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We propose a novel approach for analysing time series using complex network theory. We identify
the recurrence matrix (calculated from time series) with the adjacency matrix of a complex network
and apply measures for the characterisation of complex networks to this recurrence matrix. By using
the logistic map, we illustrate the potential of these complex network measures for the detection of
dynamical transitions. Finally, we apply the proposed approach to a marine palaeo-climate record and
identify the subtle changes to the climate regime.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In many scientific disciplines, such as engineering, astrophysics,
life sciences and economics, modern data analysis techniques are
becoming increasingly popular as a means of understanding the
underlying complex dynamics of the system. Methods for esti-
mating fractal or correlation dimensions, Lyapunov exponents, and
mutual information have been widely used [1–4]. However most
of these methods require long data series and in particular their
uncritical application, especially to real-world data, may often lead
to pitfalls.

In the last two decades, the method of recurrence plots has
been developed as another approach to describe complex dynam-
ics [5]. A recurrence plot (RP) is the graphical representation of
a binary symmetric square matrix which encodes the times when
two states are in close proximity (i.e. neighbours in phase space).
Based on such a recurrence matrix, a large and diverse amount
of information on the dynamics of the system can be extracted
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and statistically quantified (using recurrence quantification analy-
sis, dynamical invariants, etc.). Meanwhile this technique has been
the subject of much interest from various disciplines [6] and it has
been successfully applied to a number of areas: the detection of
dynamical transitions [7,8] and synchronisation [9], the study of
protein structures [10,11] and in cardiac and bone health condi-
tions [12,13], in ecological regimes [14,15], economical dynamics
[16,17], in chemical reactions [18] and to monitor mechanical be-
haviour and damages in engineering [19,20], to name a few. It
is important to emphasise that recurrence plot based techniques
are even useful for the analysis of short and non-stationary data,
which often presents a critical issue when studying real world
data. The last few years have witnessed great progress in the de-
velopment of RP-based approaches for the analysis of complex
systems [5,21–24].

During the last decade, complex networks have become rather
popular for the analysis of complex and, in particular, spatially
extended systems [25–28]. Local and global properties (statistical
measures) of complex networks are helpful to understand com-
plex interrelations and information flow between different compo-
nents in extended systems, such as social, computer or neural net-
works [25], food webs, transportation networks, power grids [29],
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or even in the global climate system [30]. The basis of complex
network analysis is the adjacency matrix, representing the links
between the nodes of the network. Like the recurrence matrix, the
adjacency matrix is also square, binary, and symmetric (in the case
of an unweighted and undirected network).

In fact, the recurrence matrix and the adjacency matrix exhibit
a strong analogy: a recurrence matrix represents neighbours in
phase space and an adjacency matrix represents links in a net-
work; both matrices embody a pair-wise test of all components
(phase space vectors resp. nodes). Therefore, we might well pro-
ceed to explore further analogies even in the statistical analysis of
both the recurrence and the adjacency matrix.

Quantitative descriptors of RPs have been first introduced in
a heuristic way in order to distinguish different appearances of
RPs [6]. We may also consider to apply measures of complex net-
work theory to a RP in order to quantify the RP’s structure and
the corresponding topology of the underlying phase space trajec-
tory. In this (more heuristic) sense, it is actually not necessary to
consider the phase space trajectory as a network.

Recently, the very first steps in the direction of bridging com-
plex network theory and recurrence analysis have been reported
[31,32]. In these works, the local properties of phase space trajec-
tories have been studied using complex network measures. Zhang
et al. suggested using cycles of the phase space trajectory as nodes
and considering a link when two cycles are rather similar [32,33].
The resulting adjacency matrix can be in fact interpreted as a spe-
cial recurrence matrix. The recurrence criterion here is the match-
ing of two cycles. A complementary approach was suggested by Xu
et al. who studied the structural shape of the direct neighbourhood
of the phase space trajectory by a motif classification [31]. The
adjacency matrix of the underlying network corresponds to the re-
currence matrix, using the recurrence criterion of a fixed number
of neighbours (instead of the more often used fixed size of the
neighbourhood [5]).

Other approaches for the study of time series by a complex net-
work analysis suggested using linear correlations [34] or another
certain condition on the time series amplitudes (“visibility”) [35].

In this Letter, we demonstrate that the recurrence matrix (anal-
ogously to [31]) can be considered as the adjacency matrix of an
undirected, unweighted network, allowing us to study time se-
ries using a complex network approach. This ansatz on creating
complex network is more natural and simple than the various sug-
gested approaches [33–35]. Complex network statistics is helpful
to characterise the local and global properties of a network. We
propose using these complex network measures for a quantitative
description of recurrence matrices. By applying these measures, we
obtain additional information from the recurrence plots, which can
be used for characterising the dynamics of the underlying process.
We give an interpretation of this approach in the context of the
dynamics of a phase space trajectory. Nevertheless, many of these
measures neither have an analogue in traditional RQA nor in non-
linear time series analysis in a wider sense, and hence, open up
new perspectives for the quantitative analysis of dynamical sys-
tems. We illustrate our approach with a prototypical model system
and a real-world example from the Earth sciences.

2. Recurrence plots and complex networks

A recurrence plot is a representation of recurrent states of a
dynamical system in its m-dimensional phase space. It is a pair-
wise test of all phase space vectors �xi (i = 1, . . . , N , �x ∈ Rm) among
each other, whether or not they are close:

Ri, j = Θ
(
ε − d(�xi, �x j)

)
, (1)

with Θ(·) being the Heaviside function and ε a threshold for
proximity [5]. The closeness d(�xi, �x j) can be measured in differ-

ent ways, by using, e.g., spatial distance, string metric, or local
rank order [5,36]. Mostly, a spatial distance is considered in terms
of maximum or Euclidean norm d(�xi, �x j) = ‖�xi − �x j‖. The binary
recurrence matrix R contains the value one for all close pairs
‖�xi − �x j‖ < ε. A phase space trajectory can be reconstructed from
a time series {ui}N

i=1 by time delay embedding [37]

�xi = (ui, ui+τ , . . . , ui+τ (m−1)), (2)

where m is the embedding dimension and τ is the delay.
The resulting matrix R exhibits the line of identity (the main

diagonal) Ri,i = 1. Using a spatial distance as the recurrence crite-
rion, the RP is symmetric. Small-scale features in a RP can be ob-
served in terms of diagonal and vertical lines. The presence of such
lines reflects the dynamics of the system and is related to diver-
gence (Lyapunov exponents) or intermittency [7,12,24]. Following
a heuristic approach, a quantitative description of RPs based on
these line structures was introduced and is known as recurrence
quantification analysis (RQA) [6]. We use the following two RQA
measures (a comparable study using other measures can be found
in [12]).

Similarly evolving epochs of the phase space trajectory cause
diagonal structures parallel to the main diagonal. The length of
such diagonal line structures depends on the predictability and,
hence, the dynamics of the system (periodic, chaotic, stochastic).
Therefore, the distribution P (l) of diagonal line lengths l can be
used for characterising the system’s dynamics. Several RQA mea-
sures are based on P (l). However, here we focus only on the max-
imal diagonal line length,

Lmax = max
({li}Nl

i=1

)
, (3)

where Nl = ∑
l�lmin

P (l) is the total number of diagonal lines. For
the definition of a diagonal line, we use a minimal length lmin [5].
The length of diagonal lines corresponds to the predictability time.
In particular, the cumulative distribution of the line lengths can be
used to estimate the correlation entropy K2, i.e. the lower limit of
the sum of the positive Lyapunov exponents [5]. Hence the inverse
of Lmax gives a first rough impression of the divergence (Lyapunov
exponent) of the system.

Slowly changing states, as occurring during laminar phases (in-
termittency), result in vertical structures in the RP. Therefore, the
distribution P (v) of vertical line lengths v can be used to quantify
laminar phases occurring in a system. A useful measure for quanti-
fying such laminar phases is the ratio of recurrence points forming
vertical structures to all recurrence points,

LAM =
∑N

v=vmin
v P (v)

∑N
v=1 v P (v)

, (4)

which is called laminarity [5].
Now let us consider the phase space vectors as nodes of a

network and identify recurrences with links. An undirected and
unweighted network is represented by the binary adjacency ma-
trix A, where a connection between nodes i and j is marked as
Ai, j = 1. Excluding self-loops, we obtain A from the RP by remov-
ing the identity matrix,

Ai, j = Ri, j − δi, j, (5)

where δi, j is the Kronecker delta. Removing the identity is not a
problem, as this is also done in the analysis of RPs (e.g. when con-
sidering a Theiler window for RQA) [5]. Henceforth, we regard the
recurrence matrix (with applied Theiler window) to be an adja-
cency matrix. Note that this way each state vector in phase space is
represented by one distinct node; even if two time-separated state
vectors are identical, they are identified with two different nodes
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(which are perfect neighbours and therefore linked independently
of the threshold ε; such nodes are also called twins [38]).

Local and global properties of a network are statistically de-
scribed by complex network measures based on the adjacency
matrix Ai, j . To illustrate the potential of a recurrence analysis by
means of complex network theory, we consider several global and
local network measures that are well studied in literature [27].

The complex network approach allows to harness the distribu-
tions of locally defined measures for the quantification of recur-
rence matrices. In this work, we particularly consider the degree
centrality

kv =
N∑

i=1

Av,i, (6)

giving the number of neighbours of node v . The degree central-
ity is hence locally defined and depends only on local adjacency
information in a topological sense. kv is proportional to the local
recurrence rate, as seen from a RQA point of view. Hence, it may
be considered as a measure for the local phase space density. We
refer to its frequency distribution P (k) as the degree distribution.

Furthermore, a complex network may be globally described
by its link density, clustering coefficient and average path length.
While the normalised averaged degree centrality, called link den-
sity,

ρ = 1

N(N − 1)

N∑

i, j=1

Ai, j (7)

corresponds to the global recurrence rate, the latter two mea-
sures allow quantifying novel aspects of recurrence matrices. The
clustering coefficient C = ∑

v Cv/N gives the probability that two
neighbours (i.e. recurrences) of any state are also neighbours [25].
It is obtained as the average of the local clustering coefficient

Cv =
∑N

i, j=1 Av,i Ai, j A j,v

kv(kv − 1)
. (8)

The average length of shortest paths between all pairs of nodes
is given by the average path length

L = 1

N(N − 1)

N∑

i, j=1

di, j, (9)

where the length of a shortest path di, j is defined as the mini-
mum number of links that have to be crossed to travel from node
i to node j [27]. Disconnected pairs of nodes are not included in
the average (for a detailed discussion see [39]). Note that it is par-
ticularly interesting to study clustering coefficient and average path
length in unison, since both measures taken together allow to char-
acterise “small-world” behaviour in complex networks [25]. In a
separate study, we link the properties of a complex network with
the topology of a phase space representation of a dynamical sys-
tem in more detail [40]. In particular, a complex network based on
a recurrence plot usually does not exhibit the small-world feature,
since graph distances are directly related to distances in phase
space (i.e. there are no “shortcuts” between distant nodes).

3. Application to logistic map

We illustrate the potential of the proposed approach by an anal-
ysis of the logistic map

xi+1 = a xi(1 − xi), (10)

especially within the interesting range of the control parameter
a ∈ [3.5,4] with a step size of �a = 0.0005. In the analysed range

Table 1
Control parameter, RQA and network measures for different dynamical regimes of
the logistic map (RP parameter: m = 1, ε = 0.05σ ).

Regime a Lmax LAM L C ρ

Period-3 3.830 8996 0 1 1 0.333
Band merging 3.679 49 0.42 22.8 0.83 0.050
Laminar 3.791 39 0.12 23.3 0.79 0.040
Outer crisis 4.000 23 0.20 23.6 0.82 0.046

of a, various dynamic regimes and transitions between them can
be found, e.g., accumulation points, periodic and chaotic states,
band merging points, period doublings, inner and outer crises [41–
43]. This system has been used to illustrate the capabilities of RQA.
It was shown that diagonal line based RQA measures are able to
detect chaos–order transitions [7] and vertical line based measures
even detect chaos–chaos transitions [12].

Since Eq. (10) is a one-dimensional map, we compute the
RP without embedding. For the study of transitions, it is recom-
mended to use a recurrence threshold ε preserving a fixed re-
currence rate, say 5%. However, in the special case of the logistic
map, such approach leads to problems within the periodic win-
dows. In these windows the states are rapidly alternating between
subsequent time steps, leading to a high recurrence rate (larger
than 25%). Therefore, a threshold for preserving 5% recurrence rate
does not exist and, hence, we cannot compute the network mea-
sures within the periodic windows. To circumvent this, we will use
a fixed recurrence threshold ε for the example of the logistic map
(for the real world example in Section 4, we will use the preferred
criteria of constant recurrence rate). The threshold ε is selected to
be 5% of the standard deviation σ of the time series.

For periodic dynamics, band merging, laminar states (cross
points of supertrack functions, cf. [12]), and outer crisis, we in-
vestigate the network measures in more detail (Table 1). The band
merging corresponds to intermittency, the inner crisis to certain
chaos–chaos transition and the outer crisis to fully chaotic dynam-
ics (all these transitions are chaos–chaos transitions).

For these four cases, we compute a time series of length N =
10,000. In order to exclude transient responses we remove the
leading 1000 values from the data series in the following analy-
sis (thus we use 9000 values).

The recurrence plots for the four different dynamical regimes
exhibit different typical characteristics of regular, laminar and
chaotic dynamics (Fig. 1). In the periodic regime, a = 3.830, the
RP consists only of non-interrupted diagonal lines (Fig. 1A). Their
distance is 3, corresponding to the period length of 3 for this
periodic regime. At the band merging point, a = 3.679, the RP
reveals extended clusters of recurrence points, corresponding to
many laminar phases (Fig. 1B). Moreover, several diagonal lines ap-
pear, showing short epochs of similar evolution of the states. The
RP for laminar states, a = 3.791, consists also of (even though less)
extended clusters, but possesses more diagonal lines (Fig. 1C). For
the outer crisis, a = 4, diagonal lines appear but are shorter than
those appearing for smaller a (Fig. 1D), which is consistent with
the Lyapunov exponent being largest for a = 4 (with respect to
smaller a).

The two RQA measures Lmax and LAM confirm these visual ob-
servations (Table 1). For the period-3 regime, we find the longest
diagonal lines (Lmax = 8996, after consideration of the Theiler win-
dow [44]). The maximal length of diagonal lines decreases for
increasing control parameter a. As expected, laminarity takes the
highest value at the band merging point (a = 3.679) with LAM =
0.42, but is lowest for the period-3 regime, LAM = 0. At intersec-
tions of supertrack functions, the laminarity is slightly increased
(LAM = 0.12), and at the outer crisis the intermittency increases
apparently (LAM = 0.20).
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Fig. 1. Recurrence plots for different dynamical regimes of the logistic map: (A) period-3 dynamics, a = 3.830; (B) band merging, a = 3.679; (C) laminar states, a = 3.791;
and (D) outer crisis, a = 4 (RP parameters: m = 1, ε = 0.05σ ).

The complex network measures also highlight differences in the
topological structure of these dynamical regimes (Table 1).

In the period-3 regime (a = 3.830), the observed values jump
between three distinct states. These three states are isolated in
phase space and are not considered to be neighbours (in the sense
of the recurrence definition). Therefore, in the sense of a com-
plex network, we have three disconnected components where each
component contains a fully connected network (because all the
nodes in each component represent the same state in phase space).
The average shortest path length between nodes (i.e. states) should
therefore be one, and the clustering is perfect. The average path
length L derived from the corresponding RP has indeed the small-
est possible value (L = 1), and the clustering coefficient C takes
its largest possible value (C = 1). The degree centrality kv takes
only one value: 2999 (Fig. 2A). This value corresponds approxi-
mately to a third of the size of the network, due to its partition
by the period-3 cycles, which is confirmed by the link density
(ρ = 0.333).

For the band merging (a = 3.679), we find L = 22.8 and
C = 0.83. The degree distribution P (k) has a multimodal shape
(Fig. 2B), which implies that there are several states acting like
super-nodes (i.e. which exhibit many links). These states lie at the
merging point of the two bands (around x = 0.73) and at the up-

per and lower border of the state space, i.e. in regions with high
phase-space density (Fig. 3A). The link density is ρ = 0.050.

For the laminar state at a = 3.791, we find L = 23.3 and C =
0.79. The degree centrality kv follows a distribution with slight bi-
modality (Fig. 2C). The resulting link density approaches its lowest
value within the four considered dynamical regimes (ρ = 0.040).

Finally, for the outer crisis (a = 4), we obtain L = 23.6 and C =
0.82. The degree centrality kv displays similar properties as for the
laminar state, but with higher average values and a resulting link
density of ρ = 0.046 (Fig. 2D).

From the above results, we conclude that complex network
measures applied to a recurrence matrix are indeed sensitive to
changes in the dynamics. The average shortest path length can be
considered as an upper bound for the phase space distance be-
tween two states (in units of the threshold value ε). Hence, its
average value L can be interpreted as a mean distance, which de-
pends on the total diameter and the fragmentation of the phase
space. Therefore, L increases with growing phase space of the
logistic map (with growing control parameter a). The clustering co-
efficient C is able to detect clustered phase vectors, as they appear
in periodic or laminar dynamics. The degree centrality kv quan-
tifies the phase-space density in the direct neighbourhood of a
state v , while the link density ρ measures the average phase space



Author's personal copy

4250 N. Marwan et al. / Physics Letters A 373 (2009) 4246–4254

Fig. 2. Degree centrality distributions P (k) for different dynamical regimes of the logistic map: (A) period-3 dynamics, a = 3.830; (B) band merging, a = 3.679; (C) laminar
states, a = 3.791; and (D) outer crisis, a = 4 (RP parameters: m = 1, ε = 0.05σ ).

density. Moreover, from the kv distribution we can infer that the
considered recurrence matrices are not scale-free in the sense of
the network theory.

Now we calculate Lmax, LAM, ρ , L, C , and kv for different val-
ues of the control parameter a within the range [3.5,4]. For each
value of a, we compute a time series of length N = 2000, and ex-
clude transients by removing the first 1000 values.

The RQA measure Lmax reveals periodic dynamics by maxima
of its value (Fig. 3B). Laminar phases are clearly detected by LAM
(Fig. 3C). ρ and C also show maxima during episodes of periodic
dynamics (Figs. 3D and F). ρ corresponds to the recurrence rate
and confirms previous studies [7]. Its values also depend on the
periodicity during the periodic windows – the higher the peri-
odicity, the lower ρ . Therefore, period-doublings cause an abrupt
decrease of this measure. In the periodic regime, neighbours of
a state are equal to the state itself, leading to the largest possi-
ble clustering coefficient C = 1, and to the shortest possible path
lengths between neighbours giving L = 1. However, L shows a
more interesting behaviour. In our interpretation of a recurrence
matrix, L characterises not only the total phase space diame-
ter, but also its fragmentation. With respect to the logistic map,
each time two bands in phase space merge (e.g. at a = 3.5736 or
a = 3.5916), this does not only lead to an increase of the occu-
pied phase space, but also yields a merging of formerly disjoint
network clusters. As the definition of the average path length does
not consider pairs of points in disconnected clusters, the average
distance of connected nodes suddenly increases shortly before the
band merging point as soon as the distance between the differ-
ent bands falls below ε, since the clusters then become connected.
This is clearly expressed by jumps in L (Fig. 3E). The distribu-
tion of kv is discrete in the periodic windows, which are therefore
clearly identifiable (Fig. 4). Analogous to the link density ρ , the
location of the maxima of the degree distribution in periodic win-
dows is related to the number of periods, e.g., for period-4 we
have N/4 − 1 = 249, for period-3 N/3 − 1 = 332 (for a time se-

ries length of N = 1000). The degree distribution P (k) before the
band merging point is broad and reveals higher degrees than af-
ter the band merging point, which again relates to the connection
of the distinct network clusters. For increased control parameter a,
P (k) becomes more localised around small degrees, disclosing the
decrease of recurrences due to the increasingly chaotic behaviour
(increasing Lyapunov exponent).

4. Application to marine dust record

Long-term variations in aeolian dust deposits are related to
changes in terrestrial vegetation and are often used as a proxy for
changing climate regimes in the past. For example, marine terrige-
nous dust records can be used to infer epochs of arid continental
climate. In particular, a marine record from the Ocean Drilling Pro-
gramme (ODP) derived from a drilling in the Atlantic, ODP site 659,
was used to infer changes in African climate during the last 4.5 Ma
(Fig. 5A) [45]. This time series has a length of N = 1240 with an
average sampling time of 4.1 ka. Applying spectral analysis to these
data, it was claimed that the African climate has shifted towards
arid conditions at 2.8, 1.7 and 1.0 Ma before present (BP) [46].
These transitions correspond to epochs of different dominant Mi-
lankovich cycles (mid-Pleistocene transition with a “41 ka world”
between 2.7 and 1.0 Ma BP and a “100 ka world” since about
1.0 Ma BP), the end of the Early Pliocene Warm Period at about
2.8 Ma BP, and the development of the Walker circulation around
1.9–1.7 Ma BP [47]. However, a recent thorough investigation of
several marine dust records demonstrated more complex relation-
ships between vegetational coverage, aeolian transport processes
and the dust flux record [48]. The analysis revealed transitions be-
tween different regimes of variability, mostly driven by a variation
of the solar irradiation due to different dominant Milankovich cy-
cles. For example, Trauth et al. found an interval of a dominant
100 ka frequency (related to orbital eccentricity) between 3.2 and
3.0 Ma BP, and of dominant 19–23 ka frequency band (preces-
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Fig. 3. (A) Bifurcation diagram of the logistic map. Selected RQA measures (B) maximal diagonal line length Lmax and (C) laminarity LAM, as well as complex network
measures (D) link density ρ , (E) average path length L, and (F) clustering coefficient C. The dotted lines mark the discussed regimes at period-3 window (a = 3.830), band
merging (a = 3.679), cross points of supertrack functions (a = 3.791), and outer crisis (a = 4). Parameters as in Fig. 2.

Fig. 4. Distribution of the degree centrality kv of the logistic map for a range of the control parameter a. Same parameters as in Figs. 2 and 3.
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Fig. 5. (A) Terrigenous dust flux record of ODP site 659, and corresponding network measures (B) L and (C) C. The dotted lines mark pronounced transitions in the dynamical
regime at 3.5, 3.3, 3, 2.5, 1.9, and 0.4 Ma BP, the dash-dotted line corresponds to the mean value of the null-model and the shaded area corresponds to the 90% confidence
bounds. Same parameters as in Fig. 6, window size 420 ka.

sion) between 2.3 and 2.0 Ma BP [48]. The Early Pliocene Warm
Period ended between 3.3 and 2.8 Ma BP with the Pliocene opti-
mum (3.24–3.05 Ma BP) and the onset of the northern hemisphere
glaciation (2.8–2.7 Ma BP) [47,49], which was intensified during
the mid-Pleistocene climate shift at 1.0–0.7 Ma BP [50]. It has been
hypothesised that the latter transition was connected with a period
of strong Walker circulation between 1.5–0.5 Ma BP [51].

We illustrate the capabilities of our recurrence analysis using
complex network measures for the ODP 659 dust flux record in
order to find transitions in the dynamics. For this purpose, we
use a time delay embedding with dimension m = 3 and delay
τ = 2 (these parameters have been determined by applying the
standard procedure using false nearest neighbours and mutual in-
formation [1]). The threshold is chosen to preserve a constant re-
currence rate of 5% (which means that the link density ρ will be
constant) [5,52]. In order to study transitions in the dust record,
we calculate the recurrence matrix in moving windows of size 100
time points (corresponding approximately to 410 ka) and with an
overlap of 90%. For the time-scale of the windowed measurements,
we use the mid-point of the window. Note that the time-scale is
not equidistant (equidistant time-scale is not necessary for our net-
work approach). On average, the sampling time is 4.1 ka with a
standard deviation of σ = 2.7 ka. Compared to the long (geologi-
cal) scale this deviation is still rather small. However, the applica-
tion of linear methods often requires equidistant time-scales.

We will apply a simple statistical test in order to test the null-
hypothesis to see whether the network characteristics at a cer-
tain time differs from the general network characteristics. In order
to create an appropriate null-model, we use the following ap-
proach. In contrast to the RQA measures, where the time-ordering
is important requiring a more advanced approach for a statistical
test [53], for the network measures we can simply randomise the
time series: we randomly draw 100 values (corresponding to the
window size of 100 points) from the time series and then calculate
the RP and the network measures from this sample. By repeating
this 10,000 times we get a test distribution for the measures L and

C and estimate its 0.05 and 0.95 quantiles that may be interpreted
as the 90% confidence bounds.

The RP of the dust data depicts a rather homogeneous recur-
rence structure, interrupted only by rather small bands of sparse
recurrence point density (Fig. 6). Such sparse areas mark epochs of
more frequently occurring extreme or rare events recorded by the
marine dust data series. On the small-scale we find mostly very
short diagonal lines, expressing the high variability and fast change
of the states (with respect to the geological time-scale). Between
4.0 and 3.0 Ma and around 2.0 Ma BP, longer diagonal lines appear.
Moreover, between 4.5 and 3.0 Ma BP, we find an increased num-
ber of vertical/horizontal lines, indicating different dynamics than
at other times.

The global network measures L and C also depict a distinct
variability (Fig. 5B and C). L reveals epochs of significantly higher
values between 3.5 and 3.3, ∼ 2.1, 1.9–1.8, and after 0.4 Ma BP.
Around 3.3, 2.0 and 1.9 Ma BP the RP exhibits sudden drops of L
within a period of, in general, higher values. C discloses epochs of
increased values between 3.5 and 3.0 Ma as well as between 2.5
and 2.0 Ma BP. Between 4.5 and 3.5 Ma, 3.0 and 2.5 Ma, and 1.0
and 0.4 Ma BP, the degree centrality possesses mostly small values,
whereas between 2.5 and 1.0 Ma and after 0.4 Ma BP, it has larger
values (Fig. 7).

With respect to the previously known results, we conclude that
C identifies the epochs of more dominant Milankovich cycles (be-
tween 3.2 and 3.0 Ma and 2.3 and 2.0 Ma BP). kv is increased in
these periods, but also exhibits increased values for the period be-
tween 2.5 and 1.0 Ma BP. Note that the 3.5–3.0 Ma BP period is
related to the intensification of the Northern hemisphere glacia-
tion [54]. In contrast, L reveals transitions in climate dynamics
on a different time-scale. Maxima of this measure tend to appear
at the onset of changes in C . Whereas C reveals the changed dy-
namics, L is sensitive to the transition periods, which is consistent
with our results near the band-merging points of the logistic map.
The increase of L at ∼ 3.4, ∼ 3.1, 1.9–1.8, and 0.4 Ma BP may
also be related to the intensification of glaciation. However, the
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Fig. 6. Recurrence plot of the terrigenous dust flux record of ODP site 659. Parameters are m = 3, τ = 2, ε is chosen such that ρ = 0.05, phase space distances are measured
using maximum norm.

Fig. 7. Degree centrality kv of terrigenous dust flux record of ODP site 659. Same parameters as in Figs. 6 and 5.

detected transitions are associated with different and more sub-
tle dynamical changes, and not simply just an intensification of a
certain Milankovich cycle.

5. Conclusions

We have linked the recurrence matrix with the adjacency ma-
trix of a complex network, and have proposed the direct applica-
tion of the corresponding network measures to the recurrence ma-
trix. We have discussed the link density, degree centrality, average
path length and clustering coefficient in some detail. In particular,
the latter two complex network measures have no direct coun-
terpart in recurrence quantification analysis and give additional
insights into the recurrence structure of dynamical systems. In a
further study, we have outlined the link between the complex net-
work measures and the properties of the phase space trajectory of
dynamical systems [40].

By applying our novel approach to the logistic map, we have
illustrated the ability of the proposed measures to distinguish be-
tween the different dynamical regimes and to detect the corre-

sponding transitions. Moreover, we have used our approach to
investigate a marine climate proxy record representing the cli-
mate variability over Africa during the last 4.5 Ma. The differ-
ent measures highlighted various transitions in the recurrence
structure and, hence, in the dynamics of the studied climate
system. By applying the recurrence approach and complex net-
work measures, we were able to identify more subtle transitions
than those that were previously reported from using linear ap-
proaches, like power spectral analysis [46], linear trend detec-
tion [49], Mann–Whitney or Ansari–Bradley tests [48]. In addition,
our proposed approach to detect transitions on the basis of time
series does not require equidistant time-scales, as would be nec-
essary for most other known techniques. From the network point
of view, the recurrence plot approach can deliver a potential mea-
sure of information exchange in time series of complex systems
[40,55].

In the future, recurrence plots and their complex network in-
terpretation will allow for further fruitful and natural transfer of
ideas and techniques from complex network theory to time series
analysis (and vice versa).
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