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Abstract Irregular sampling is a common problem in palaeoclimate studies. We
propose a method that provides regularly sampled time series and at the same time
a difference filtering of the data. The differences between successive time instances
are derived by a transformation costs procedure. A subsequent recurrence analysis is
used to investigate regime transitions. This approach is applied on speleothem-based
palaeoclimate proxy data from the Indonesian–Australian monsoon region. We can
clearly identify Heinrich events in the palaeoclimate as characteristic changes in
dynamics.
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1 Introduction

In the last decades, palaeoclimate research has experienced an exciting progress
with ever-higher resolution and better age control high-resolution records, inno-
vative technologies and types of proxies, as well as new data series analysis
approaches, such as speleothem-based proxies, fluid inclusion analysis and laser
ablation techniques, and complex network-based data analysis. (Dennis et al., 2001;
Kennett et al., 2012; McDermott, 2001; McRobie et al., 2015; Rehfeld et al., 2013).
This progress helps greatly to increase our understanding of past climate variation
and the mechanisms behind the climate system, but also to assess future climate-
related vulnerability of our society. Of particular interest are critical transitions, such
as tipping points or regime shifts, because they can bring the climate system into
another mode of operation (Lenton et al., 2008; Scheffer et al., 2012). Identifying
tipping points from measurements is no simple task. Several approaches have been
proposed, such as testing for slowing down and increase of the autocorrelation
(Scheffer et al., 2009), reconstructing potentials of the dynamics by using the
modality of the data distribution (Livina et al., 2010), using a modified detrended
fluctuation analysis (DFA) (Livina and Lenton, 2007), or the concept of stochastic
resonance (Braun et al., 2011). While dynamical transitions are rather obvious when
they appear in the first two moments (i.e. in mean or variance), they can be hidden
when superimposed by signals of different time scales or by noise, issues frequently
observed in palaeoclimate time series. For such problems, the application of
methods from nonlinear time series analysis is a well-accepted perspective, e.g., by
using the fluctuation of similarity (FLUS) (Malik et al., 2012). Another promising
tool for the identification of subtle transitions is the framework of recurrence
plots (Marwan et al., 2007). Recurrence plots and their quantification consider the
evolution of neighbouring states in a phase space. Besides characterizing different
classes of dynamics or testing for synchronization and nonlinear interrelationships
and couplings of multiple systems, it allows to test for dynamical regime changes
with respect to different properties, such as changes in the geometry of the attractor,
in the predictability of states, or in the intermittency behaviour (Donner et al.,
2011; Eroglu et al., 2014; Marwan et al., 2007). The recurrence plot framework has
been successfully applied to investigate past transitions, e.g., in the Asian monsoon
system (Marwan et al., 2013) and in the East African climate (Donges et al., 2011),
and to uncover a seesaw effect within the East Asian and Indonesian–Australian
summer monsoon system (Eroglu et al., 2016).

However, most palaeoclimate proxy records (independent of the actual archive)
come with the challenge of irregular sampling. While sampling in the field or
in the lab is often done on a regular depth/length axis, varying sedimentation or
growth rates result in variable time–depth relationships and in time series with
non-equidistant sampling points in the time-domain (Breitenbach et al., 2012). The
most common procedure is data preprocessing using linear interpolation. However,
interpolation can lead to a positive bias in autocorrelation estimation (and, thus,
an overestimation of the persistence time) and a negative bias in cross correlation
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analysis (Rehfeld et al., 2011). Therefore, several approaches have been suggested
for analysing irregularly sampled time series (Ozken et al., 2015; Rehfeld and
Kurths, 2014; Rehfeld et al., 2011; Scargle, 1982; Stoica and Sandgren, 2006).

In the following we will focus on a recently proposed technique that is based on
a measure that compares spike trains by quantifying the effort it needs to transform
one spike train to the other one (Hirata and Aihara, 2009; Victor and Purpura, 1997).
This measure corresponds to a modified difference filter (a common practice to
remove low-frequency variation and trends), where we determine the differences
by a criterion of how close subsequent short segments of an unevenly sampled
time series are by determining the cost needed to transform one segment into
the following one (Ozken et al., 2015). Such comparison of successive segments
has some similarity with the FLUS method (Malik et al., 2012), but instead uses
the transformation cost as the similarity measure, and is thus directly applicable
on irregularly sampled time series. We illustrate this approach by analysing a
speleothem-based palaeoclimate record with respect to regime transitions.

2 Methods

2.1 Transformation Costs Time Series

Cumulative trends or low-frequency variations are common in palaeoclimate proxy
records, but are often undesirable and can cause difficulties in the analysis. One
frequently used solution is the difference filter, where the values of the proxy record
are replaced by the differences of subsequent values, y.t ��t=2/ D x.t/�x.t ��t/,
with �t the sampling time of a regularly sampled time series. Another, even more
challenging problem is the irregular sampling frequently occurring in palaeoclimate
proxy records. The transformation costs time series (TACTS) approach tries to
overcome both problems by transforming irregularly sampled time series to regular
ones and simultaneously using the transformation cost as the difference value. This
procedure induces less loss of information compared to traditional interpolation
procedures.

The core of the TACTS method is to measure the shortest distance (transforma-
tion cost) between two data segments by using two different processes: (1) shifting
points in time which causes changes in the amplitude for marked data and (2)
adding–deleting operations. The process starts with dividing the data into small
and equally sized segments. These segments can have different number of points,
because the points are not equally sampled. The transformation costs between all
sequence windows are then calculated by

p.Sa; Sb/ D

shifting‚ …„ ƒX
.˛;ˇ/2C

f�0jta.˛/ � tb.ˇ/j C �kjLa.˛/ � Lb.ˇ/jg C�S.jIj C jJj � 2jCj/„ ƒ‚ …
adding=deleting

:

(1)
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The equation states two distinct operations for two essential processes. If the
operation is shifting, then the first part of the equation involves, otherwise the
adding–deleting operation involves as the second part. In the first part, the sum-
mation is over the pairs .˛; ˇ/ 2 C, where C is the set of points that will be shifted
in time and changed in amplitude. ˛ and ˇ are the ˛th event in the first segment (Sa)
and the ˇth event in the second segment (Sb). The amplitude of points which are ˛th
and ˇth elements of Sa and Sb are denoted by La.˛/ and Lb.ˇ/, respectively. The
data-adapted constants �0 and �k are given by

�0 D
M

total time
(2a)

�k D
M � 1PM�1

i jxi � xiC1j
: (2b)

where M is the total number of events, and xi is the amplitude of ith element in the
time series.

In the second part of Eq. (1), I and J are sets of indices of the events in Sa and Sb,
respectively. The parameter �S is the cost of deleting or adding processes and is used
as an optimization parameter. The selection of optimum �S is the following: first we
calculate total cost time series for the entire range of �S 2 Œ0; 4� with step size
��S D 0:01. Then we examine frequency distributions for each cost time series.
Since each cost value is independent of the others, we expect to have a normal
distributed histogram and choose the optimal �S according to the best fit on normal
distribution.

Equation (1) is a metric distance function, satisfying the following three condi-
tions:

• p.Sa; Sb/ � 0 (positive)
• p.Sa; Sb/ D p.Sb; Sa/ (symmetric)
• p.Sa; Sc/ � p.Sa; Sb/C p.Sb; Sc/ (triangle inequality).

Now we illustrate the method for two consecutive segments. Irregularly sampled
data is equally spaced into small windows which are given as state a (Sa D fa˛g4˛D1)
and state b (Sb D fbˇg3ˇD1). The costs computed between the states and all details
are given in Fig. 1 step by step.

Note that the decision of which operation process to minimize costs is important.
The transformation by shifting costs �0jta.˛/ � tb.ˇ/j C �1jLa.1/ � Lb.1/j and
deleting and adding a point costs 2�S. Here we chose the least cost operation
to either shift or delete/add. Therefore, in the algorithm, we consider all these
possibilities and chose the operation carefully.

The final appearance of the cost time series is as follows: assume that we have an
irregularly sampled time series fuig

N
iD1, where N is the number of points. The data

is divided into a set of W-sized n segments and each segment has a minimum of a
certain number of points, therefore,
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TACTS D fp.Wi;Wi C 1/gn�1
iD1

for all sequence windows. This leads to an equally sampled and detrended time
series. The resulting cost values series can be considered as the difference filtered
time series with a regularly sampled time axis and can be further analysed with
standard or advanced time series analysis tools, e.g., in order to detect regime
shifts (Fig. 1).

{ {state a

state b

time (t)

x(
t)

×

state a

state b

step 1

step 2

step 3

step 4

step 5

Initial state
cost(0) = 0

Shifting
cost(1) = λ0|ta(4)-tb(3)|+λk|La(4)-Lb(3)|

Shifting
cost(2) = cost(1) +  λ0|ta(3)-tb(2)|+λk|La(3)-Lb(2)|

Deleting
cost(3) = cost(2) +  λs

Deleting
cost(4) = cost(3) +  λs

Final state
total cost = cost(5)

Adding
cost(5) = cost(4) +  λs

a1
a2

a3

a4

b1

b2 b3

×

Fig. 1 Illustration of the transformation cost time series method, which finds the minimum
transformation cost between two data segments such as state a and state b in the top panel. In five
steps state a is transformed into state b. At steps 1 and 2, we apply shifting a point in time and, as
a consequence of shifting, changing the amplitude of the point. These operations cost regarding to
first part of Eq. (1). Steps 3 and 4 are deleting and step 5 is adding a point; each of these operations
costs a constant �s. The costs are written next to the related processes according to Eq. (1)
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2.2 Recurrence Analysis

Recurrence is a ubiquitous property of many dynamical systems. Slight changes in
observed recurrence behaviour allow to infer changes in the dynamics (Marwan,
2011; Marwan et al., 2007). In order to investigate recurrence properties, recurrence
plots and recurrence quantification analysis have been developed (Marwan, 2008;
Marwan et al., 2007). A recurrence plot is the graphical representation of those
times j at which a system recurs to a previous state xi:

Ri;j D *." � kxi � xjk/; i; j D 1; : : : ;N (3)

with * the Heaviside function, " a recurrence threshold, kxi � xjk the Euclidean
distance between two states xi and xj in the phase space, and N the number of
observations (or time series length). Such a recurrence plot consists of typical large-
scale and small-scale features that can be used to interpret the dynamics visually.
Important features are diagonal lines: similar evolving epochs of the phase space
trajectory cause diagonal structures parallel to the main diagonal in the recurrence
plot. The length l of such diagonal line structures of at least length lmin depends
on the dynamics of the system (periodic, chaotic, stochastic) (Fig. 2) and can be
directly related with dynamically invariant properties, like K2 entropy (Marwan
et al., 2007). Therefore, recurrence quantification analysis (RQA) uses the features

Fig. 2 Example of a
recurrence plot for changing
dynamics from chaotic via
periodic to stochastic
dynamics, each lasting 50
time steps. In the periodic
region, continuous long
diagonal lines are observed,
in the chaotic region, shorter
diagonals and single points
appear, and in the stochastic
part, we find almost only
single points

periodic

stochasticchaotic

Time

T
im

e
x(

t)
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within the recurrence plots for defining measures of complexity. For example, the
distribution P.l/ of line lengths l is used by several measures of complexity in
order to characterize the system’s dynamics in terms of predictability/determinism
or laminarity. The measure determinism DET is the fraction of recurrence points
(i.e. Ri;j D 1) that form diagonal lines and can be computed by

DET D

PN
lmin

l � P.l/
PN

i;jD1 Ri;j

: (4)

In order to study the time-dependent behaviour of a system or time series, RQA
measures can be computed within a moving window, applied on the time series. The
window has size w and is moved with a step size s over the data in such a way that
succeeding windows overlap with w�s. This technique can detect chaos-period and
also more subtle chaos–chaos transitions (Marwan et al., 2007), or different kinds
of transitions between strange non-chaotic behaviour and period or chaos (Ngamga
et al., 2007). Moreover, the reliability of several RQA measures was investigated by
their scaling properties with respect to critical points in the dynamics (Afsar et al.,
2015).

3 Palaeoclimate Regime Transition

To illustrate the power of the techniques we advocate here, we choose as illustrating
example a speleothem ı18O record from the Secret Cave at Gunung Mulu in Borneo/
Indonesia (Carolin et al., 2013). This particular record has been interpreted as
a time series of the dynamics of the East Asian–Indonesian–northwest Australia
monsoon. This monsoon regime provides a circulation regime that strongly links
both hemispheres and serves as a major heat source, playing a significant role at
planetary scale (Chang et al., 2006; McBride, 1987). Central to its geography is the
Maritime Continent which provides a core region of monsoon activity (Chang et al.,
2004; Ramage, 1968). A transect in regional precipitation patterns from the northern
part of the Maritime Continent to the northern margin of Australia coincides with a
change from the dominance of the boreal summer monsoon to the austral summer
monsoon (Chang et al., 2004, 2006; Robertson et al., 2011). The transect captures
key palaeoproxy monsoon records and has the potential to provide details of the
function of the monsoon regime over Quaternary time scales (Ayliffe et al., 2013;
Carolin et al., 2013; Denniston et al., 2013; Partin et al., 2007). Imbedded in some
of these records are short-lived millennial and centennial scale events, and, more
general, relatively short-lived phases of climate instability.

While the full proxy record is around 100,000 years, we only analyse the last
62,000 years of the ı18O record (Fig. 3a). Before the 62,000 years many gaps appear
and the data become too sparse to give any useful information about. The record
used for the analysis contains about 1200 data points. Time intervals between
measurements are irregular and follow a Gamma distribution with a skewness of
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(b)

(a)

D
E
T

δ1
8
O

Fig. 3 (a) ı18O record of Secrete Cave, Borneo. (b) RQA-determinism DET , Eq. (4), time series
resulting from the transformation cost time series. The light orange band of the DET indicates the
90% confidence interval. The vertical lines H1–H6 give the six Heinrich events as well as H0, the
Younger-Dryas

4.9. In our analysis we use a window length of �210 years to calculate the TACTS.
While the parameters �0;k are determined by Eq. (2), we optimize �S D 1:07.

The next step is to analyse the regularly sampled TACTS with RQA using a
sliding window method. We consider 30 data points (or 6200 years) of the TACTS
as our window size. Given the average number of points in the proxy record, 30 data
points of the TACTS correspond to approximately 100–140 points in the original
proxy. Using an overlap of 90% of consecutive windows, we determine the DET
[Eq. (4)] for each window with length of 6200 years (Fig. 3b). The recurrence
threshold is selected to be � D 20% of the standard deviation of the data in the
particular window. The advantage of this � selection scheme is that it allows us
to analyse proxy records with inherent non-stationarity. In addition, we determine
the statistical significance of DET using the bootstrapping method as outlined
in Marwan et al. (2013) (light red band in Fig. 3b).

The determinism DET indicates several distinct regime changes in the time series
from less to more predictable (and vice versa) dynamics (Fig. 3b). Most minima of
DET , signified as periods of decreased predictability, coincide with the so-called
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Heinrich events (H1 to H6). Heinrich events are identified in the North Atlantic
sediments as layers of ice-rafted debris, associated with the coldest phase just before
the Dansgaard–Oeschger events, and result from episodic discharge of icebergs in
the Hudson Bay region (Clement and Peterson, 2008; McNeall et al., 2011).

Heinrich events are well represented in the Chinese speleothem and loess record
as periods of weakened summer monsoon and intensified winter monsoon (An,
2014). In their interactions with the Siberian Mongolian High of the East Asian
Winter Monsoon they can be expected to trigger cold surges which leave their
imprint in the proxy palaeoclimate record (Wyrwoll et al., 2016). During the
East-Asian Winter Monsoon (EAWM), the Siberian High with its central pressure
reaching in excess of 1035 hPa dominates much of the Eurasian continent. Strong
northwesterly flows occur at its eastern margins, where one branch of the flow
separates and first is directed eastward into the subtropical western Pacific and then
tends southward in the direction of the South China Sea. These cold air ‘excursions’,
also described as ‘cold surges’, are channeled by the trough southwards and are
a characteristic feature of the EAWM (Lau and Chang, 1987). Their path is in
part related to relief controls of the Tibetan Plateau. Cold surges transport absolute
vorticity and water vapour up-stream of the South China Sea to the Equator (Koseki
et al., 2013) and lead to the flare-up of convective activity over the Maritime
Continent (Chan and Li, 2004). In the Borneo region, cold surges enhance surface
cyclonic circulation triggering the Borneo Vortex, which leads to deep convection
giving rise to heavy rainfall events (Koseki et al., 2013; Ooi et al., 2011).

It is noteworthy that in raw ı18O record from the Secret Cave the Heinrich events
are almost indistinguishable from other variations in the time series. In the original
work by Carolin et al., H1 to H6 were detected by visual comparison of the record to
others (e.g. NGRIP), but the Younger Dryas (coinciding with the H0 event) was not
detected (Carolin et al., 2013). However, our method clearly extracts these events,
including the previously not detected Younger Dryas, and highlights the hidden
impact of such distal forcing. Moreover, it allows an objective, quantitative analysis,
while Carolin et al. rely on the subjective method of matching extreme proxy values
with specific dates. At present, the Borneo Vortex leaves a strong climate signal on
the regional precipitation patterns (Ooi et al., 2011). We propose that the prominence
of the ‘instability climate phases’, coincident with the timing of Heinrich events
in the Borneo record, is an expression of regional controls that are linked to the
operation of the Borneo Vortex. The claim draws attention to the need to give more
consideration to specific regional controls in explaining the palaeoclimate proxy
record rather than simply appeal to global or hemispheric controls.

4 Conclusion

We have used the Secret Cave ı18O record from Borneo to illustrate the usefulness
of the novel TACTS method for analysing palaeoclimate records. TACTS can
transform irregularly sampled time series into a regularly sampled cost time series.
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This is an important step, since most modern time series analysis methods—like the
RQA used here—require a regular sampled time series as an input. Furthermore,
the TACTS method is less biased than interpolation methods frequently used to
transform irregularly sampled into regularly sampled data sets. This transformation
only requires three parameters. The two parameters �0;k are given by the average
amplitude and frequency of the record [see Eq. (2)], while �S needs to be optimized.
Being a difference filter, the TACTS method lends itself naturally for palaeoclimate
investigations, where proxy records often have some non-stationarity and usually
need to be detrended. As we have shown the detrending is build into the TACTS
method, therefore we do not need this additional step in our time series analysis.

Applying the TACTS and RQA approach on palaeoclimate data from the Secret
Cave speleothem, we were able to identify regime changes in the monsoon activity
during the last 62,000 years. We report on several distinct regime changes coinciding
with the Heinrich events H1 to H6 and therefore add quantitative evidence of these
impacts to previous, more qualitative studies (Carolin et al., 2013). Moreover, our
analysis clearly unveils that also the Younger Dryas had an impact on the monsoon
activity over the Maritime Continent.

Given that irregular sampling of proxy records is quite common in Earth science,
the TACTS method has large potential in quantitative Earth science without prior
modification or preprocessing the data.
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