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Generalised recurrence plot analysis for spatial data
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Abstract

Recurrence plot based methods are highly efficient and widely accepted tools for the investigation of time series or one-dimensional data. We
present an extension of the recurrence plots and their quantifications in order to study recurrent structures in higher-dimensional spatial data. The
capability of this extension is illustrated on prototypical 2D models. Next, the tested and proved approach is applied to assess the bone structure
from CT images of human proximal tibia. We find that the spatial structures in trabecular bone become more recurrent during the bone loss in
osteoporosis.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recurrence is a fundamental property of many dynamical
systems and, hence, of various processes in nature. A system
may strongly diverge, but after some time it recurs “infinitely
many times as close as one wishes to its initial state” [1]. The
investigation of recurrence reveals typical properties of the sys-
tem and may help to predict its future behaviour. With the study
of nonlinear chaotic systems several methods for the inves-
tigation of recurrences have been developed. The method of
recurrence plots (RPs) was introduced by Eckmann et al. [2].
Together with different RP quantification approaches [3,4], this
method has attracted growing interest for both theory and ap-
plications [5].

Recurrence plot based methods have been successfully ap-
plied to a wide class of data from physiology, geology, physics,
finances and others. They are especially suitable for the inves-
tigation of rather short and non-stationary data. This approach
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works with time series or phase-space reconstructions (trajec-
tories), i.e. with data which are at least one-dimensional.

Recurrences are not restricted to one-dimensional time se-
ries or phase-space trajectories. Spatio-temporal processes can
also exhibit typical recurrent structures. However, RPs as in-
troduced in [2] cannot be directly applied to spatial (higher-
dimensional) data. One possible way to study the recurrences
of spatial data is to separate the higher-dimensional objects into
a large number of one-dimensional data series, and to analyse
them separately [6]. A more promising approach is to extend the
one-dimensional approach of the recurrence plots to a higher-
dimensional one.

In the presented work, we focus on the analysis of snap-
shots of spatio-temporal processes, e.g., on static images. An
extension of recurrence plots and their quantification to higher-
dimensional data is suggested. This extension allows us to apply
this method directly to spatial higher-dimensional data, and,
in particular, to use it for 2D image analysis. We apply this
method to 2D human bone images, derived by peripheral quan-
titative computer tomography (pQCT), in order to investigate
differences in trabecular bone structures at different stages of
osteoporosis.
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2. Recurrence plots

The initial purpose of recurrence plots was the visualisation
of recurrences of system’s states �xi in a phase-space (with di-
mension m) within a small deviation ε [2]. The RP efficiently
visualises recurrences even for high dimensional systems. A re-
currence of a state at time i at a different time j is marked
within a two-dimensional squared matrix with ones and zeros
dots (black and white points in the plot), where both axes rep-
resent time. The RP can be formally expressed by the matrix

(1)
Ri,j = Θ

(
ε − ‖�xi − �xj‖

)
, �xi ∈ R

m, i, j = 1 . . .N,

where N is the number of considered states �xi , ε is a threshold
distance (an arbitrary deviation range within a recurrence is de-
fined), ‖ · ‖ denotes a norm and Θ(·) is the Heaviside function.

It should be emphasised that this method is a pairwise com-
parison of system’s states at different times along a phase
space trajectory, which is—although lying in an m-dimensional
space—a one-dimensional curve. The axes of the RP corre-
spond to the time which is given by pursuing a state on the
trajectory. Diagonal lines in an RP represent epochs of simi-
lar dynamical evolution of the analysed system. For i = j we
get the line of identity (LOI), Ri,i ≡ 1|Ni=1, which is the main
diagonal line in the RP (Fig. 1).

Instead of using the system’s states �xi which are often un-
known, RPs can be created by only using a single time series
or a reconstruction of the phase-space vectors (e.g., by using
time-delay embedding, [7]). Such applications to experimental
data have expanded the utilisation of RPs from a tool for the
investigation of deterministic phase-space dynamics to a tool
for the investigation of similarity and transitions in data series,
without the rather strong requirement that the data must be from
a deterministic dynamical process. The idea of such a similarity
plot is not new and can be found in publications earlier than [2],
e.g., in [8]. This alternative understanding was (unconsciously)
the base of the ever increasing amount of application of RPs
in data analysis. However, in its present state the RP technique
could not be applied on higher-dimensional spatial data.

The initial purpose of RPs was the visual inspection of the
behaviour of phase-space trajectories. The appearance of RPs
gives hints about the characteristic time evolution of these tra-
jectories [5]. A closer inspection of RPs reveals small-scale
structures which are single dots, diagonal lines as well as verti-
cal and horizontal lines (Fig. 1).

A diagonal line Ri+k,j+k ≡ 1|l−1
k=0 (where l is the length of

the diagonal line) occurs when one segment of the trajectory
runs parallel to another one, i.e. the trajectory re-visits the same
region of the phase-space at different time intervals. The length
of this diagonal line is determined by the duration of intervals
with similar local behaviour of the trajectory segments. We de-
fine a line in the RP as a diagonal line of length l, if it fulfills
the condition

(2)(1 − Ri−1,j−1)(1 − Ri+l,j+l )

l−1∏

k=0

Ri+k,j+k ≡ 1.
Fig. 1. Example of a recurrence plot for the logistic map (xi+1 = axi (1 − x)

with control parameter a = 3.9767). The RP consists of single dots and line
structures.

In Eq. (2), the condition 1−Ri,j ≡ 1 holds only, if Ri,j is a non-
recurrence point. Therefore, the first two factors in Eq. (2) mark
the start and the end of the diagonal line, conditioned by non-
recurrence points.

A vertical (horizontal) line Ri,j+k ≡ 1|v−1
k=0 (where v is the

length of the vertical line) marks a time interval in which a sys-
tem’s state does not change in time or changes very slowly. It
looks like the state is trapped for some time, which is a typi-
cal behaviour of laminar states [4]. Because RPs are symmetric
about the LOI by definition (1), each vertical line has a corre-
sponding horizontal line. Therefore, only the vertical lines are
henceforth considered. Combinations of vertical and horizon-
tal lines form rectangular clusters in an RP. We define a line as
a vertical line of length v, if it fulfills the condition

(3)(1 − Ri,j−1)(1 − Ri,j+v)

v+1∏

k=0

Ri,j+k ≡ 1.

These small-scale structures are used for the quantitative
analysis of RPs (known as recurrence quantification analysis,
RQA). Using the distributions of the lengths of diagonal lines
P(l) or vertical lines P(v), different measures of complexity
have been introduced (cf. [5] for a comprehensive review of def-
initions and descriptions of these measures). Here we generalise
the measures recurrence rate RR, determinism DET, averaged
diagonal line length L, laminarity LAM and trapping time TT
in order to quantify higher-dimensional data. (cf. Table 1).

Several measures need a predefined minimal length lmin or
vmin, respectively, for the definition of a diagonal or vertical
line. These minimal lengths should be as minimal as possible in
order to cover as much variation of the lengths of these lines. On
the other hand, lmin and vmin should be large enough to exclude
line-like structures which represent only single, non-recurrent
states, which may occur if the threshold ε is chosen too large or
if the data have been smoothed too stronlgy before computing
the RP.

RQA was successfully applied for example for the detec-
tion of transitions in event related EEG potentials [9], the study
of interrelations between El Niño and climate in the past [10],
the investigation of economic data series [11], of nonlinear
processes in electronic devices [12] or the study of transitions
in chemical reactions [13]. For a number of further applications
see, e.g., [5] or http://www.recurrence-plot.tk.

http://www.recurrence-plot.tk
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Table 1
Generalised recurrence quantification measures for spatial data of dimension d

and with �ı, �j ∈ N
d . Note that these measures assess recurrence information in

terms of length while the original RQA measures quantify it in terms of time

RQA measure Equation Meaning

Recurrence rate RR = 1
N2d

N∑
�ı, �j

R�ı, �j Percentage of recurrent
states in the system;
probability of the
recurrence of any state

Determinism DETHS =
∑N

l=lmin
lP (l)

∑N
�ı, �j R�ı, �j

Percentage of recurrence
points which form diag-
onal hyper-surfaces; re-
lated to the predictability
of the system

Laminarity LAMHS =
∑N

v=vmin
vP (v)

∑N
v=1 vP (v)

Percentage of recurrence
points which form
vertical hyper-surfaces;
related to the laminarity
of the system

Averaged diagonal
hyper-surface size

LHS =
∑N

l=lmin
lP (l)

∑N
l=lmin

P(l)
Related to the prediction
length of the system

Trapping size TTHS =
∑N

v=vmin
vP (v)

∑N
v=vmin

P(v)
Related to the size of the
area in which the system
does not change

3. Extension to higher dimensions

Now, we propose an extension of RPs to analyse higher di-
mensional data. With this step we leave the RPs as a method for
investigating deterministic dynamics and focus on its potential
in determining similar (recurrent) features in spatial data.

For a d-dimensional (Cartesian) system, we define an n-
dimensional recurrence plot by

(4)R�ı, �j = Θ
(
ε − ‖�x�ı − �x �j‖

)
, �x�ı ∈ R

m, �ı, �j ∈ N
d,

where �ı is the d-dimensional coordinate vector and �x�ı is the
phase-space vector at the location given by the coordinate vec-
tor �ı. This means that we decompose the spatial dimension of �x�ı
and consider each space direction separately, e.g., �xi1,i2,...,id for
i1 = 1, . . . ,N but i2, . . . , id = const. Such vectors are now one-
dimensional curves in the m-dimensional space. Each of these
vectors is pairwisely compared with all others. These individual
sub-RPs are the components of the final higher-dimensional RP.
The resulting RP has now the dimension n = 2 × d and cannot
be visualised anymore. However, its quantification is still pos-
sible.

Similarly to the one-dimensional LOI given by Ri,j ≡ 1
∀i = j , we can find diagonally oriented, d-dimensional struc-
tures in this n-dimensional recurrence plot (n = 2d), called the
hyper-surface of identity (HSOI):

(5)R�ı, �j ≡ 1 ∀ �ı = �j .

In the special case of a two-dimensional image composed by
scalar values, we have

(6)Ri1,i2,j1,j2 ≡ Θ
(
ε − ‖xi1,i2 − xj1,j2‖

)
,

which is in fact a four-dimensional recurrence plot, and its
HSOI (Ri1,i2,i1,i2 ≡ 1) is a two-dimensional plane.

4. Quantification of higher-dimensional RPs

The known RQA is based on the quantification of the line
structures in the two-dimensional RPs. Thus, the definition of
higher-dimensional equivalent structures is crucial for a quan-
tification analysis of higher-dimensional RPs.

Based on the definition of diagonal lines, Eq. (2), we de-
fine a diagonal squared hyper-surface of size �l (�l = (l, . . . , l),
�l ∈ N

d ) as

(7)(1 − R�ı−�1, �j−�1)(1 − R�ı+�l, �j+�l )
l−1∏

k1,k2,...,
kd=0

R�ı+�k, �j+�k ≡ 1.

In particular, for the two-dimensional case such a diagonal
hyper-surface (HS) is thus defined as

(1 − Ri1−1,i2−1,j1−1,j2−1)(1 − Ri1+l,i2+l,j1+l,j2+l)

(8)×
l−1∏

k1,k2=0

Ri1+k1,i2+k2,j1+k1,j2+k2 ≡ 1.

The next characteristic structure, the vertical squared HS of
size �v (�v = (v, . . . , v), �v ∈ N

d ) is defined as

(9)(1 − R�ı, �j−�v)(1 − R�ı, �j+�v)
v−1∏

k1,k2,...,
kd=0

R�ı, �j+�k ≡ 1.

Its 2D equivalent is

(1 − Ri1,i2,j1−1,j2−1)(1 − Ri1,i2,j1+v,j2+v)

(10)×
v−1∏

k1,k2=0

Ri1,i2,j1+k1,j2+k2 ≡ 1.

Using these definitions, we can construct the frequency dis-
tributions P(l) and P(v) of the sizes of diagonal and vertical
HS in the higher-dimensional RP. This way we get generalised
RQA measures DETHS, LAMHS, LHS and TTHS as defined in
Table 1, which are now suitable for characterising spatial (e.g.
two-dimensional) data.

5. Model examples

In order to illustrate the ability of the proposed high-
dimensional RP’s extension, we consider three prototypical
model examples from 2D image analysis. The first image (A) is
produced by uniformly distributed white noise, the second one
(B) is the result of a two-dimensional auto-correlated process
of 2nd order (2D–AR2; xi,j = ∑2

k,l=1 ak,lxi−k,j−l + ξ , where
ak,l is the 2D matrix of model parameters and ξ is Gaussian
white noise) and the third one (C) represents periodical recur-
rent structures (Fig. 2). All these example images have a size
of 200 × 200 pixels and are normalised to a mean of zero and
a standard deviation of one.
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Fig. 2. Two-dimensional prototypical examples: test images representing (A) uniformly distributed white noise, (B) a two-dimensional auto-correlated process
(2D–AR2) and (C) periodical recurrent structures.

Fig. 3. Three-dimensional subsections of four-dimensional RPs of the images shown in Fig. 2. As known from one-dimensional RQA, (A) random data causes
homogeneous RPs consisting of single, dis-connected points, (B) correlations in data cause extended connected structures and (C) periodic data induce periodically
occurring structures in the RPs.

Fig. 4. Slices of the subsections of the four-dimensional RPs shown in Fig. 3. The similarity to known recurrence plots is obvious: (A) noise, (B) auto-correlated
data and (C) periodic data.
The resulting RPs are four-dimensional matrices of size
200 × 200 × 200 × 200 (cp. Eq. (6)), and can hardly be visu-
alised. However, in order to visualise these RPs, we can reduce
their dimension by one by considering only those part of the
RPs, where i2 = j2. The resulting 200×200×200 cube is a hy-
persurface of the four-dimensional RP along the LOI. For the
threshold we use ε = 0.2, which gives clear representations of
the RPs.

The features occurring in higher-dimensional RPs provide
similar information as known from the classic one-dimensional
RPs. Separated single points correspond to strongly fluctuating,
uncorrelated data as it is typical for, e.g., white noise (Fig. 3A).
Auto-correlations in data cause extended structures, which can
be lines, planes or even cuboids (Fig. 3B). Periodical recurrent
patterns in data imply periodic line and plane structures in the
RP (Fig. 3C). Two-dimensional slices through such RPs contain
similar patterns found by common RPs (Fig. 4).
We compute the proposed RQA measures (Table 1) for the
histograms of the sizes of diagonal and vertical planes (2D HS)
in the four-dimensional RPs. For all three examples we use for
the minimal size of the diagonal and vertical HS lmin = 3 pix-
els and vmin = 4 pixels. Although the RQA measures depend
on the value of ε, its selection is not crucial for our purpose
to discriminate the three different types of structures in the test
images. The chosen values for lmin and vmin are found to be
optimal for discriminating the considered images. By choosing
smaller values of lmin and vmin (but larger than one), the mea-
sures DETHS and LAMHS are closer for the 2D–AR2 and the
periodic image.

Four of five RQA measures clearly discriminate between the
three types of images (Table 2). Only the recurrence rate RR
is roughly the same for all test objects. This is because all
images were normalised to the same standard deviation. For
the random image (A) the determinism DETHS and laminar-



N. Marwan et al. / Physics Letters A 360 (2007) 545–551 549
Table 2
Recurrence quantification measures for the prototypical examples shown in
Fig. 2. The measures are explained in Table 1

Example RR DETHS LAMHS LHS TTHS

(A) noise 0.218 0.007 0.006 3.7 3.0
(B) 2D–AR2 0.221 0.032 0.065 3.1 3.1
(C) periodic 0.219 0.322 0.312 5.8 5.6

ity LAMHS tend to zero, what is expected, because the values
in the image heavily fluctuate even between adjacent pixels. For
the 2D–AR2 image (B), DETHS and LAMHS are slightly above
zero, revealing the correlation between adjacent pixels. The last
example (C) has, as expected, the highest values in DETHS
and LAMHS, because same structures occur many times in this
image and the image is rather smooth. Although the trend in
DETHS and LAMHS is similar, there is a significant difference
between both measures. Whereas LAMHS represents the proba-
bility that a specific value will not change over spatial variation
(what results in extended same-coloured areas in the image),
DETHS measures the probability that similar changes in the im-
age recur. LAMHS is twice of DETHS for the 2D–AR2 image,
obtaining that there are more areas without changes in the im-
age than such with typical, recurrent changes.

6. Application to pQCT data of proximal tibia

According to the definition of the World Health Organisa-
tion, osteoporosis is a disease characterised by bone loss and
changes in the structure of the bone. In the last years, the fo-
cus changed to structural assessment of the trabecular bone,
because bone densitometry alone is very limited to explain
all variation in bone strength. Furthermore, the rapid progress
in the development of new high-resolution computer tomogra-
phy (CT) scanners facilitates investigations of the bone micro-
architecture. Different approaches using methods coming from
non-linear dynamics have been recently proposed in order to
evaluate structural changes [14–17] or even to predict fracture
risks or biomechanical properties [18–20]. These approaches
use, e.g., scaling properties of bone micro-structure or symbol-
encoding of the bone architecture.

Using the RP based method, we will focus here on the recur-
rent structures found in images of trabecular bone of proximal
tibiae obtained by peripheral quantitative computer tomography
(pQCT). The images were acquired from bone specimens with
different stages of osteoporosis as assessed by bone mineral
density (BMD). Being applied to such images, the RP provides
information about recurrences of bone and soft tissue.

The spatial recurrence analysis is applied to high-resolution
pQCT axial slices of human proximal tibia acquired 17 mm
below the tibial plateau, with pixel size 200 µm and slice thick-
ness 1 mm (Fig. 5). The images were acquired from 25 bone
specimens with a pQCT scanner XCT-2000 (Stratec GmbH,
Germany). The trabecular bone mineral density of these spec-
imens ranges from 30 to 150 mg/cm3. A standardised image
pre-processing procedure was applied to exclude the cortical
shell from the analysis [15,21] (the attenuation levels were
Fig. 5. Typical axial pQCT slice of human proximal tibia acquired 17 mm below
the tibial plateau. The trabecular BMD is 65.5 mg/cm3.

Fig. 6. Recurrence rate RR obtained from four-dimensional RPs of pQCT im-
ages of trabecular bone in human proximal tibia of different osteoporotic stages.

not changed). The RQA was computed by using the parame-
ters ε = 0.04 cm−1, lmin = vmin = 400 µm. These minimal
lengths correspond to two pixels and is found to be appropri-
ate for pQCT images of such resolution (for higher values of
lmin and vmin, the discrimination of the RQA measures for dif-
ferent stages of osteoporosis get a bit worse).

In order to further evaluate the proposed RQA measures, we
compare them with some recently introduced structural mea-
sures of complexity (SMCs) [15,21]. The SMCs are based on
a symbol-encoding of bone elements in the pQCT image. Here
we focus on the following SMCs:

(1) Entropy (Sa): quantifies the probability distribution of
X-ray attenuation within the region of interest;

(2) Structure complexity index (SCI): assesses the complexity
and homogeneity of the structure as a whole;

(3) Trabecular network index (TNI): evaluates richness, order-
liness, and homogeneity of the trabecular network.

The computation of the SMCs is applied on the same trabecular
area like the RQA measures.

The application of the recurrence plot extension to the pQCT
images of proximal tibiae reveals a relationship between the
recurrences in the trabecular architecture and the osteoporotic
stage (Fig. 6 and Table 3). RR is largest for osteoporotic bone
and shows the strongest relationship with the degree of os-
teoporosis: it is clearly anti-correlated with BMD (Spearman’s
rank order correlation coefficient R = −0.94). DETHS and
LAMHS are also maximal for tibiae with high degree of osteo-
porosis (R = −0.66 and −0.79; Fig. 7). We do not find a strong
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relation between LHS, TTHS and BMD. The comparison with
the SMCs reveals good relationships between the RQA mea-
sures and Sa , SCI and TNI (Fig. 8 and Table 3). Thus, the RQA
measures RR, DETHS and LAMHS contain also information
about the complexity and homogeneity of the trabecular net-
work.

The proposed RP approach reveals that during the devel-
opment of osteoporosis the structures in the corresponding

Table 3
Rank correlation coefficients R for recurrence quantification measures, BMD
and structural measures of complexity (only significant values are shown)

2D–RQA BMD Sa SCI TNI

RR −0.94 −0.92 −0.91 0.84
DET −0.65 −0.58 −0.61 0.61
LAM −0.78 −0.73 −0.75 0.72
L – – – –
TT −0.57 −0.51 – 0.49
pQCT image become more and more recurrent. This is in
a good agreement with a decreasing complexity in the micro-
architecture of bone. It confirms the results of an analysis of
pQCT images acquired from human proximal tibia and lum-
bar vertebrae based on symbolic dynamics [15,21]. The direct
comparison with the structural quantities (SMCs) shows that
the RQA measures provide information about the bone archi-
tecture. The RQA measures reveal a low rate of change for bone
of higher BMD, but higher rate of changes for specimens with
lower BMD (Figs. 6 and 7). This reflects a higher sensitivity of
these measures for osteoporotic trabecular bone and emphasises
the non-linear relationship between the bone architecture as as-
sessed by the RQA measures and bone mass as evaluated by
the BMD. As it has been recently shown that the SMCs provide
a better estimation of the mechanical bone strength than BMD
alone [22], the proposed RQA measures could further enhance
the evaluation to assess the fracture risk of bone.
Fig. 7. Determinism DET (A), laminarity LAM (B), mean line length L (C) and trapping time TT (D) obtained from four-dimensional RPs constructed from pQCT
images of trabecular bone in human proximal tibiae with different degree of osteoporosis.

Fig. 8. Recurrence rate RR (A) and laminarity LAM (B) compared with trabecular network index TNI and structure complexity index (SCI).
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7. Conclusions

A generalisation of the method of recurrence plots (RPs) and
recurrence quantification analysis (RQA) for the application to
higher-dimensional spatial data has been proposed here. This
new method can be used for 2D image analysis, in particular
to reveal and quantify recurrent structures in 2D images. Ap-
plying this method on model images, we have shown that it is
able to distinguish typical spatial structures by means of recur-
rences. As a first application, we have used this method for the
comparison of CT images of human proximal tibia with differ-
ent degree of osteoporosis. We have found a clear relationship
between some of the proposed RQA measures and the complex-
ity and homogeneity of the trabecular structure. Moreover, this
approach can be easily extended to higher dimensions, e.g., for
3D analysis of micro-CT images of human bone. This approach
will be the base for the further development of methods for the
assessment of structural alteration in trabecular bone with os-
teoporosis in patients on Earth or in space flying personnel in
microgravity conditions.
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