of data points. This property hampers an efficient computation for very long
data. Furthermore, current implementations are limited by the memory these tools
can manage. The CRP Toolbox for MATLAB [20] is limited to N < 10,000 data
points when calculating the entire RP; for standard PC configurations even less, i.e.,
N < 5,000 data points. The RQA software by Webber [21] is capable of processing
only up to N = 5,000 data points.



Fast Computation of Recurrences in Long Time Series 19

We present an algorithm based on the concept of Divide and Recombine (D&R)
that allows RQA of very long time series in Sect. 2 and evaluate our algorithm in
Sect. 3. In Sect. 4 we highlight the utilization of our approach for a concrete applica-
tion example taken from the climate research domain.

2 Our Approach

2.1 Divide and Recombine

D&R is a very general approach to address large computational problems. The basic
idea is to divide a data set into small sub sets allowing the fast computation of ana-
lytical results of the subsets. The intermediate results of the sub sets are recombined
into a global solution.

The main application of D&R as presented by Guha et al. in [22] is to enable
the analysis of big data sets. They use the MapReduce [23] framework to distrib-
ute the data and analytical computation between several computing nodes. In contrast,
the central challenge in the context of RQA is not the amount of data itself but rather
that the determination of RQA measures is compute intensive. To meet this challenge,
we utilize the paradigm D&R as follows.

We divide the underlying matrix of a RP, the so called recurrence matrix [see Eq. 1]
into small sub matrices (Divide). For each sub matrix, we compute RQA measures in
a massively parallel manner on GPU devices. This includes especially the detection
of diagonal and vertical lines. The key issue of the divide step is distributing RQA
computations of sub matrices between multiple GPU devices. In a final step, the
individual results of the sub matrices are recombined into a global RQA solution
(Recombine).

Having distributed the computational load to several GPU devices using D&R, we
further reduce the runtime by exploiting the parallel processing capabilities of a GPU
device itself. We subdivide the processing within a sub matrix into a set of subtasks
that can be processed concurrently. The underlying workflow of our approach is
summarized in Fig. 1.

An important challenge with D&R for RQA is that diagonal and vertical lines may
spread over multiple sub matrices (see Fig. 2). To compute a valid global frequency
distribution of diagonal and vertical line lengths, we introduce the carryover buffer.
A carryover buffer is a data structure that allows to share information about the length
of diagonal or vertical lines that exceed a sub matrix. In the following, we describe
how our approach addresses the challenges of computing valid global frequency
distributions of diagonal and vertical line lengths (see Sect. 1).



20 T. Rawald et al.

Global
RQA

Result

(a) (b)

(c)

(d)

…

…

…

Fig. 1 Our D&R approach. a Given a recurrence matrix. b We divide the recurrence matrix into
a set of sub matrices. c We distribute sub matrices to several GPU devices. For each sub matrix,
we compute the frequency distributions of diagonal and vertical lines. The computation of the
frequency distributions of a single sub matrix is done in a massively parallel manner on a GPU
device by identifying independent sub tasks; depicted as dotted arrows. d The individual results are
recombined into a global RQA solution

2.2 Detection of Vertical and Diagonal Lines

To determine vertical lines within the i th column of the recurrence matrix r, the
computation starts at element ri,0, representing its first element. The index j is
increased until the first recurrence point (see Sect. 1) has been found. Assuming the
element ri, j is a recurrence point, the counter representing the length of the current
vertical line is increased by 1. This counter is initially set to 0. If ri, j+1 is also a
recurrence point, the counter is increased again. If ri, j+1 is not a recurrence point,
the vertical line stops at ri, j . We then update the frequency distribution of vertical
line lengths HV(l), reset the line length counter to 0 and continue the detection of
vertical lines at ri, j+2. Note, each column of the recurrence matrix has a separate
line length counter attached.

Subdividing r, its columns are split into a number of parts belonging to different
sub matrices. We introduce the vertical carryover buffer to address this challenge.
For each column of r it stores the length of a vertical line that exceeds the horizontal
border of a sub matrix.

Figure 3 compares the detection of vertical lines using (a) the recurrence matrix as
a whole with applying (b) the vertical carryover buffer to the set of sub matrices. The
states of the carryover buffer element corresponding to the column containing the
vertical line after processing a particular sub matrix are shown above the recurrence



Fast Computation of Recurrences in Long Time Series 21

(a) (b)

Fig. 2 Challenges of divide and recombine for RQA. The single diagonal and vertical line in (a)
are distributed between several sub matrices in (b). a Full recurrence plot. b Divided recurrence
plot

plot. If a vertical line reaches the last element of a column of a sub matrix, the
carryover buffer element stores its current length. Otherwise its value is 0.

The value of the carryover buffer element is used as input for processing parts
of the i th column of r that belong to the adjacent sub matrix. To compute valid
results, applying the carryover buffer requires a particular order of processing the sub
matrices. We present the vertical execution order rule that reflects this dependency.

A sub matrix of r is referred to as Sg,h . The sub matrix representing the bottom
left corner of the recurrence matrix has the indices g = 0 and h = 0.
Vertical Execution Order Rule Suppose a sub matrix Sg,h with g being the hori-
zontal index and h being the vertical index. All sub matrices Sg,n with 0 ≤ n < h
have to be processed before Sg,h is processed.

Sub matrices which do not share any element of the carryover buffer can be
processed concurrently. This allows us to compute the local frequency distribution
of vertical line lengths of multiple sub matrices at the same time.

This concept can easily be adapted to the detection of diagonal lines, including
the use of a carryover buffer and a particular order of execution concerning the set
of sub matrices. The major difference is that a diagonal line may transcend not only
the horizontal but also the vertical borders of sub matrices. Furthermore, the size of
the carryover buffer is equivalent to the number of diagonals of r.

Figure 4 illustrates the detection of diagonal lines. For the purpose of demonstra-
tion, the RP contains only a single diagonal line of length 6. Since diagonal lines
may cross horizontal as well as vertical sub matrix borders, we define a diagonal
execution order rule that reflects this property.
Diagonal Execution Order Rule Suppose a sub matrix Sg,h with g being the hor-
izontal index and h being the vertical index. All sub matrices Sm,n that fulfill either



22 T. Rawald et al.

(a)
 

(b)
 

Fig. 3 Detection of vertical lines. Detecting the vertical line in (a) is straight-forward. Performing
the processing on multiple sub matrices in (b) requires to preserve the execution order I. → I I. →
I I I. The intermediate states of the carryover buffer element corresponding to the column after
processing each sub matrix (2, 5 and 0) are depicted above the recurrence plot. a Full recurrence
matrix. b Multiple sub matrices

(a) (b)

Fig. 4 Detection of diagonal lines. Given a full recurrence matrix in (a), the detection of the diagonal
line is straight-forward. By dividing the recurrence matrix in (b), the diagonal line stretches over
5 sub matrices. To preserve the validity of the detection result, they must be processed in the order
I. → I I. → I I I. → I V . → V . The intermediate states of the corresponding carryover buffer
element is depicted on the right next to the recurrence plot. a Full recurrence matrix. b Multiple
sub matrices



Fast Computation of Recurrences in Long Time Series 23

the condition (0 ≤ m ≤ g) ∧ (0 ≤ n < h) or (0 ≤ m < g) ∧ (0 ≤ n ≤ h) have to
be processed before Sg,h is processed.

3 Performance Evaluation

To evaluate our approach, we compare the performance characteristics of three RQA
implementations. We contribute an implementation of our D&R approach using
version 1.1 of the OpenCL framework for parallel programming of heterogeneous
systems [24]. To fulfill the performance requirements, we use the low-level program-
ming language C++ for implementing the host program.

The hardware setup of the experiment consists of an off-the-shelf desktop work-
station, containing an Intel i5-3570 quad-core CPU at up to 3.80 GHz and 16 GB of
main memory. It also includes a NVIDIA GeForce GTX 690 that provides two GPU
processors running at up to 1.019 GHz; each of them is supplied with 2 GB of mem-
ory. In the context of heterogeneous computing, each GPU processor is treated as a
separate computing device. The workstation runs on a 64-bit version of OpenSuse
12.1 with version 4.2.1 of CUDA.

To reduce the impact of outliers, we repeat each experiment five times. Measuring
the runtime, we rely on the chrono package of the Boost library [25] with an accuracy
up to one millisecond.

As stated in [26], it is important to compare optimized code that is running on the
GPU to optimized CPU code. For this reason, we compare the massively parallel GPU
implementation approach to two non-distributed, non-D&R CPU implementations.
As a baseline we refer to a single-threaded C++ implementation. Additionally, we
employ a parallel C++ implementation that is extended with OpenMP statements.
It executes the detection of diagonal and vertical lines using multiple CPU threads.

Table 1 Runtime for RQA calculation for time series of varying length

Length OpenCL (1 × GPU) (s) OpenCL (2 × GPU) (s) OpenMP (CPU) Single thread (CPU)

20,000 0.8 0.8 1.1 s 5.6 s

40,000 1.8 1.7 4.4 s 22.3 s

60,000 3.1 2.5 10.0 s 50.2 s

80,000 4.6 3.4 17.7 s 1 min 29.2 s

100,000 6.3 4.5 27.6 s 2 min 19.5 s

120,000 8.4 5.6 39.9 3 min 21.0 s

140,000 10.7 6.7 54.3 s 4 min 33.2 s

160,000 13.3 8.2 1 min 10.9 s 5 min 56.8 s

180,000 16.2 9.7 1 min 29.7 s 7 min 30.9 s

200,000 19.3 11.4 1 min 50.7 s 9 min 16.8 s

Parameters are embedding dimension m = 2 and embedding delay τ = 2



24 T. Rawald et al.

Fig. 5 Runtime comparison. Our GPU implementation (OpenCL) of D&R outperforms both the
single-threaded (C++) and multi-threaded (OpenMP) non-D&R CPU implementations. Balancing
the work between two GPU processors, the runtime can be reduced additionally up to 40 %

Table 1 and Fig. 5 compare the runtime of the three implementations based on a
time series capturing the Sinus wave. We vary the length of the time series between
20,000 and 200,000 data points with a step size of 20,000. For each experiment we use
the same parameters for reconstructing the states from the time series (see Sect. 1).
Furthermore, we set the size of the sub matrices processed by a GPU processor to
20,000 × 20,000 elements.

In all cases, our OpenCL implementation outperforms the multi-threaded OpenMP
implementation (up to a factor >5) and the single-threaded C++ implementation
(up to a factor >28) using only one GPU processor. Using both GPU processors
available, the runtime can be reduced additionally up to 40 %.

4 Application to Climate Data

In the following we will investigate the hourly temperature dynamics by RQA, which
will be applied on a measurement record of hourly air temperature in Potsdam.
This record is one of the longest, non-interrupted, hourly climate records in the
world. In our analysis it is covering the period from 1893 until 2011 (although the
measurements are still ongoing), resulting in 1,043,112 data points (see Fig. 6a). For
the period between 1893 and 1974, the warming trend of the annual mean temperature



Fast Computation of Recurrences in Long Time Series 25

1880 1900 1920 1940 1960 1980 2000 2020
−30

−20

−10

0

10

20

30

40

Time [yr AD]

H
ou

rly
 T

em
pe

ra
tu

re
 [°

C
]

1880 1900 1920 1940 1960 1980 2000 2020
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Time [yr AD]

A
nn

ua
l M

ea
n 

T
em

pe
ra

tu
re

 [°
C

]

19
75

(a)

(b)

0.46 K/100yr

3.4 K/100yr

Fig. 6 a Hourly temperature in Potsdam. b Annual mean temperature in Potsdam and warming
trend for the periods 1893–1974 and 1975–2011

was 0.46 K per century, but after 1974 the trend rose to 3.4 K per century (see Fig. 6b).
In the following we will consider the full time period as well as the two periods 1893–
1974 (718,776 data points) and 1975–2011 (324,336 data points) separately.

To study the short-term dynamics, we remove the annual trend (seasonal cycle)
from the data by phase averaging, resulting in an anomaly temperature record. We
use a time delay embedding of dimension m = 5 and delay τ = 3, which have



26 T. Rawald et al.

Table 2 RQA results for the full time series of hourly temperature anomaly data of Potsdam as
well for the two periods 1893–1974 and 1975–2011

Measure 1893–2011 1893–1974 1975–2011

RR 0.12 0.12 0.13

DET 0.94 0.94 0.94

L 8.4 8.4 8.6

LAM 0.96 0.97 0.96

been found by false nearest neighbors approach for finding m [27] as well as a
combined autocorrelation and visual recurrence plot inspection approach for finding
an optimal τ [28]. We calculate the four RQA measures (1) recurrence rate R R,
(2) determinism DET , (3) average diagonal line length L , and (4) laminartity L AM
[15] for a recurrence threshold of ε = 1 (Euclidean norm). These measures reflect
different aspects of the short-term dynamics, e.g., predictability. We find that all four
measures do not remarkably change for the full period and the sub periods 1893–1974
and 1975–2011 (see Table 2). This result suggests that, in contrast to the longer time-
scales, the short-term dynamics, and, thus, the short-term weather predictability, has
not (yet) changed due to the climate change.

The calculation of these RQA measures benefits highly from our D&R approach,
which makes the calculations possible for these long time series. We apply the
same implementations as well as the same experimental environment as described in
Sect. 3. Using the single-threaded common RQA software, it takes over six hours to
calculate the RQA for the full time period, whereas the OpenMP implementation still
needs over one and a half hour. The OpenCL implementation allows to reduce the
runtime to about five minutes, using two GPU processors (see Table 3, Fig. 7). This
significant runtime improvement of RQA will allow comprehensive investigations
of big data collections of weather data, consisting of thousands of time series similar
to the present Potsdam temperature record.

Despite its performance improvements, it is of great importance that the GPU
implementation computes correct RQA results. Table 4 compares a selection of RQA
measures computed by the different implementations for the period between 1893
and 2011. It shows that the GPU implementation calculates the same results as the

Table 3 Runtime for RQA calculation for the full time series of hourly temperature anomaly data
of Potsdam as well for the two periods 1893–1974 and 1975–2011

Computation schema 1893–1974 1975–2011 1893–2011

OpenCL (1 × GPU) 4 min 40 s 57 s 10 min 11 s

OpenCL (2 × GPU) 2 min 25 s 30 s 5 min 10 s

OpenMP (CPU) 44 min 38 s 9 min 5 s 1 h 33 min 58 s

Single thread (CPU) 2 h 59 min 25 s 36 min 35 s 6 h 18 min 4 s



Fast Computation of Recurrences in Long Time Series 27

Fig. 7 Runtime for RQA calculation for the full time series of hourly temperature anomaly data
of Potsdam as well for the two periods 1893–1974 and 1975–2011

Table 4 Results for the RQA measures recurrence rate R R, determinism DET , average diagonal
line length L , and laminarity L AM computed by the different implementations for the period
1893–2011

Measure OpenCL (1 × GPU) OpenCL (2 × GPU) OpenMP (CPU) Single thread (CPU)

RR 0.12 0.12 0.12 0.12

DET 0.94 0.94 0.94 0.94

L 8.4 8.4 8.4 8.4

LAM 0.96 0.96 0.96 0.96

single-threaded C++ and the multi-threaded OpenMP implementation. In addition,
distributing the computations between two GPU processors does not influence the
results.

5 Conclusion

We present an approach based on the paradigm of D&R that allows to perform
RQA on very long time series (>1,000,000 data points) efficiently. By splitting
the underlying matrix of a RP into a set of sub matrices, we are able to distribute
the computational load between several GPU devices; each sub matrix is processed
individually. We address the problem of diagonal and vertical lines transcending the
borders of multiple sub matrices by introducing the diagonal and vertical carryover



28 T. Rawald et al.

buffer as global data structures. To preserve the correctness of the RQA measures,
we provide specific execution order rules for processing the individual sub matrices.

In comparison to a parallel CPU implementation using OpenMP, we can improve
the runtime performance significantly up to factor >9, using two GPU processors.
Our experiments have shown that GPU devices are well suited to compute basic
RQA measures.

The application of the proposed RQA implementation to a specific problem from
climate research has demonstrated its potential for an efficient recurrence study and
will allow future RQA investigations of very long time series.

Acknowledgments We would like to thank T. Nocke and F.-W. Gerstengarbe for fruitful discus-
sions. We acknowledge support from the Potsdam Research Cluster for Georisk Analysis, Environ-
mental Change and Sustainability (PROGRESS, support code 03IS2191B).

References

1. Muller, R.A., MacDonald, G.J.: Ice Ages and Astronomical Causes. Springer, New York (2002).
(Springer Praxis Books/Environmental Sciences)

2. Ponyavin, D.I.: Sol. Phys. 224(1–2), 465 (2005). doi:10.1007/s11207-005-4979-5
3. Donges, J.F., Donner, R.V., Trauth, M.H., Marwan, N., Schellnhuber, H.J., Kurths, J.: Proc.

Nat. Acad. Sci. 108(51), 20422 (2011). doi:10.1073/pnas.1117052108
4. Goswami, B., Marwan, N., Feulner, G., Kurths, J.: Eur. Phys. J. Special Topics 222, 861 (2013).

doi:10.1140/epjst/e2013-01889-8
5. Zbilut, J.P., Koebbe, M., Loeb, H., Mayer-Kress, G.: pp. 263–266. IEEE Computer Society

Press (1990), doi:10.1109/CIC.1990.144211
6. Porta, A., Baselli, G., Montano, N., Gnecchi-Ruscone, T., Lombardi, F., Malliani, A., Cerutti,

S.: Biol. Cybern. 75(2), 163 (1996)
7. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Phys. Rev. E 66(2), 026702

(2002). doi:10.1103/PhysRevE.66.026702
8. Van Leeuwen, P., Geue, D., Thiel, M., Cysarz, D., Lange, S., Romano, M.C., Wessel, N.,

Kurths, J., Grönemeyer, D.H.W.: Proc. Nat. Acad. Sci. 106(33), 13661 (2009). doi:10.1073/
pnas.0901049106

9. Marwan, N., Zou, Y., Wessel, N., Riedl, M., Kurths, J.: Philos. Trans. R. Soc. A 371(1997),
20110624 (2013). doi:10.1098/rsta.2011.0624

10. Carrubba, S., Frilot II, C., Chesson Jr, A.L., Marino, A.A.: Med. Eng. Phys. 32(8), 898 (2010).
doi:10.1016/j.medengphy.2010.06.006

11. Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., Ang, P.C.A.: Int. J. Neural Syst. 21(3),
199 (2011). doi:10.1142/S0129065711002808

12. Bassily, H., Wagner.: 10, 629–635 (2008)
13. Litak, G., Sen, A.K., Syta, A.: Chaos, Solitons Fractals 41(4), 2115 (2009). doi:10.1016/j.

chaos.2008.08.018
14. Iwaniec, J., Uhl, T., Staszewski, W.J., Klepka, A.: Nonlinear Dyn. 70(1), 125 (2012). doi:10.

1007/s11071-012-0436-9
15. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Phys. Rep. 438(5–6), 237 (2007). doi:10.

1016/j.physrep.2006.11.001
16. Marwan, N.: Eur. Phys. J. Special Topics 164(1), 3 (2008). doi:10.1140/epjst/e2008-00829-1
17. Zbilut, J.P., Webber Jr, C.L.: Phys. Lett. A 171(3–4), 199 (1992). doi:10.1016/0375-

9601(92)90426-M
18. Webber Jr, C.L., Zbilut, J.P.: J. Appl. Physiol. 76(2), 965 (1994)

http://dx.doi.org/10.1007/s11207-005-4979-5
http://dx.doi.org/10.1073/pnas.1117052108
http://dx.doi.org/10.1140/epjst/e2013-01889-8
http://dx.doi.org/10.1109/CIC.1990.144211
http://dx.doi.org/10.1103/PhysRevE.66.026702
http://dx.doi.org/10.1073/pnas.0901049106
http://dx.doi.org/10.1073/pnas.0901049106
http://dx.doi.org/10.1098/rsta.2011.0624
http://dx.doi.org/10.1016/j.medengphy.2010.06.006
http://dx.doi.org/10.1142/S0129065711002808
http://dx.doi.org/10.1016/j.chaos.2008.08.018
http://dx.doi.org/10.1016/j.chaos.2008.08.018
http://dx.doi.org/10.1007/s11071-012-0436-9
http://dx.doi.org/10.1007/s11071-012-0436-9
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1140/epjst/e2008-00829-1
http://dx.doi.org/10.1016/0375-9601(92)90426-M
http://dx.doi.org/10.1016/0375-9601(92)90426-M


Fast Computation of Recurrences in Long Time Series 29

19. Marwan, N., Schinkel, S., Kurths, J.: Europhys. Lett. 101, 20007 (2013). doi:10.1209/0295-
5075/101/20007

20. Marwan, N.: CRP Toolbox 5.17 (2013). Platform independent (for Matlab). http://tocsy.pik-
potsdam.de/CRPtoolbox

21. Webber, C.L. Jr.: RQA Software 14.1 (2013). Only for DOS. http://homepages.luc.edu/
~decwebber

22. Guha, S., Hafen, R., Rounds, J., Xia, J., Li, J., Xi, B., Cleveland, W.S.: Stat. 1(1), 53 (2012).
doi:10.1002/sta4.7. http://dx.doi.org/10.1002/sta4.7

23. Dean, J., Ghemawat, S.: Commun. ACM 51(1), 107 (2008)
24. OpenCL 1.1 Specification (2010). http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
25. Dawes, B., Abrahams, D., Rivera, R.: Boost—C++ libraries (2013). http://www.boost.org
26. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N., Smelyanskiy,

M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: In: Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA’10, pp. 451–460 (2010)

27. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Phys. Rev. A 45(6), 3403 (1992). doi:10.1103/
PhysRevA.45.3403

28. Marwan, N.: Int. J. Bifurcat. Chaos 21(4), 1003 (2011). doi:10.1142/S0218127411029008

http://dx.doi.org/10.1209/0295-5075/101/20007
http://dx.doi.org/10.1209/0295-5075/101/20007
http://tocsy.pik-potsdam.de/CRPtoolbox
http://tocsy.pik-potsdam.de/CRPtoolbox
http://homepages.luc.edu/~decwebber
http://homepages.luc.edu/~decwebber
http://dx.doi.org/10.1002/sta4.7
http://dx.doi.org/10.1002/sta4.7
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.boost.org
http://dx.doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.1142/S0218127411029008

	2 Fast Computation of Recurrences in Long Time Series
	1 Introduction
	2 Our Approach
	2.1 Divide and Recombine
	2.2 Detection of Vertical and Diagonal Lines

	3 Performance Evaluation
	4 Application to Climate Data
	5 Conclusion
	References


