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Recurrence plot analysis of irregularly sampled data
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Irregularly sampled time series usually require data preprocessing before a desired time-series analysis can be
applied. We propose an approach for distance measuring of pairs of data points which is directly applicable
to irregularly sampled time series. In order to apply recurrence plot analysis to irregularly sampled time
series, we use this approach and detect regime transitions in prototypical models and for an application from
palaeoclimatatology. This approach might be useful for any method that is based on distance measuring, e.g.,
correlation sum or Lyapunov exponent estimation.
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I. INTRODUCTION

One of the main goals of data science is to understand dy-
namical processes and to predict their future in order to evalu-
ate vulnerability and resilience, e.g., to prepare the society for
recurring events such as natural catastrophes and economical
or medical crises. For this purpose, it is indispensable to un-
derstand the past with a complete range of natural variability,
which is in general obtained from time series. Time series
represent the variation of dynamical systems and provide, e.g.,
information on long-term trends but also abrupt and critical
regime transitions (such as crises and catastrophes). However,
not all of this information is easily accessible.

Besides linear methods, several techniques such as the
Lyapunov exponent, Poincaré recurrences [1], or correlation
dimension [2] have been proposed for a better understanding
of the dynamics as represented by time series. Most of these
methods are based on investigating the evolution of trajec-
tories in the phase space or, where required, in the recon-
structed phase space [3]. The standard procedure of analyzing
a dynamical system by its phase space is by measuring the
distances between points on the phase-space trajectory (or
its change) and quantifying them. While numerous ways of
measuring these distances are at our disposal, most of them
require regular temporal sampling (i.e., regularly sampled
time series), where the temporal resolution �t = ti − t(i−1) =
const ∀i ∈ [1, N] (N is the total number of points in the time
series). Unfortunately, it is not always possible to record data
regularly, such as in astrophysics or in earth sciences. In the
latter, for example, regular spatial sampling of palaeoclimate
archives (e.g., lacustrine sediments or cave carbonates) trans-
lates into irregularly spaced sampling intervals in the time di-
mension due to varying deposition rates. Standard methods for
distance measuring, such as Euclidean norm and maximum

norm, are not directly applicable and require data prepro-
cessing, such as interpolation, to regularize the investigated
time series. Data preprocessing usually introduces additional
uncertainty or bias [4].

A recently introduced data preprocessing approach to reg-
ularize time series is the transformation cost time series
(TACTS) approach. It transforms irregularly sampled time
series into regular ones [5]. The base of the TACTS method is
a metric distance for the transformation of a certain block of
the time series to match a subsequent block. In other words,
TACTS is a kind of high-pass filter for preprocessing data.
Here we will show that this distance measure is not only useful
as a preprocessing step for regularization of data sets but also
suggestive for a general distance measure in the phase space.
The distance can be used in any analysis or employed by
any method such as the recurrence plot (RP) and recurrence
quantification analysis (RQA) [6]. This metric distance was
adopted from [7] and extended in our previous work [5].
Suzuki et al. also used a similar distance measure based
on the point process to construct the RP [7]. In this study,
we focus on RPs and RQA, but again, our approach is not
limited to these methods; it can be applied in any technique
where measuring the distance is required, especially in the
case of irregular sampling. Combining this specific distance
measure approach with RPs, we identify regime transitions in
dynamics in irregularly sampled time series without the need
for any preprocessing.

Our paper is organized as follows. In the following section
we introduce our metric distance, the RP, and explain how
to implement this measure into the RP. In Sec. III we apply
this technique to paradigmatic model examples, the logistic
map and the Rössler attractor, to evaluate the performance
of our method on perturbed data by removing random points
from the system and adding noise. Finally, as a real-world
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application, we analyze a palaeoclimate record in Sec. IV. We
chose the palaeoclimatic reconstruction (δ 18O variations in a
stalagmite) from Dayu Cave in China [8] as an illustrative
test case for our method, since the interpretation of this
geochemical proxy reconstruction has uniquely been linked
to historical events (inscriptions on the cave’s walls). The
observed δ 18O variation in the robustly radiometrically dated
stalagmite tracks changes in summer monsoon rainfall and
indicates the occurrence of massive droughts over the past 700
years. The inscriptions found in the same cave report severe
water shortage in the region around the cave at exactly the
same time as indicated by the speleothem proxy record. This
corroboration of proxy data by historical information allows
highly robust tests of the methodology proposed in this study.

II. TIME-SERIES ANALYSIS

A. Metric analyses

Measuring distance between state vectors in a phase space
is often used to describe the behavior of dynamical sys-
tems. The evolution of the distance between trajectories of
a dynamical system provides valuable information for the
general behavior of systems such as their dynamics (de-
termining the Lyapunov exponent or correlation dimension)
[2,9] or their collective behavior [10,11]. Numerous methods
are available to measure distances in phase space, such as

Euclidean or maximum norm or, more specifically, order
patterns [12]. Such distance measures require equidistant time
points along the phase-space trajectory, a constant temporal
sampling. However, observations in various fields are not
always regularly sampled. The most common way to cope
with these irregularities is by time-series interpolation. While
interpolation anchors the sampling rate, it not only fills the
gaps in a given time series, but also changes the position
of all data points. Such an interpolation strategy can easily
bias the results and cause more additional uncertainty in the
interpolated data [13].

To address the inapplicability of interpolation approaches
and the importance of finding a distance definition for irreg-
ularly sampled time series that were highlighted in a case
that involved firing neurons, a metric distance was proposed
by Victor and Purpura [14]. The main idea of this distance
measure is a transformation of a data pattern to another
one with two elementary operations: (i) adding or deleting
a point and (ii) shifting a point in time. These operations
have their defined costs and, crucially, the total cost of the
transformation has to be minimal. Suzuki et al. adopted this
measure and extended it for marked data [7] with arbitrary
constants. Finally, Ozken et al. proposed the meaning of the
arbitrary constants by using time series’ properties [5]. The
distance definition reached its final form to calculate the cost
D between data segments Sa and Sb as

D(Sa, Sb ) =

shifting and amplitude change︷ ︸︸ ︷∑
(α,β )∈C

{
�0‖ta (α) − tb(β )‖ + 1

m

m∑
k=1

�k‖La (α) − Lb(β )‖
}

+�S (|I | + |J | − 2|C|)︸ ︷︷ ︸
adding and deleting

, (1)

where C is a set of pairs of events, time instances (α, β )
corresponding to two different data segments that will be
transformed from Sa to Sb.

The first term on the right-hand side of Eq. (1) sums the
costs of shifting in time and changes in amplitude from the αth
event in Sa to the βth event in Sb. The times of these points are
denoted by ta (α) and tb(β ) and the amplitudes by La (α) and
Lb(β ) for the αth and βth elements of Sa and Sb, respectively.
In Eq. (1), m is the dimension of the phase space and ‖ · ‖ is a
norm. The cost of shifting points in time is given by the factor
�0 and of changing amplitudes by �k . These factors depend
on the data and are given by

�0 = M

total time
, (2a)

�k = M − 1∑M−1
i ‖xi − xi+1‖

, (2b)

where M is the total number of events and xi is the amplitude
of the ith point in the data.

In the second term on the right-hand side of Eq. (1), I and
J are sets of indices of the events in Sa and Sb, respectively.
In addition, | · | denotes the cardinality of sets. The cost of
the adding or deleting a process is given by �S and is used
as an optimization parameter. The selection routine for �S

is the following: We calculate the distances between all data
segments for the entire range of �S ∈ [0, 4] with the step
size ��S = 0.01. Since each distance value is independent of
the others, we expect to have normally distributed distances.
Therefore, the optimal �S is chosen by the best fit to a normal
distribution.

It is worth noting that D is a metric distance. Intrinsically
it satisfies the three essential conditions: D(Sa, Sb ) � 0 (pos-
itive), D(Sa, Sb ) = D(Sb, Sa ) (symmetric), and D(Sa, Sc ) �
D(Sa, Sb ) + D(Sb, Sc ) (triangle inequality).

Now we illustrate how to find the metric distance D for an
example (Fig. 1). An irregularly sampled time series {xi}Mi=1
is entirely divided by equally sized small sequences and we
consider two of them which are given by the state a (Sa =
{aα}4

α=1) and the state b (Sb = {bβ}3
β=1). With the first and

second steps, the events are shifted in time and naturally the
amplitudes are changed. In the third and fourth steps points
are deleted, while in the last a point is added. The cost of each
step is shown in detail in Fig. 1 and the total cost of all steps
is equal to the metric distance D(Sa, Sb ).

The distance is an essential measure in numerous
mathematical techniques. Without harmful preprocessing
techniques such as interpolation, the proposed metric
distance approach can be directly implemented in such
methods.
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state a

state b

x(
t)

time (t)

state a 

state b 

step 1

step 2

step 3

step 4

step 5

Initial state
cost(0) = 0

Shifting
cost(1) = 0|ta(4)-tb(3)|+ k|La(4)-Lb(3)|

Shifting
cost(2) = cost(1) +  0|ta(3)-tb(2)|+ k|La(3)-Lb(2)|

Deleting
cost(3) = cost(2) +  s

Deleting
cost(4) = cost(3) +  s

Final state
total cost = cost(5)

Adding
cost(5) = cost(4) +  s

FIG. 1. Illustration of the transformation from state a to state b.
In total state a undergoes five steps numbered as steps 1, 2, . . . , 5.
Note that after the step 5 state a is transformed to state b. The path
shown is a minimal-cost path and all the steps are elementary steps,
like moving an event or deleting and creating. On the right-hand sides
of the steps, the cumulative costs are given.

B. Recurrence plot

The RP approach is a versatile tool to study the behav-
ior of dynamical systems [6] and was used to tackle many
problems in several disciplines, e.g., electrochemistry [15],
earth science [16], econophysics [7], and engineering [17].
Here we apply the RP for detecting regime transitions in
prototypical dynamical systems and a real-world application
on paleoclimate records.

The RP was introduced by Eckmann et al. as a matrix
of pairwise Poincaré recurrences of phase-space states [1].
According to the Poincaré recurrence theorem, a trajectory
�x(t ) of an m-dimensional system, in sufficiently long and
finite time, will return to the ε neighborhood of a previous
state [18]. The RP is a tool to visualize this recurrences with a
time vs time matrix. For a given trajectory �xi (i = 1, 2, . . . , N

and �xi ∈ Rm), the RP is defined as [6]

Ri,j (ε) = �(ε − ||�xi − �xj ||), i, j = 1, . . . , N, (3)

where �(·) is the Heaviside function and ‖ · ‖ is a norm.
Therefore, Ri,j ≡ 1 if the state at time i recurs to a former (or
later) state at j , and Ri,j ≡ 0 otherwise. The selection of the
recurrence threshold ε depends on a specific research question
[19]: whether, in order to distinguish different dynamics, a
threshold relative to the standard deviation of the time series
is suitable [20].

The RP matrix is binary and symmetric and obviously the
main diagonal of this matrix is always Ri,i ≡ 1. According
to the behavior of the system, the recurrences create some
patterns in the RP [6]. For instance, long, continuous diagonal
lines appear in periodic systems, whereas RPs of chaotic
systems have rather short diagonal lines and RPs of stochastic
systems have no (or only very few and very short) diagonal
lines. Such lines are used for subsequent quantification of the
recurrence structure of the system (discussed below). How-
ever, defining and measuring such diagonals in irregularly
sampled RPs is an unsolved problem. The standard approach
is to interpolate the time series before the RP analysis. In
contrast to this standard approach, we now implement our cost
distance approach in the RP [Eq. (1)].

In order to apply the distance, we divide the time series into
ω small sequences. From now on, the time indices will be the
center points of these small sequences and the RP elements
will represent the distance of the states. Therefore, the size of
the RP matrix will be ω × ω,

Ri,j (ε) = �(ε − D(�xi, �xj )), i, j = 1, . . . , ω, (4)

where i and j are the indices of the states as defined by
the small sequences and D is the transformation distance
between those states [Eq. (1)]. For this special variant of
RP, it turns out that an alternative selection method for
the recurrence threshold ε would be more appropriate than
the standard ones. We compute the standard deviation σD

of the distances D(�xi, �xj ) and define our threshold as ε =
2σD . In the following sections we always use this threshold
selection method.

The quantification of the dynamics of dynamical systems
from time series by RPs is well studied and several measures
of complexity were introduced as recurrence quantification
analysis [6,21]. For example, the frequency distribution of
diagonal lines P (�) is used for some of these measures since
the length of the diagonal lines is related to the divergence
behavior of the dynamics and thus indirectly related to the
Lyapunov exponent of the system. One important measure of
the RQA is determinism (DET), which quantifies the fraction
of recurrence points (Ri,j = 1) which form diagonal lines,

DET =
∑N

�=�min
P (�)∑N

�=1 P (�)
, (5)

where � is the length of diagonal structures larger than �min (in
this study we use �min = 2). From a heuristic point of view,
high DET values are related to higher predictability. Although
there are further appropriate RP measures, in this study, to
detect regime transitions, we focus on DET only.

III. MODEL EXAMPLES

In real-world applications, such as palaeoclimate studies,
data sets are normally irregularly sampled due to the nature of
the nonlinear decomposition rates. Before we apply the pro-
posed metric distance to such an example from palaeoclimate
research, we demonstrate the potential of the approach using
prototypical models.
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A. Logistic map

As a first application we choose the one-dimensional dis-
crete logistic map, which is a simple mathematical model to
mimic population dynamics given by

xi+1 = rxi (1 − xi ) (6)

for the control parameter r ∈ [0, 4] [22]. We examine the sys-
tem in the range r ∈ [3.5, 4] where the logistic map possesses
rich dynamics: accumulation points, periodic and chaotic
behaviors, merging of chaotic bands, period doublings, inner
and outer crises, etc. Abrupt transitions between these regimes
occur by varying r .

First we generate a regularly sampled time series with
Eq. (6). The system is iterated for 3000 points for each
value of r ∈ [3.5, 4] (�r = 0.01). Two thousand points are
truncated to discard transients, resulting in regularly sampled
time series with 1000 points for each r value. To mimic
irregular sampling, we randomly delete a certain fraction γ

of points. We prepare four different irregularly sampled data
sets by randomly deleting 50 (γ = 5%), 100 (γ = 10%), 150
(γ = 15%), and 200 (γ = 20%) points from the original time
series.

For the four irregularly sampled data sets, we create RPs
(for the range of the parameter r) according to Eq. (4)
and using an arbitrarily chosen sequence size ensuring that
approximately six data points fall into the sequence. The
parameters �0,k are calculated using Eqs. (2a) and (2b).
We find that choosing �S = 1 gives a smooth bell-shaped
frequency distribution for the distances D. As mentioned, the
RP threshold is selected as ε = 2σD . Finally, the different
dynamical regimes according to r are detected by calculating
the DET values for each RP.

In order to quantify the performance of our approach for
different levels of perturbations by deleting points, we also
compute the Lyapunov exponent λ, which is a measure of
divergence of infinitesimally close trajectories [23] and DET
[Eq. (5)] of the original time series (Fig. 2). The Lyapunov
exponent is a well-known and powerful measure to understand
the behavior of complex systems. For chaotic dynamics the
Lyapunov exponent is positive, whereas for periodic dynamics
it is negative. When the Lyapunov exponent hits zero from
negative and turn back to the negative region, the system has
a period-doubling behavior, i.e., a transition from a periodic
case to another periodic case. If the Lyapunov exponent
crosses the zero line, then the system has a critical transition
from a periodic to a chaotic regime or vice versa (dotted
lines in Fig. 2). By using our approach, DET is able to
detect those transitions even in the case of missing points
(mimicking irregular sampling) [Fig. 2(b)]. The amplitudes of
change in DET decrease when more data points are removed,
because deleting points basically breaks diagonal lines by this
operation. However, we can still clearly detect all important
regime changes.

Another important issue in time-series analysis is noise.
Therefore, we extend this example of the logistic map by
adding noise and test the performance of our method against
different levels of noise. Gaussian white noise is added with
noise levels of 0.05σ (x) and 0.1σ (x), where σ (x) is the
standard deviation of the time series, on the data of γ = 5%

(a)

(b)

(c)

FIG. 2. Recurrence analysis of the logistic map: (a) Lyapunov
exponent λ, (b) DET for reference series and time series with
randomly deleted points, and (c) DET for reference series and time
series with randomly deleted points with additive noise. Dotted
vertical lines show regime transitions.

and 10% randomly deleted cases for the irregular sampling.
The recurrence plot threshold is ε = 2σD . The variation of
DET indicates most of the regime transitions, despite the
noise, although some of the smaller changes in DET are not
as clear as without noise [Fig. 2(c)]. These results show that
we can still detect all transitions in the presence of additional
difficulties.

The metric distance D is introduced and used to construct
TACTS [5]. In TACTS, we only measure the distance of con-
secutive data segments Si , where i = 1, . . . , ω, and it creates
a vector (single-variate time series), i.e., TACTS is a kind
of difference detrending filter. In the present study we create
a matrix by computing the distances, using the same metric
distance measure, between all pairs of ω sequences. Thresh-
olding this matrix constructs a recurrence plot. This approach
is different from the TACTS approach, because here we do not
consider a difference filtered time series but pairwise distances
(similarities) based on the local transformation costs. For
comparison, we perform a similarity analysis between RQA
and the Lyapunov exponent with the TACTS approach and the
current approach. When we conduct the similarity analysis,
the Pearson correlation coefficient is used,

ρ(x,y) = cov(x, y)

σxσy

, (7)
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TABLE I. Similarity-based comparison of TACTS [5] and the approach by using absolute value of the Pearson correlation of the Lyapunov
exponent λ and the DET values |ρ(λ,DET)|.

|ρ(λ,DET)| reference γ = 5% γ = 10% γ = 15% γ = 20% γ = 5%, σ = 0.05 γ = 5%, σ = 0.1 γ = 10%, σ = 0.1 γ = 10%, σ = 0.1

TACTS 0.89 0.87 0.86 0.87 0.87 0.86 0.85 0.83 0.85
RP with D 0.90 0.90 0.89 0.87 0.80 0.90 0.89 0.89 0.89

where cov(x, y) is the covariance of two time series x and y,
and σx and σy are their standard deviations, respectively. The
results are illustrated in Table I.

Except for the case of γ = 20%, the matrix approach
always has higher correlation than the TACTS method. As is
well known, high-pass filters are not very efficient preprocess-
ing techniques for noisy time series. However, our approach is
rather robust against noise while TACTS is affected by it (see
Table I).

B. Rössler attractor

After the test of our approach on a discrete system, we
now move to a paradigmatic continuous system, offering more
testing opportunities. We consider the Rössler attractor [24](

dx

dt
,
dy

dt
,
dz

dt

)
= (−y − z, x + ay, b + z(x − c)). (8)

The system has three control parameters a, b, and c. Sim-
ilar to the logistic map, we vary one control parameter to
have regime transitions, i.e., b ∈ [0, 1.4] with a resolution of
�b = 0.01 and with constants a = 0.2 and c = 5.7. First we
generate time series for each control parameter value b by
integrating Eq. (8) using a fourth-order Runge-Kutta scheme
and with �t = 0.01 sampling time. To mimic irregularly
sampled time series, we select 5000 maximum points from the
y component of the continuous time series [Fig. 3(a)]. This is
a natural way to achieve irregularly sampled time series from
continuous time series [5].

In palaeoclimate data, the sampling times often follow a
Gamma distribution [4]

p(k, s) = 1

�(k)θk
xk − 1e−x/s . (9)

Therefore, we create different time series by interpolating
to sampling times that follow a � distribution with different
parameters s = 0.3, 0.5, 1.0, and 2.0 (Fig. 3). Clearly, the
uncertainty of the time series increases as the skewness in-
creases.

Next we follow the same procedure as in the logistic map
application.

(i) Divide time series into small sequences of size ensuring
that approximately six points fall inside, 6

N−1

∑N−1
i=1 ti+1 − ti ,

for all values of b.
(ii) Calculate D for all sequence pairs by using Eqs. (1),

(2a), and (2b), using �S = 1 as in the logistic map.
(iii) Calculate RPs with ε = 2σD .
(iv) Calculate DET from the RPs.
(v) Calculate the Lyapunov exponent λ from the continu-

ous time series.
For the considered range in the parameter b, several regime

transitions between chaos and periodic (or periodic to chaos)

occur (Fig. 4, dotted vertical lines). These transitions are
clearly detectable with the proposed approach for the undis-
turbed time series, but also for the irregularly sampled cases.
Although increasing skewness s lowers the changes in DET,
they are still easily observable. Therefore, our approach is still
valid for highly skewed or perturbed data sets.

IV. APPLICATION TO PALAEOCLIMATE RECORDS

To illustrate the applicability of our method we select a
recently published speleothem proxy time series from the
Dayu Cave (DY1) [8], which is under the influence of the
East Asian Summer Monsoon (EASM). In comparison to

Reference

Skewness = 0.3

Skewness = 2.0

(a)

(b)

(c)

(d)

(e)

FIG. 3. Extracting data from the Rössler attractor. (a) Maxima of
the y component of the time series highlighted as bullets, (b) result
of the maximum map ỹ acting on y, (c) time points after resam-
pling or interpolation using the � function with skewness s = 0.3,
(d) same as (c) but for s = 2.0, and (e) comparison of the irregular
sampling points as derived from the different skewness levels (b)–(d).
In (b)–(d) the dashed line represents the interpolated time series
corresponding to the maxima in (a).
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(a)

(b)

(a)

(b)

FIG. 4. Recurrence analysis of the Rössler oscillator: (a) Lya-
punov exponent λ and (b) DET for reference series and the �-
distributed time series with skewness s = 0.3, 0.5, 1.0, and 2.0.
Dotted vertical lines show regime transitions.

other palaeoclimate archives like lake sediments or ice cores,
speleothems frequently offer the advantage of highly robust
U-series chronologies in conjunction with long growth peri-
ods without diagenetic alterations [25]. Among the available
speleothem records, the δ 18O time series from Dayu Cave
is exceptional as its sensitivity to changes in local mon-
soonal rainfall is corroborated by historic graffiti inscriptions
found on the cave’s walls [8]. The excellent match between
drought events recorded in these graffiti and significant ex-
cursions in the isotope time series provides a rigorous test
for the indirect proxy information. While a distal moisture
source, increased rainfall, prolonged infiltration, and reduced
reevaporation, all associated with strong summer monsoon
periods, lead to negative δ 18O values, weak EASM episodes
are recorded in the stalagmite as positive δ 18O excursions
[8,26,27]. Besides such more linear and obvious changes in
the δ 18O record, more subtle changes related to changing
dynamics of the monsoon system (e.g., change in regularity)
are not obvious and require more advanced methods such as
considering recurrences [28]. A correct detection of abrupt
or gradual changes and extreme events in long palaeoclimate
reconstructions is of great interest as they serve as test cases
for the influence of climate dynamics on society [29–31]. At
the same time, chronological uncertainties inherent to such
time series often complicate the extraction of information on
short-lived (months to years) extreme events or change points.

Dayu Cave is located on the southern slopes of the Qinling
Mountains, central China (Fig. 5). The region is highly sus-
ceptible to changes in summer monsoon strength as it receives
most moisture during the EASM season between June and
October. The proxy time series from stalagmite DY1 covers
approximately the past 700 years with 550 samples. Growth
rate changes result in irregular temporal resolution (median
sampling time 1.31 yr, 5%-quantile 0.65 yr, and 95%-quantile
2.01 yr). The chronology of the δ18O time series is based on

Dayu Cave

Hong Kong

Bangkok

Shanghai

South

China Sea

Pac
ifi

c 
O

ce
an

90°E 1 °°EEEE100°E 110°E 120°0°E

30°N

20°N

10°N

Qinling Mountainsling ounta

FIG. 5. Location of the Dayu Cave at the southern rim of the
Qinling Mountains.

15 U-series dates with maximum 2σ error of 8 yr (see [8] for
details).

In order to detect regime transitions in the palaeoclimate
time series, we apply a sliding window of 120 yr with a step
of 10 yr. The sliding windows are divided into small sequences
with a size of 4 yr to compute RPs with the metric distance.
For metric distance calculation, the parameters �0 and �k

are computed by using Eq. (2a) and (2b), respectively. The
adding and deleting cost �S is adaptively chosen as 1.02. For
consistency of the RPs, the threshold ε is fixed to ε = 2σD .

The δ 18O time series and associated DET values are given
in Fig. 6. The confidence interval is computed by a bootstrap-
ping approach to detect significant changes in the evolution of

(a)

(b)

18
O

 [‰
 V

P
D

B
]

D
ET

 (
18

O
)

age (years CE)

FIG. 6. (a) The δ 18O record from the Dayu cave and (b) variation
of the DET measure for the δ 18O record. Dotted lines represent
documented drought events and shaded area in (b) denotes the
confidence interval for DET.
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DET [32]. If the DET curve is within the confidence interval,
the system is in “normal conditions” (90% confidence). When
the curve exceeds the confidence interval, we consider it a
significant regime transition.

Eleven significant events are detected by our approach and
lower DET values meet with the drought events mentioned
by historical records in 1528, 1596, 1707, 1756, 1839, 1891,
and 1894 [8] [Fig. 6(b)]. Although ancient people left no in-
scription in Dayu Cave at the time, we detected another event
for 1908 AD, which corresponds to a significant historical
drought in the region [33] [Fig. 6(b), arrow]. Interestingly,
DET seems very sensitive to local rainfall conditions. In
nearly all cases DET values begin to decrease with, or slightly
before, the onset of severe droughts and return to higher
values when droughts abate. More work with additional high-
resolution time series is needed to confirm this finding.

The DET measure abruptly shifts from high values to lower
ones about 1500. This time marks the onset of a period with
extremely cold winters, which continued to 1900, and corre-
sponds the Little Ice Age (LIA). The LIA was characterized
by an intensified winterly Siberian High, which brings cold
dry air from northerly directions to China [34,35]. It is worth
mentioning that the DET values are always low throughout
this period. Earlier studies made two interesting observations:
(i) Higher DET values indicate a stronger monsoon and
otherwise weak monsoon activity and (ii) the monsoon is
driven by solar activity [36,37]. These findings are confirmed
by our results; we detect that low DET values correspond
closely with drought events and the Spörer-Maunder solar
minima [38]. Although the variation of DET gives results
consistent with previous findings, we do not expect that this
is a general rule. For distinct regions, monsoon dynamics can
have different dynamical behavior. Therefore, drought times
are not necessarily linked with less predictable dynamics (or
strong monsoon periods might not always be linked with more
predictable dynamics) globally. Here we only note that in
the considered proxy the dynamics of the monsoon activity
follows the mentioned characteristic pattern.

Prior to 1500 we observe high DET values [Fig. 6(b)],
which might be indicative of either strong EASM periods or
alternatively simply enhanced seasonality, with both stronger
EASM rainfall and simultaneously intensified drought dur-
ing the dry seasons. Two of the detected events (1320 and
1420) correspond to stronger monsoon activity, whereas the
other events seem to be related to droughts in 1350 and
1470 [39]. It remains unclear therefore if high and low DET
values correspond to strong shifts in climate dynamics alone
or could possibly signify enhanced seasonality and wet and

dry periods, respectively. This should be tested using longer
time series from different regions characterized by strong
seasonality.

Our approach successfully detects nine known events out
of eleven. It is a very interesting question why our approach
only identifies two wet intervals as corresponding to high DET
values. Additional palaeoclimate research is required to give
insights into local effects that could affect the sensitivity of
the proxy time series to regional climate dynamics; however,
such work is beyond the scope of this paper.

V. CONCLUSION

Analyzing time series with irregular sampling is a chal-
lenging task and often requires data preprocessing, e.g., inter-
polation. Here we proposes an approach that allows analyzing
irregularly sampled time series in particular for methods
which are based on a distance metric, such as recurrence
plots. The application of the transformation cost time series
approach as a metric for the construction of RPs allowed us to
identify dynamical differences or to detect regime transitions.
We have demonstrated the potentials on discrete and continu-
ous nonlinear prototypical systems. Testing this approach on a
specific palaeoclimate reconstruction highlights the practical
applicability. Using our approach, we were able to identify
characteristic regime transitions in the regional climate during
the past 700 years that are known to have caused droughts or
are related to the Little Ice Age. This method is useful on “im-
perfect” (i.e., irregularly sampled) time series. If the data are
regularly sampled, the method is not required. In this work,
we analyzed a single disparate palaeoclimate reconstructions
in order to gain insights into spatiotemporal variability of
key climate parameters. This technique not only is helpful
for recurrence analysis of irregularly sampled time series, but
can also be used for any other distance-based methods. The
distance approach not only is helpful for recurrence analysis
of irregularly sampled time series, but can also be used for any
other method which is based on distances.
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