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Abstract -

Cross recurrence plots are a new tool for nonlinear ‘data analysis. They
exhibit characteristic structures which can be used for the study of differences
between two processes or for the alignment and search for matching sequences
of two data series, even in the case when cross-correlation techniques fails

or when the data are nonstationary. Selected applications of the introduced
techniques to various kind of data demonstrate their potential. ‘

1 Introduction

A major task in bi- or multivariate data analysis is to compare or to find interrela-
tions between different time series. Often, these data are gained from natural sys-
tems, which show generally nonstatlonary and complex behaviour. Furthermore,
these systems are often observed by rather few measurements providing short data
series. Linear approaches of time series analysis are often not sufficient to analyse
this kind of data. In the last two decades a great variety of nonlinear techniques
has been developed to analyse data of complex systems (cf. Abarbanel et al., 1993;
Kantz and Schreiber, 1997). Most popular are methods for estimation of fractal di-
mensions, Lyapunov exponents or mutual information (Kantz and Schreibér, 1997;
Kurths and Herzel, 1987; Mandelbrot, 1982; Wolf et al., 1985). However, most of
these methods need rather long data series. The uncritical application of these
methods especially to natural data often leads to pitfalls.

In the last decade a new methiod based on nonlinear data analysis has become
popular: recurrence plots (Eckmann et al., 1987). Recurrence is a fundamental
property of dissipative dynamical systems. Even though small disturbations of
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such a system cause exponential divergence of its state, after some time the system
will reach a state that is arbitrary close to the former state and pass through a sim-
ilar evolution. Recurrence plots visualize such recurrent behaviour of dynamical
systems. Although they are not completely theoretically understood, practitioners
of this method claim its relevance for short and nonstationary data. These features
are indeed the crucial advantage of recurrence plots. Zbilut and Webber Jr. (1992)
have made an important further step by introducing a quantification analysis based
on recurrence plots, which became well known in the analysis especially of physio-
logical data. Hundreds of works and publications using this quantification ana1y31s
can be found in literature. It seems that the reason for this amazing growth in the
popularity of recurrence plots is not only the technical aspect. Recurrence plots can
be very decorative and attract attention.

An extension of the method of recurrence plots to cross recurrence plots (CRPs)
enables investigating the time dependent behaviour of two processes which are
both recorded in a single time series (Zbilut et al., 1998; Marwan and Kurths, 2002;
Marwan et al. 2002a) The basic idea of this approach is to compare the phase space
trajectories of two processes in the same phase space. CRPs can be used in order to
study the similarity of two different phase space trajectoties. ‘

In order to understand the methods based on CRPs, we will ﬁrst review the con-
cepts of phase space trajectories and recurrence plots. In the following sections we
will expand these concepts to CRPs and develop further measures of complexity,
which are based on CRPs and evaluate the similarity of the considered systems.
This nonlinear approach enables us to identify epochs when there are linear and
even nonlinear interrelations between both systems. In the last section we will
apply the methods of CRPs to data from geology.

2 Review on Recurrence Plots

2.1 Phase Space

The analysis of phase space frajectories is a basic concept of nonlinear data analysis.
In this subsection a brief introduction of this concept is given. For further reading
see for example Eckmann and Ruelle (1985), Abarbanel et al. (1993) or Ott (1993).

The states of systems in nature or engineering typically change in time. The
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state of a system can be described by its d state variables - |

(), (), xalt), R )

which form a vector X(t) in a d-dimensional space which is called phase space. This
vector moves in time and in the dlrectlon that is specified by its veloc1ty vector

i"(t):&ﬁc‘(t):f(x). R : )

The temporary succession of the phase space vectors forms a trajectory (phase
space trajectory, orbit). The velocity field F(x) is tangent to this trajectory. For
autonomous systems the trajectory must not cross itself. The time evolution of
the trajectory explains the dynamics of the system, i. e. the attractor of the system.
If F(x) is known, the state at a given time can be determined by integrating the
equation system (2). However, a graphical visualization of the trajectory enables
the determination of a state without integrating the equations. The shape of the
trajectory gives hints about the system; periodic 'respgctive chaotic systems have
characteristic phase space portraits. ‘

The observation of a real process usually does not yield all possible state vari-
ables. Either not all state variables are known or not all of them can be mea-
sured. Most often only one observation u(t) is available. Since measurements
result in discrete time series, the observations will be written in the following as
u;, where t = i At and At is the sampling rate of the measurement. Couplings
between the system’s components imply .that each single component contains es-
sential information about the dynamics of the whole system. Therefore, an equiv-
alent phase space trajectory, which preserves the topological structures of the orig-
inal phase space trajectory, can be reconstructed by using only one observation
or time series, respectively (Packard et al., 1980; Takens, 1981). A method fre-
quently used for reconstructing such a trajectory #(t) is the time delay method:
X = (i, ige, . -+ Uit (m—1)r) T, where m is the embedding dimension and 7 is the
time delay (index based; the real time delay is T At). The preservation of the topo-
logical structures of the original trajectory is guaranteed if m > 2d + 1, where d is
the dimension of the attractor (Takens, 1981).

- Both embedding parameters, the dimension m and the delay 7, have to be cho-
sen appropriately. Different approaches are possible for the determination of these
- embedding parameters (cf. Cao, 1997; Kantz and Schreiber, 1997). A rather com-
mon method for the estimation of the embedding dimension is-the investigation
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of the changes in the neighbourhood of phase space points under changes of the
embedding dimension. Such a dimension has to be taken where the neighbour-
hood of phase space points (e.g. the amount of false nearest neighbours) does not
change. Possible means of determining the delay are the autocovariance function or
the mutual information. '

A phase space trajectory or its reconstruction can be used in order to estimate
characteristic properties of the dynamical system, like Lyapunov exponents, vari-
ous types of dimensions etc. (cf. Eckmann and Ruelle, 1985; Abarbanel et al., 1993;
Ott, 1993). Besides, the phase space reconstruction is the starting point for the con-
struction of a recurrence plot. !

2.2 Recurrence Plots

The recurrence plot (RP) is a tool for visualizing the dynamics of phase space tra-
jectories. Usually, a phase space does not have a dimension (two or three) which
allows it to be pictured. Higher dimensional phase spaces can only be visual-
ized by projection into the two or three dimensional sub-spaces. However, an RP
enables us to visualize the m-dimensional phase space trajectory through a two-
dimensional representation of its recurrences (Fig. 1).

The recurrence plot is defined as

R(ts, £2) = © (e(tr) ~ | (t1) — Z(12) ), @)
or for time-discrete variables (t = iAf)
Rj=0 (- |%- %), )

where ¢(t) or ¢; is a predefined cut-off distance, | - || is the norm (e. g. the Euclidean
norm) and ©(x) is the Heaviside function. The values one and zero in this matrix can
be simply visualized by the colours black and white. Depending on the kind of the
application, ¢; can be a fixed value or it can be changed for each i in such a way that
in the ball with the radius ¢; a predefined amount of nearest neighbours occurs. The
choice of a fixed amount of nearest neighbours will provide a constant density of
recurrence points in each column of the RP. The radius ¢; of such a neighbourhood
changes for each ¥; (i = 1...N)and R;; # R;; because the vicinity of ¥; does
not have to be the same as that of ¥;. This property leads to an asymmetric RF,
but all columns of the RP have the same recurrence density. For the use of this
neighbourhood criterion, we make the following statement: ¢ is the parameter for
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Figure 1: (A) Segment of the phase space trajectory of the Lorenz system (for stan-
dard parameters r = 28,0 = 10, b = §; Lorenz, 1963) computed by using its
three components and (B) its corresponding recurrence plot. A point of the trajec-
tory at j which falls into the neighbourhood (gray circle in (A)) of a given point
at i is considered as a recurrence point (black point on the trajectory in (A)). This
is marked with a black point in the RP at the location (i, j). A point outside the
neighbourhood (small circle in (A)) causes a white point in the RP. The radius of
the neighbourhood for the RP is ¢ = 5.

the predefinition of the recurrence density, but does not mean the radius of the
vicinity. This means that with a given £ = 0.15 the real, locally chosen ¢; is adjusted
in such a way that the neighbourhood covers 15% of all phase space vectors, and
thus the recurrence density is 0.15. We denote this neighbourhiood as fixed amount
of nearest neighbours (EAN). : : S
Since R;; = 1 (i = 1...N) by definition, the RP has a black main diagonal
line, the line of identity (LOI), with an angle of 7r/4. It has to be noted that a single
recurrence point at (i, j) does not contain any information about the current states
at the times i and j. However, it is possible to reconstruct the properties of the data
from the totality of all recurrence points.: McGuire et al. (1997) have shown the
preservation of main dynamical properties for the distance matrix D}, = 1% — |-
Nevertheless, the phase space trajectory can also be reconstructed from the binary
RP, where the information about the absolute length of the phase space vectors is
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lost. The RP provides information for reordering the indices of the phase space vec-
tors, such that the vectors are sorted by their norm. If the cumulative distribution of
the lengths of the phase space vectors is known, the restored phase space trajectory
will recover its amplitude by equating the sorted indices with this distribution.
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Figure 2: Characteristic typology of recurrence plots: (A) homogeneous (uniformly
distributed noise), (B) periodic (super-positioned harmonic oscillations), (C) drift
(logistic map x;41 = 4x;(1 — x;) corrupted with a linearly increasing term) and (D)
disrupted (Brownian motion). These examples illustrate how different RPs can be.
The used data have the length 400 (A, B, D) and 150 (C), respectively; no embed-
dings are used; the thresholds are ¢ = 0.2 (A, C, D) and ¢ = 0.4 (B).

An RP exhibits characteristic large-scale and small-scale patterns which are
caused by typical dynamical behavior (Eckmann et al., 1"987;‘ Marwan et al., 2002b;
Webber Jr. and Zbilut, 1994), e.g. diagonals or horizontal and vertical black lines.
The large-scale patterns were denoted by Eckmann et al. (1987) as typology and the
small-scale patterns as texture. The typology offers a global impression which can
be characterized as homogeneous, periodic, drift and disrupted (Fig. 2).

Single, isolated recurrence points occur if states are rare, if they do not persist for
any time or if they fluctuate heavily. However, they are not a unique sign of chance
or noise (for example in maps). A single recurrence point contains no information
about the state itself.

A diagonal line Riypjix = 1 (for k = 1...1, where | is the length of the diag-
onal line) occurs when the trajectory visits the same region of the phase space at
different times and a segment of the trajectory runs parallel to- another segment.
The length of this diagonal line is determined by the duration of such similar local
evolution of the trajectory segments. The direction of these diagonal structures can
differ. Diagonal lines parallel to the LOI (angle 71/4) represent the parallel running
of trajectories for the same time evolution. The diagonal structures perpendicular
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to the LOI represent the parallel running with contrary times (mirrored segments;
this is often a hint for an inappropriate embedding). Since the definition of the
maximal Lyapunov exponent uses the time of the parallel running of trajectories,
the relationship between the diagonal lines in an RP and the maximal Lyapunov
exponent is obvious. There exist different attempts to relate the diagonal lines with
the maximal Lyapunov exponent (Trulla et al., 1996; Choi et al., 1999; Gao and Cai,
2000). ' .

A vertical (horzzontal) line R;jx = 1 (for k = 1...v, with v the length of the
vertical line) marks a time length in which a state does not change or changes very
slowly. It seems that the state is trapped for some time. This is a typical behaviour
of laminar states (intermittency).

In a more general sense the line structures in an RP exhibit locally the time
relationship between the current trajectory segments. A line structure in an RP
of length [ corresponds to the closeness of the segment f(Ti(t)) to another seg-
ment f(T>(t)), where Ti(t) and T,(t) are the local time scales which preserVe that
F(Ta(t)) = f(Ta(t)) for some time ¢ = 1...IAt. The local slope m() of a line in an
RP represents the ratio between the local time derivatives of these time transfor-
mations T;(¢) AT

¢ (t

We will consider here an illustrative example. A further explanation of the re-
lationship between the slope of the lines and the trajectories is given in Subsec. 3.3.
Let us consider a function f(T) = T(t) with a section of a monotonical, linear in-
crease Tj;,;, = t and another (hyperbolic) section which follows Thyp =V -
(Fig. 3A). Since the ratio between the derivatives of the functions T; of the linear
and the hyperbolic sections

— atTlin(t) - £
9t Thyp () 12—t

corresponds to the derivative of a circle line with a radius 7, a bowed line structure
with the form of a circle occurs in the RP (Fig. 3C).

- (6)

The small scale structures, diagonal and vertical lines, are the base of a quantita-
tive analysis of the RPs, which is known as recurrence quantification analysis (RQA).
This analysis has been developed to assess the RPs and to detect transitions (e. g. bi-
furcation points) in complex systems (Trulla et al., 1996; Webber Jr.- and Zbilut,
1994; Zbilut and Webber Jr.; 1992; Marwan et al., 2002b). The quantification tech-
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Figure 3: (A, C) Illustrative example of the relationship between the slope of lines in
an RP and the local derivatives of the involved trajectory segments. Since the ratio
between the local derivative of the linear and the hyperbolic sections corresponds
to the derivative of a circle line, a circle occurs in the RP. (B, D) A corresponding
structure found in nature: the solar insolation on the latitude 44°N for the last
100 kyr (data from Berger and Loutre, 1991). RPs created without embedding; in
(D) an RP for a larger threshold is additionally shown in gray.

nique contains numerous measures of complexity as recurrence rate, determinism,
laminarity, trapping time etc. '

The RPs test the distance between all points of the same phase space trajectory.
However, why should it not be possible to test each point of one trajectory with
each point of another trajectory in the same phase space? This leads us to the
concept of cross recurrence plots (CRP), which we will focus on in the next section.
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Figure 4: (A) Segments of the phase space trajectories of the El Nifio South-
ern Oscillation Index (SOI, black line; data from the Climate Server of NOAA
http:/ /ferret.wrc.noaa.gov) and a precipitation time series of San Salvador de Ju-
juy (Argentina, gray line; data from Bianchi and Yafiez (1992)) by using time delay
embedding (smoothed, monthly data; T = 7 months). In (B) the corresponding
cross recurrence plot is shown. If a point of the precipitation trajectory at | j (black
point on the gray line in (A)) falls into the neighbourhood (gray circle in (A)) of a
point of the SOI trajectory at i, in the CRP at the location (3, j), a black point will
be marked. A point outside the neighbourhood (small circle in (A)) is marked as
a white point in the CRP. For creating this CRP the FAN criterion with ¢ = 0.15is
used. '

3 Cross Recurrence Plots

3.1 Definition of Cross Recurrence Plots

Starting with the concept of RPs we regard a phase space with one tfajectory ¥;
of length N,. Now we add a second trajectory ¥; with the lengfh Ny into the same
phase space (Fig. 4). The test between all points of the first trajectory with all points
of the second trajectory leads to the cross recurrence plot (CRP)

CRT]A’E’.=@(€,"-— ”fi—-?j”), fi, ?jER’_n, o
i=1...Ny, j=1...Ny. . @)
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The notation is analogous to the definition of RPs (Eq. 4). If in the second trajec-
tory a state at time j is close to a state on the first trajectory at time i, a black dot
will be assigned to the matrix CR at location (i, j). This occurrence of neighbours
in both trajectories is not a “recurrence” of states, hence, the matrix (Eq. 7) does
not represent recurrences but the conjunctures of states of both systems. Therefore,
this representation is not really a “cross recurrence plot”. Nevertheless we call it
“Cross recurrence plot” in order to follow the way of a generalization of RPs and
because of the occurrence of the term “cross recurrence quantification” in the liter-
ature for the parallel concept of the generalization of the RQA (Zbilut et al., 1998).
The vectors ¥ and 7 do not need to have the same length, hence the matrix CR is
not necessarily square. This extension of RPs was firstly used by Zbilut et al. (1998)
for the cross recurrence quantification. Independently of their work, the concept of
cross recurrence plots also surfaces in Marwan (1999). If the second vector ; is the
same as the vector i']-, the CRP will correspond to the RP of ¥ e

Both trajectories for the creation of a CRP have to represent the same dynamical
system with equal state variables because they are in the same phase space. This
must be taken into account if time series of different measurements (e. g. tempera-
ture and pressure) are involved. For the embedding and the following CRP analy-
sis the time series can be taken from different measurements if they are components
or state variables of the same system. The time series can also be from different sub-
systems, which belong to the same system (e. g. the sub-systems El Nifio Southern
Oscillation and North Atlantic Oscillation within system of the global atmospheric
oscillation). A precedent data normalization may solve the problems of different
units and amplitude scaling. However, the application of CRPs to measurements
of completely different systems, which cannot be regarded as observations of the
same dynamical system (e.g. a stocks index and the precession of the Earth’s ro-
tation), makes no sense. For such different kinds of data the presently developed
concept of intersected RPs can be used (Romano et al., 2003).

Assuming that both trajectories come from the same process but have differ-
ent absolute values, the CRP will not yield the expected RP if a fixed threshold ¢
is chosen. Therefore, it is necessary to adapt both trajectories to the same range
of values, e.g. by using a normalization to the standard deviation. However, the
application of a fixed amount of nearest neighbours (FAN), i. e. ¢; changes for each
state x;, solves this problem automatically, and a modification of the amplitudes
is not necessary. This choice of a neighbourhood has the additional advantage of
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working well for slowly changing trajectories (e. g. drift).

-Since the values of CR;; (i = 1...N) are not necessarily one, the black main
diagonal usually vanishes. As we will discuss in Subsec. 3.3, the line of identity
(LOI) can be replaced by the line of synchronization (LOS), may be bowed and may
ultimately not have the angle 77/4. However, the lines which are more or less di-
agonally oriented are also of interest. They represent segments of both trajectories,
which run nearly parallel for some time. The frequency and lengths of these lines
are obviously related to a certain similarity between the dynamics of both sub-
systems.

~ A time dilatation or time compression of one of the trajectories causes a distor-
tion of the main diagonal line. This case will be discussed in subsection 3.3. In the
following subsection we presume the situation that both systems have the same
time scale (equal length N and sample time At), hence, the CRPis an N x N array.

3.2 Measures for Similarities Between Two Observed Processes

The long diagonal structures in the CRP reveal similar time evolution of the trajec-
tories of both processes. It is obvious that a progresswely increased similarity be-
tween both processes causes an increase of the recurrence point density along the
main diagonal CR;; (i = 1...N) until a black straight main diagonal line occurs
(which would be in fact the LOI) and the CRP becomes an RP. Thus, the dccur-
rence of diagonal lines in a CRP can be used in order to benchmark the similarity
between the considered processes. ’ o

* In order to quantify this similarity, some quantitative measures have to be de-
fined. Since we are interested in the occurrence of the more or less discontinu-
ous diagonal lines, these measures should be diagonalwise applied (Marwan and
Kurths, 2002).

' Let us consider a diagonal CR;; (j—i =k = const.) which is parallel to the
main diagonal and has a time distance ¢ = k At from the main diagonal. The re-
currence points in this diagonal correspond with tests between the time delayed
trajectories (delay ¢). In the following, some RQA measures will be redefined for
these diagonals. Hence, these measures will be functions of the distance k from
the main diagonal. Using this approach it is possible to assess the similarity in the
dynamics depending on a certain time deléy. . , ,

. Following this procedure, we need to define the frequency distributions of the
diagonal line lengths P{(1) = {l;; i =1...N;} (N} is the:absolute number of diag-
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onal lines) for each diagonal parallel to the main diagonal CR* (j — i = k). For
k = 0 this line is the. LOL k > 0 dlagonals aboveand k < 0 dlagonals below the
LOI, which represent positive and ‘negative time delays, respectlvely

The recurrence rate RR is now modified to

RRy = RR,(t) = N k Zc o =5 kZlPk(l (8)

and reveals the probability of the occurrence of similar states in both systems with
a certain delay t = k At. A high density of recurrence points in a diagonal results in
a high value of RR,. This is the case for systems whose trajectories often visit the
same phase space regions. |
Analogous to the RQA the determinism
ZN -k Pc( )

1=lmin

Yk 1Pl

is the proportion of recurrence points forming long diagonal structures to all re-
currence points, but here it is constrained to the considered diagonal. Smooth tra-
jectories with long autocorrelation times will result in a CRP with long diagonal
structures, even if the trajectories are not linked to each other (this effect corre-
sponds to the tangential motion of one trajectory). In order to avoid the counting
of such “false” diagonals, the lower limit for the diagonal line length I, should
be of the order of the autocorrelation time.

DET, = )

Stochastic as well as heavily fluctuating processes cause none or only short di-
agonals, whereas deterministic processes cause longer diagonals. As mentioned
above, if two deterministic processes have the same or similar time evolution,
i. e. parts of the phase space trajectories meet the same phase space regions for cer-
tain times, the amount of longer diagonals will increase and the amount of shorter
diagonals will decrease. The average diagonal line length

Eis,, LRE()

BEINERG) a0

I=lyiy =

quantifies the duration of such a similarity in the dynamics. A high coincidence
of both trajectories increases the length of these diagonals. Besides, the entropy
of the probability P{(I) can also be defined. Still, we focus here on the first three
measures.



Cross Recurrence Plots and Their Applications 113

High values of RR, represent high probabilities of the occurrence of the same
state in both processes, high values of DET, and L, represent a long time span of
the occurrence of a similar dynamics in both processes. Whereas DET, and L, are
sensitive to fast and highly fluctuating data, RR, measures the probabilities of the
occurrence of the same states in spite of these high fluctuations (noisy data). It
is important to emphasize that these parameters are statistical measures and that
their validity increases with the size of the CRP, i. e. with the observation length.

An additional CRP . : IR

| CR;; = © (& — ||% + 7)) (11)
with opposite signed second trajectory —¥; allows to distinguish positive and neg-
ative relations between the considered trajectories (Marwan and Kurths, 2002). In
order to recognize the measures for both possible CRPs, we add the superscript
index + to the measures for the positive linkage and the superscript index — for
the negative linkage, e.g. RR{" and RR;.

Another approach used to study the positive and negative relations between
the considered trajectories involves the composited measures for the recurrence
rate S -
RR;= —— ¥ (CRfj-CR}), (12)

N-k % v U o
the determinism ’

| DET{ = DET; — DET;, (13)
and the average diagonal length ‘ } , |

Li=LF-L, | BTy
where P (1) is the histogram of the diagonal line lengths in CR;E (j—i=k),asit
is used in Marwan et al. (2003). This representation is similar to those of the cross
correlation function and is more intuitive than the separate representation of RR},
RR; etc. However, for the investigation of interrelations based on even functions,
these composited measures are not suitable.

A substantial advantage of this method is its capability of finding nonlinear
similarities in short and nonstationary time series with high noise levels as they
typically occur, e. g., in biology or earth sciences.

However, the shortness and nonstationarity of data limit this method as well.
As mentioned above, one way to reduce problems accompanying nonstationary
data is the alternative choice of a neighbourhood with a fixed amount: of neigh-
bours.
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3.3 Time Scale Alignment of Time Series

In data analysis one is often faced with time series measured on varying time scales.
These could be, for example, sets from borehole or core data in geophysics or tree
rings in dendrochronology Sediment cores might have undergone anumber of cor-
ing disturbances such as compression or stretching. Moreover, cores from different
sites with differing sedimentation rates would have different temporal resolutions.
All these factors require a method of synchronizing’or aligning the time scales.

Regarding the conventional RP (Eq. 4), a black main diagonal line (LOI) can
always be found in the plot because of the identity of the (i, i) states. The RP can
be considered as a special case of the CRP which usually does not have a main
diagonal because the (i, 7) states are not identical.

Assuming two identical trajectories, the CRP is the same as the RP of one trajec-
tory and contains an LOL If we slightly modify the values of the second trajectory,
the LOI will become somewhat disrupted. This leads to the situation discussed in
Subsec. 3.2. However, if we do not modify the amplitudes but stretch or compress
slightly the second trajectory, the LOI will be kept continuous but not as a straight
line with an angle of 71/4. Rather this line can be bowed (Fig. 5). The local slope
of lines in an RP as well as CRP corresponds to the transformation of the time axes
of the two considered trajectories (Marwan et al., 2002a). A time shift between the
trajectories causes a dislocation of the LOS. Hence, the LOS may lie rather far from
the main diagonal of the CRP.

For illustration let us consider two sine functions where we rescale the time axis
of the second sine function in the following way -

sin(pt) — sin(¢t + asin(yt)). )

The terms rescaling and synchronization are used here in the meaning of the rescal-
ing of the time scale. The rescaling of the second sine function with different pa-
rameters 4 results in a deformation of the main diagonal (Fig. 5). The distorted line
contains the information on the rescaling, which we constructively use in order to
re-synchronize the two functions. Therefore, this distorted diagonal is called line of
synchronization (LOS).

In the following, we present a toy model in order to explain the relation between
the time series f(#1), g(¢2) and the LOS #; = ¢(#1). In a one dimensional situation,
the CRP is simply '

CR(ty, t2) = O (e — || f(t) ~ 8(t2) )- (16)
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Figure 5: Cross recurrence plots of sine functions f(t) = sin(¢@t) and g(t) =
sin(@t + asin(yt)), whereas (A) a = 0, (B) 2 = 0.5 and (C) 2 = 1. The varia-
tion in the time domain leads to a deforming of the synchronization line. The CRPs
are computed without embedding.

Provided that we set ¢ = 0 to simplify the condition, (Eq. 16) will deliver a recur-
rence point if . - ; '
f(t) = g(t2). 17)
In general, this is an implicit condition that links the variable t; to t;. Considering
the physical examples above, it can be assumed that the time series are essentially
the same; i.e. f = g up to a rescaling function of time. So we can state '

f(t1) = f(d(t1)). (18)

In some special cases (18) can be resolved with respect to 1. An example of such a
special case is a system of two sine functions with different frequencies

f(t)=sin(p-t+a), g(t)= sin(i- ¢+ B )
Using (17) and (18) we find
sin (ot +a) —sin (P12 +B) =0, @

and one explicit solution of this equationis -

- tz'=¢(t.1),=<-l‘§t1+7> @
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withy = "‘—’lpﬁ . In this special case the slope m of the main line in the corresponding
cross recurrence plot represents the frequency ratio, and the distance between the
origin of the axes and the intersection of the LOS with the ordinate reveals the
phase difference. Considering the time transformation functions Ty = ¢ - t+aand
T, = 1 - t + B whithin the (Egs. 19), we get the same result for the slope of the LOS
by the ratio of the derivatives (cf. Eq. 5)
_oTi(t) o

"= AnG) P | @)
The function t; = ¢(#1) is the transfer or rescaling functiony which allows to rescale
the second system to the first system. If the rescaling function is not linear, the LOS
will also be curved. ‘ ‘

If the functions f(-) and g(-) are not identical, our method will in general not
be capable of deciding whether the difference in the time series is due to different
dynamics or to simple rescaling. So the assumption that the dynamics remain equal
" up to a rescaling in time (the underlying systems must be the same) is essential.
Nevertheless, for some cases where f # g, the method can be applied in the same
way. If we consider the functions f(-) = a- f(-) + b and g(-) = §(-), whereby
f(+) # g(-) are the observations and f(-) = §(-) are the states, normalization, with
respect to the mean and the standard deviation, will allow to use our method,

£ = a-f+b— fy = L) @)
3) = St )

With g(-) = f(-) the functions f(-) and (-) are the same after the normalization,
hence, our method can be applied without any further modification. ,

For application one has to determine the LOS — usually non-parametrically —
and then rescale one of the time series by using this transfer function. This connec-
tion between the local slope of the LOS and the relation between the segments of
the trajectories also applies to other line structures in CRPs as well as RPs.

This technique can also be used in order to find the closest matching segments
in two data series. For example, in the geological framework there could be a long
reference data series which has a time scale and a second but short profile with
the same physical measurement. The task lies in finding the section in the refer-
ence data which matches to the second profile in order to yield the corresponding
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time scale for the profile. This section can be found by looking for a more or less
continuous black line in the CRP (the dislocated LOS).

The CRP based alignment of time series has conspicuous similarities with the
method of sequence slotting described by Thompson ‘and Clark (1989). The first
step in their method is the calculation of a distance matrix (DY = ||%; — %), which
allows the use of multivariate data sets. Thompson and Clark (1989) referred to the
distance measure as dissimilarity. It is used to determine the alignment function in
such a way that the sum of the dissimilarities along a path in the distance matrix
is minimized. This approach is based on dynamic programming methods which
were rriainly developed for speech pattern recognition.in the 1970’s (e. g. Sakoe
and Chiba, 1978). In contrast, RPs were developed to visualize the phase space
behaviour of dynamical systems. Therefore, a threshold was introduced to make
recurrent states visible. The involvement of a FAN in the phase space and the
possibility of increasing the embedding dimensions, which enhance the quality of
the transfer function, distinguishes the CRP approach from the sequence slotting
method.

4 Current Developments of Recurrence Plots

During the last five years a rather promising development of recurrence plots has
been in progress. These new findings work toward a better understanding of the
structures found in RPs. An RP can be used in order to obtain some properties
of dynamical systems, such as the Rényi entropy, the correlation dimension or the
information dimension (Faure and Korn, 1998; Gao, 1999; Thiel et al., 2003). The
most recent development proposes intersections of RPs and time shifted RPs

, & , & . : .
RYERIE, | | )

which can be used for the estimation of the generalized mutual information (Thiel
etal., 2003). Furthermore, this approach can also be applied to different phase space
trajectories, which leads to a completely new concept of cross recurrence plots (Ro-
mano et al., 2003, this kind of cross recurrence plot is denoted as XRP). Based on
this new approach, the cross mutual information and Rényi entropy can be esti-
mated. In addition, the XRP can be used to study phase synchronization in com-
plex systems (Rosenblum et al., 1996). The XRP can be applied to measurements
of different systems whose observations cannot be considered as state variables of
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the same system. XRPs are not restricted to only two systems; it is a multivariate
analysis tool. In contrast to CRPs, XRPs can only be applied to time series of equal
time scale, length and sample resolution.

The development of RP based methods is not yet concluded. The very last years
in particular have shown that large potential lies in the analysis of RPs.

5 Applications

The high potential for the analysis based on recurrence or cross recurrence plots
arises with their applicability. Hundreds of applications ‘of recurrence plots and
recurrence quantification analysis, especially to physiological data, represent the
increasing importance of these methods. In this section selected applications of the
newest strategies based on cross recurrence plots to geological data are presented.
Methods of linear and nonlinear data analysis mostly fail in these applications be-
cause of the rather short length of the time series and their nonstationarity.

5.1 Similarities Found within Present and Past Climatic Data Series

Cross recurrence plots can be used for studying a similar time evolution of phase
space trajectories and hence to assess the similarity or interrelation between the
underlying processes. The following example illustrates the funchonmg of this
technique on natural data from geology.

Data from geology are often characterized as short and nonstationary. The
unique character of outcrops or drilling cores does not usually allow to repeat or re-
fine a measurement. Therefore, data analysis of geological data is often confronted
with problems regarding the length, nonstationarity or gaps in the data. In the
previous application of CRPs we have seen that this method can be used for this
kind of data. Therefore, in this subsection the application of CRPs will be used for
the analysis of palaeo-climatology data that are of short length and nonstationarity
(Marwan et al.,, 2003; Trauth et al., 2003).

Higher variability in rainfall and river discharge could be of major importance
in landslide generation in the northwestern Argentine Andes. A potential cause of
such variability is the El Nifio/ Southern Oscillation (ENSO). Annual layered de-
posits of a landslide-dammed lake in the Santa Maria Basin (site El Paso, Province
Salta, NW Argentina) with an age of 30000 C years provide an archive of pre-
cipitation variability during this time (Fig. 6). The annual cycle of wet summers
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Figure 6: Left: Photograph of varved lake sediments from the El Paso site in the
Santa Maria Basin with cyclic occurrence of dark red colourations recording more
precipitation and sediment flux with ENSO-like periodicities (Trauth and Strecker, |
1999). The overlayed curve shows a representative red colour intensity transect of
the deposits. Right: Red intensity values of the lake sediments of site EP160 on
(A) alength scale and on (B) a time scale and after smoothing and normalization;
the unit of raw data is one bit, the unit of transformed and smoothed data is the
standard deviation o.
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and dry winters caused significant changes in the lake’s sedimentation. During
the rainy season mainly ocher coloured silty sediments were deposited; during the
subsequent dry season a thin white layer consisting of the skeletons of silica algae
(diatoms) was deposited. Due to its white colour, the diatomaceous layer can be
used to identify single years in these sediments. Recurring intense red colouration
of the silty part of the annual layers comes from reworked older sediments which
are eroded and deposited only during extreme rainfall events. Therefore, the inten-
sity of red colour in the varved deposits can be interpreted as a proxy for precipi-
tation variation in the Santa Maria Basin (Trauth and Strecker, 1999; Trauth et al.,
2000). The more intense red colouration is evidence of more precipitation during
the rainy season. The estimate of the power spectrum of the red colour intensity
reveals significant peaks within the ENSO frequency band of two to four years,
suggesting an ENSO-like influence (Trauth et al,, 2000). Because of the nonsta-
tionarity of these data (the sedimentation process in a lake is not stationary, which
results in nonstationary proxy variables for the in-lake processes) linear correlation
 analysis is unsuitable. Therefore, the CRP analysis is applied to these data.

Our research includes the quantification analysis of CRPs of anindex data series
of the ENSO (Southern Oscillation Index, SOI) and the modern as well as palaeo-
precipitation data in order to compare the magnitude and causes of rainfall vari-
ability in the NW Argentine Andes today and during the time of enhanced land-
sliding around 30000 4C years ago (Marwan et al., 2003; Trauth et al., 2003). For
the assessment of the modern ENSO influence on local rainfall in NW Argentina,
the monthly precipitation data from the three stations San Salvador de Jujuy JUY),
Salta (SAL) and San Miguel de Tucuman (TUC) are analyzed (Figs. 7, 8). These
locations are influenced by different local winds (Fig. 7); Jujuy and Salta mainly re-
ceive northeasterly and easterly moisture-bearing winds during the summer rainy
season, whereas Tucuman is characterized by southerly and south-westerly winds
(Prohaska, 1976). o

An appended surrogate test provides an evaluation of the results of the CRP
analysis. The assumption for the surrogate data is that the considered processes
are linearly independent and do not have any similar dynamics. These surrogates
should reveal some features like in our original data but also features caused by
the randomness of a possible correlation (stochastic processes). Linear correlated
noise is a paradigmatic example for such processes (Kantz and Schreiber, 1997). We
calculate a surrogate time series based on this class of processes with the following
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Figure 7: Left: Study area in the Santa Maria Basin with the ‘locality of annual lay-
ered lake deposits from the El Paso site, the relative precipitation anomaly during
the El Nifio 1965/66 compared to mean annual precipitation (annual precipitation
as a mean from July to June; data from Bianchi and Yafiez, 1992) and the prevail-
ing wind directions during January (black arrows; wind directions from Prohaska,
1976). . Right: Present-day airflow pattern during the summer rainy season and
principal areas of rainfall anomalies during El Nifio events in South America (mod-
ified after Trauth et al., 2000).

recursive function, an autoregressive process of order p,

14 ) .
Xp = Z Ap Xn—p + béu,
i=1

where ¢ is white noise and a; are coefficients which determine the auto-correlation
of the system and allow to adapt this stochastic system to our natural processes. We
fit the model to the precipitation series of the station Tucuman. Then we perform
the CRP analysis using the SOI data and the ensemble of, e. g. 10,000 realizations of
precipitation series produced by the AR model. Using the distributions of the RR
and L measures obtained from these CRPs, we estimate their empirical confidence
bounds (we will use the 2¢-bounds which approximately correspond with the 95%
confidence level). ; - o :

With these confidence bounds we evaluate the obtamed measures of CRP and
the relations of the natural processes. Since the surrogates are from a stationary
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- Figure 8: Smoothed and g-normalized time series of the Southern Oscillation Index
(A), monthly precipitation data of Salta (B) and its smoothed and o-normalized
time series (C). SOI based on COADS data from the NOAA Live Access Server
(http:/ /ferret.wrc.noaa.gov).
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system and the natural data are nonstationary, we have further applied this kind
of evaluation to more stationary segments in the natural data and got the same
results. This kind of surrogates is a special realization, which is prototypical for
linear stochastic processes. There are, of course, a lot of other possibilities to con-
struct surrogates (cf. Kantz and Schreiber, 1997).

The CRPs of pairs of SOI and present-day precipitation as well as SOI and
palaeo-precipitation show similar features (Fig. 9). These significant similarities
indicate that the red colour intensity records from the varved lake sediment do re-
flect rainfall in NW Argentina. First, we discuss the CRP of Salta precipitation (data
series SAL) vs. the Southern Oscillation Index (SOI) and' the CRP of red colour in-
tensity of varves (data series EP160) vs. SOL The x-axis represents time along the
phase space trajectory of the SOI, whereas the y-axis represents the time along the
phase space trajectory of SAL or EP160, respectively. The CRP of SAL vs. SOI ex-
hibits longer diagonal lines in two to four year intervals, which matches the same
frequency band obtained by the power spectral analysis (Fig. 9). This indicates that
some parts of the phase space trajectory of the SOI recur in epochs of the phase
space trajectory of SAL after relocating by the time of two to four years. Vertical
white bands in the CRP represent less frequent states in SOI, whereas horizontal
white bands represent less frequent states in SAL. The latter occurs with intervals
of more than ten years. The CRP between EP160 and SOI shows similar charac-
teristics as the CRP described above (Fig. 9). Longer diagonal lines have spacings
of about two to four years. White bands occur at time scales of more than ten
years. Some linkages in both CRPs are obvious through visual inspection. Next, a
quantitative analysis of the CRPs is performed in order to study statistically these
relations and to allocate the predefined causality patterns to certain localities.

We find that the parameter RRS of the CRPs between TUC and SOI has small
negative values which do not exceed the 2o-bounds and do not show preferences
for a distinct lag. The parameter LS also has small values, but it has rather small
maxima and minima at delays of —1, 4 and 8 months. These results indicate that
the precipitation in Tucuman is not strohgly influenced by ENSO. If there is a weak
influence, the rainfall will increase during El Nifio (Fig. 10 A, E). However, the
analysis of JUY and SOI reveals clear positive values around a lag of zero and
negative values after 8 — 12 months, which suggests a significant link between Jujuy
rainfall and ENSO ( Fig. 10C, G). The measures for the analysis of SAL versus
SOI show smaller maxima for a delay of about zero and minima after a lag of 8
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Figure 9: Left: Cross recurrence plot of SOI vs. precipitation data from the city of
Salta (data shown at top). Black points represent the occurrence of similar states
in both processes. Diagonal lines correspond with epochs of similar dynamics in
both processes. The amount and length of these lines can be used as measures of
the similarity of both processes. Right: Cross recurrence plot of SOI vs. the best
matching section of palaeo-precipitation (EP160, data shown at top). The x-axis
shows the time along the phase space trajectory of the SOI and the y-axis that of
SAL and EP160, respectively. ~ '

— 12 months. Therefore, we infer a weaker link between Salta rainfall and ENSO
‘ (Fig. 10 B, F; the disrupted minima in the L{ parameter at around ten months is due
to the short data length and a resulting nonstationarity in the CRP). The measures
for both SAL and JUY exceed the 20-bounds. ' |

‘The 30000 4C year old precipitation data are not simply comparable with present-
day data, because there is no information available about how to synchronize the
rainfall records with modern climate indices. Therefore, we seek the time window
in these data showing the highest coincidence in the dynamics using maximum val-
ues for RR¢ and L¢ as the key criterion. The linear correlation coefficients could be
used to find such a sequence, but this results in numerous ambiguous possibilities.
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Figure 10: RR{ and L{ measures of the cross recurrence plots between SOI and pre-
cipitation in Tucuman (A, E), Salta (B, F), Jujuy (C, G) and palaeo-precipitation (D,
H). Extreme values reveal high similarity between the dynamics of the rainfall and
the ENSO. The dash-dotted lines are the empirical 20-bounds from the dlstrlbu-
tions of an ensemble of data based on a 5th-order AR—model

The complexity measures based on CRP provide a differentiated search that also
considers time based features of the signal. This method reveals indeed a clearer
result. The measures presented herein are not the only measures used. For main-
taining clarity, the further measures are not presented in this application, although
they are used to find the sequence in the sediment data. Even though the observed
coincidence is not very high, it yields the time section in the palaeo-precipitation
record EP160 which can be in best accordance with modern data.  In our palaeo-
climate data EP160 we find such a section represented by maximum and ‘minima
values for RRS and LS for delays of about zero and ten months, similar to those
found for JUY and SAL (Fig. 10D, H). The RR¢ and L measures also exceed the
20-bounds.

The similarities between the time series of the present-day rainfall data and the
palaeo-precipitation record from the lake sediments suggest that an ENSO-like os-
cillation was active around 30000 14C years ago (roughly corresponding to 34 000.
cal..years BP), which corresponds with the results of the investigation of Coccol-
ithophores production’ (Beaufort et al., 2001). - In the semiarid basins of the NW
Argentine Andes, the ENSO-like variation could have caused significant fluctua-
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tions in local rainfall around 30000 4C years ago similar to modern conditions.
Together with generally higher moisture levels, as indicated by lake balance mod-
eling results (Bookhagen et al., 2001), this mechanism could help to explain more
frequent landsliding approximately 34000 years ago in the semiarid basins of the
Central Andes. For the comparison of the past and modern climate conditions,
the CRP analysis has been used because a linear correlation analysis would reveal
ambiguous results.

5.2 Time Scale Alignment of Borehole Data

The CRP contains information about the time synchroni[zation of data series (in
the following the terms synchronization and rescaling refers to the alignment of
the time scales). This is revealed by the distorted main diagonal, the LOS. A non-
parametric rescaling function is provided by isolating this LOS from the CRP and
can be used for the re-alignment of the time scales of the considered time series.
We expect that this approach will open a wide range of applications, such as scale
alignment and pattern recognition, e. g. in geology, molecular biology or ecology.

In this application we consider geophysical measurements of two sediment
cores from the Makarov Basin, in the central Arctic Ocean, PS 2178-3 and PS 2180-2
(Marwan et al., 2002a) and compare the method of cross recurrence plot matching
with the conventional method of visual wiggle matching (interactive adjustment).
The task is to align the data of the PS 2178-3 core (data length N = 436) with the
scale of the PS 2180-2 (data length N = 251) in order to get a depth-depth-function
which that to synchronize both data sets (Fig. 11). '

The phase space trajectories are formed by the following normalized six mea-
sures: low field magnetic susceptibility (kir), anhysteretic remanent magnetiza-
tion (ARM), ratio of anhysteretic susceptibility to kir (karm/kir), relative palaeo-
intensity (PJA), median destructive field of ARM (MDF4gp) and inclination (INC).
Each measure is used as one component of the phase space vector. However,
this embedding can be combined with the time delay method according to Tak-
ens (1981) in order to further increase the dimension of the phase-space. ;

Using an embedding of m = 3 (absolute dimension is 3 X 6 = 18), T = 1 and
a recurrence criterion of FAN with ¢ = 0.05, the resulting CRP shows a clear LOS
and some clustering of black patches (Fig. 12). Black patches arise whenever the
variation in the data is smaller than the used vicinity threshold ¢ for a given time
(plateau). The next step is to fit a nonparametric function (the desired depth-depth-

v
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Figure 11: ARM data of the boreholes PS 2178-3 GPC and PS 2180-2 GPC in the
Central Arctic Ocean before adjustment.
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Figure 12: Left: Cross recurrence plot based on six normalized sediment parame-
ters and an additional embedding dimension of m = 3 (1 =1, &'= 0.05) Right:
Depth-depth-curves. In black the curve gained with the CRP, in gray the manually
matching result. The horizontal curve shows the deviation between both results.
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curve) to the LOS in this CRP (Fig. 12). Different approaches can be considered for
this procedure. However, they could have to be chosen appropriately because they
have a large effect on the quality of the found LOS. In our example a two step
algorithm is chosen that is able to tend locally towards the direction of the centre of
gravity of clustered black points. A detailed explanation is given in Marwan et al.
(2002a). With so determined LOS we are able to align the scale of the PS 2178-3 core
to that of PS 2180-2 (Fig. 13). ~

The determination of the depth-depth-function with the conventional method
of visual wiggle matching is based on the interactive and parallel searching for the
same structures in the different parameters of both data sets. If the adjustment does
not work in a section of the one parameter, one can use another parameter for this
section, which allows the multivariate adjustment of the data sets. The recognition
of the same structures in the data sets requires a degree of experience. However,
human eyes are usually better in the visual assessment of complex structures than
a computational algorithm. |

Our depth-depth-curve differs slightly from the curve which was gained by the
visual wiggle matching (Fig. 12). However, despite our rather simple algorithm
used to fit the non-parametric adjustment function to the LOS, we obtained a good
result of adjusted data series. If they are well adjusted, the correlation coefficient
between the parameters of the adjusted data and the reference data should not vary
so much. The correlation coefficients between the reference and adjusted data se-
ries is about 0.70- 0.80, where the correlation coefficients of the interactive rescaled
data varies from 0.71 - 0.87 (Tab. 1). The x2 measure of the correlation coefficients
emphasizes more variation for the wiggle matching than for the CRP rescaling. The
results obtained with the CRP rescaling can be further improved by a more suitable
algorithm for the search of the LOS.

The comparison of the CRP aligned geophysical measurements with the con-
ventional visual matching (wiggle matching) shows an acceptable reliability level
of the new method (Marwan et al,, 2002a). The advantage is the automatic, ob-
jective and multivariate alignment. Moreover, further attempts exist to align geo-
logical data automatically. They either use parametrical approaches (minimal cost
functions, Fourier series estimation of the mapping function and others; Martinson
etal,, 1982; Briiggemann, 1992) or they have to fit a large number of parameters and
apply trial-and-error algorithms (sequence slotting; Thompson and Clark, 1989).
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Table 1: Correlation coefficients p; (Wiggle matching) and p; (CRP matching) be-
tween adjusted data and reference data and their x? deviation. The correlation of
the interactive adjusted data varies more than the automatic adjusted data. The
data length is N = 170 (wiggle matching) and N = 250 (CRP matching). The dif-
ference between the both correlatlon coefficients p; and p; is significant at a 99 %
significance level, when the test measure 2 is greater than z0.01 = 2.576.

Parameter P1 o2 2
ARM 0.8667 0.7846 6.032
MDFsrym 08566 0.7902 4.791
Kie 0.7335 0.7826 2.661
karm/kir  0.8141 0.8049 0.614
PIA 0.7142 0.6995 0.675
INC 0.7627 0.7966 1.990
X 1414 491

ARM of Core PS 2178-3
after interactive adjustment
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ARM of Core PS 2178-3
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ARM of Core PS 2180-2
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Figure 13: The ARM data are exemplary shown after alignment by wiggle match-
ing (A) and by automatic alignment (B) using the LOS from Fig. 12. Plot (C) shows
the reference data. ‘
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Figure 14: The adjusted marine sediment parameters. The construction of the CRP
was done with the normalized parameters In this plots we show the parameters,
which are not normalized.
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Figure 15: CRP between the polarity data of the Olguita profile and the reference
data according to Cande and Kent (1995). In the polarity data the white colour
marks a polarity of the Earth’s magnetic field in the present, whereas the black
colour marks a reversal. Six potential LOS are marked with gray lines (A-F, corre-
sponding to the potential LOS given in Fig. 16).

5.3 Search for an Appropriate Sequence in a Geological Profile (Magne-
tostratigraphy) ' '

In the following application of CRP the possibility of finding an appropriate se-
quence in a given data series relating to a reference series (and vice versa, respec-
tively) is presented. For this task the LOS in the CRP must be found. Although we
present only applications in geology here, the methods based on CRPs can also be
applied to data from other scientific field. The search of sequences in reference data
based on CRPs has been also successfully applied in gene sequencing and speech
recognition (Marwan, 2003).

From a sediment profile (Olguita profile, Patagonia, Argentina; Warkus, 2002) a
measurement of the palaeo-polarity of the Earth’s magnetic field (along with other
measurements) is available. The starting point for any geological investigation of
such a profile is determining the time at which these sediments were deposited. By
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applying the magnetostratigraphic approach and a geomagnetic polarity reference
with known time scale, the polarity measurements can be used to determine a pos-
sible time scale for the profile. Cande and Kent (1995) provide such a geomagnetic
polarity reference, which covers the last 83 Myr. The Olguita profile contains seven
reversals. The polarity data consist of the values one, for the polarity direction as
today, and the values zero, for the inverse polarity. Unfortunately, this data series
is too short (only 16 measurements) for a credible analysis. Nevertheless, for our
purpose of demonstration we will enlarge this data by interpolation. The Olguita
profile is transformed to an equidistant scale of 300 data points and the reference
data is transformed to an equidistant scale of 1200 data points.

A CRP is created from these two data series by using an embedding dimension
m = 4, a delay of T = 6 and a neighbourhood criterion of FAN (30% recurrence
rate). Varying degrees of continuous lines between 21 and 16 Myr BP and between
12 and 8 Myr BP occur in the CRP, which can be interpreted as the desired LOS
(Fig. 15). We will analyse six of these possibilities to estimate the LOS. The search
for the potential LOS is conducted using the same algorithm described in Marwan
et al. (2002a). Moreover, we can evaluate the quality of these potential LOS by
introducing a quality factor that takes into consideration the amount of gaps N,
and black dots N, on this line '

— N.
" No+ N,

Q 100%. (26)

A larger Q is a better LOS; Q = 100% stands for an absolute continuous line.
Moreover, the obtained LOS can be interpreted as the sedimentation rate (Fig. 16).
Abrupt changes in the sedimentation rate are not expected, thus, the potential LOS
should not change abruptly. As an evaluator for this criterion we can use the aver-
aged second derivative with respect to the time (3?).

The potential LOS differs slightly in the Q factor, but more in the occurrence

“of abrupt changes in their slope (Fig. 16 and Tab. 2). The LOS in Fig. 16C has the

smallest (3?) and could be, therefore, a good LOS for the dating of the Olguita pro-

file. Regarding this result, the Olguita profile would have an age between 16.5 and

18.9 Myr and an age-depth-relation as it is represented by the possibility of a LOS

in Fig. 16C. Warkus’ investigation reveals the same result (Warkus, 2002), although
he also mentioned that the dating based on the polarity data is ambiguous.
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Figure 16: Potential LOS of the CRP presented in Fig. 15. They correspond to the
potential sedimentation rates of the Olguita profile and mark sequences in the po-
larity reference, which match with the Olguita profile. Due to this matching, the

Olguita profile can be dated.

Table 2: Possible ages of the Olguita profile, which are based on the found potentlal
LOS (Fig. 16) and characteristics of these potential LOS

Plot AgeMyr) N. No Q(%) (3%

A

B
C
D
E
F

194214 345 23 938
167-203 407 43 904
165-189 351 15 959
144-178 392 16 96.1
81-126 482 16 968
79-111 399 13 9658

5.5
12.5
5.0
20
- 23
18
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6 Conclusion

The extension of the concept of recurrence plots to a test for interrelations between
two different phase space trajectories leads to cross recurrence plots (CRPs). From
the point of view of a CRP, an RP can be considered as a special case of a CRP
for two identical processes. However, if these two processes \be’come progressively
different, typical structures of the RP, like the main diagonal (line of identity, LOI),
will dissolve. A quantification of these structures has been used in order to assess
the variation or similarity between the dynamics of both processes.

The CRP analysis provides another useful application. The orientation of the
_ line structures in the CRP is related to the time relation between the corresponding
segments of the phase space trajectories. In the case of two sufficiently similar
processes with different time dilatations, the CRP shows a bowed line of identity
which is called line of synchronization (LOS). This line corresponds to the transfer
function between the time scales of the considered time series. A nonparametrical
function fitted to LOS can be used in order to align the two processes to the same
time scale. ‘ ;

Considering two processes, where epochs of the second are partly contained in
the first, the CRP facilitates finding the location of these epochs in the first process.

Applications to real data from geology have revealed the applicability of the
methods based on CRPs. Applying CRPs we were able to investigate palaeo-
climate conditions, to align geophysical data from different boreholes to the same
time/ depth scale and to find possible time-scales of a geological profile by using a
reference data set.

A Matlab® toolbox for the application of recurrence plots as well as cross recur-
rence plots is available through the WorldWideWeb. An online and printable man-
ual with illustrative examples as well as an extensive bibliography of applications
of RPs and CRPs can also be found there. The current addressishttp://www.agnld.
uni-potsdam.de/“marwan/toolbox. “
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Errata
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page 107, paragraph and equations (5) and (6)

In a more general sense the line structures in an RP exhibit locally the time
relationship between the current trajectory segments. A line structure in an
RP of length I corresponds to the closeness of the segment f(T1(f)) to another
segment f(T»(t)), where Ty (t) and T,(t) are the local time scales (or transfor-
mations of an imaginary absolute time scale t) which preserve that f(T;(t)) ~
f(Ta(t)) for some time t = 1...1. Under some assumptions (e.g. piecewise
existence of an inverse of the transformation T'(t)) the local slope m(t) of a line
in an RP represents the local time derivative of the inverse second time scale
T, (t) applied to the first time scale T>(¢)

m(t) = 0, T, ' (Tu(t)). (5)

We will consider here an illustrative example. A further explanation of the
relationship between the slope of the lines and the trajectories is given in the
Subsec. 3.3. Let us consider a function f(T) = T(t) with a section of a mono-
tonical, linear increase Tj;, = t and another (hyperbolic) section which fol-
lows Ty, = —V/r* — 2 (Fig. 3A). Since the inverse of the hyperbolic section is

T@; = /1?2 — 12, the derivative
t
R /7’2 _ t2

corresponds to the derivative of a circle line with a radius r, a bowed line struc-
ture with the form of a circle occurs in the RP (Fig. 3C).

m =0, Ty, (Thyp(t)) = 6)

page 116, paragraph and equation (22)

... In this special case the slope m of the main line in the corresponding cross
recurrence plot represents the frequency ratio, and the distance between the
origin of the axes and the intersection of the LOS with the ordinate reveals the
phase difference. Considering the time transformation functions Ty = ¢ - t + «
and T, = 1 - t + 3 whithin the (Egs. 19) and the inverse T, 1— %, we get the
same result for the slope of the LOS by using the derivative (cf. Eq. 5)

¢

m=0,T, ! (Tx(t)) = " (22)





