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a b s t r a c t

In the recent article ‘‘Stochastic analysis of recurrence plots with applications to the detection of
deterministic signals’’ (Physica D 237 (2008) 619–629), Rohde et al. stated that the performance of RQA
in order to detect deterministic signals would be below traditional and well-known detectors. However,
we have concerns about such a general statement. Based on our own studies we cannot confirm their
conclusions. Our findings suggest that the measures of complexity provided by RQA are useful detectors
outperforming well-known traditional detectors, in particular for the detection of signals of complex
systems, with phase differences or signals modified due to the measurement process.
Nevertheless, we also clearly assert that an uncritical application of RQA may lead to wrong

conclusions.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, Rohde et al. published an interesting article on sig-
nal detection and stochastic analysis [1]. Their article consists of
mainly two parts. In the first part, the authors present a relation-
ship between the distance matrix [2] and the variance of a time
series (or signal). This relationship is important and has already
motivated recent work on the application of the Wiener–Khinchin
theoremon recurrenceplots [3]. In the secondpart, Rohde et al. dis-
cuss and compare differentmethods for the detection of determin-
istic signals in noise, as recurrence based measures and traditional
signal detectors. Since one of their final conclusions is that the per-
formance of the recurrence quantification analysis (RQA) is weak,
we tried to reproduce their results, but found several problems in
the presented article (e.g. 2π is missing in Eq. (12), there is no nor-
malisation of the data, or explanation on the calculation of the ROC
has been left out). Moreover, the presented results are not derived
from general cases. Therefore, the conclusion by Rohde et al. that
the RQA would not perform well, cannot be generalised. However,
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the statements in the article connotes that this conclusion would
be general. Although we find the presented comparison important
and agree with it in general, we do not agree with such a general
conclusion. Therefore, we comment on some points we think that
are important to be discussed further. Our intention is not to re-
but the findings of Rohde et al., but to justify and relativise their
conclusions.
Recurrence plots (RP) and techniques related toRPs have become

popular in the last decade. In order to apply thesemethods reliably,
it is important to understand how the proposed measures of
recurrence quantification analysis (RQA) are calculated and what
they stand for. RQA provides measures of complexity quantifying
structures in a RP [2]. RQA and RPs were introduced to study
complex systems. For linear systems, traditional linear measures
may be better in some cases.
A RP is a useful tool to visualise recurrences of phase space

trajectories. In the most commonly used method, the RP is derived
directly from the distance matrix D = Di,j, i, j = 1, . . . ,N (N is the
length of the data series or trajectory):

Di,j = ‖Exi − Exj‖ (1)
by applying a threshold ε
Ri,j = Θ(ε − Di,j), (2)
whereΘ is the Heaviside function. Sometimeswe find the appella-
tion recurrence plot also referring to the distancematrix, Eq. (1), (as
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in [1]), whichmay cause confusion. The distancematrix should not
be denoted as recurrence plot (or unthresholded recurrence plot), be-
cause it simply does not show recurrences, but only distances be-
tween all pairs of combinations of the phase space vectors Exi (the
recurrence quantitative analysis (RQA) as well as the calculation of
the dynamical invariants, such as C2 orK2, is based on the binary re-
currencematrix). However,D is useful for the study of correlations
within the data.We should note that the idea of a distancematrix is
not new and can be found using different notations (e.g. similarity
plot and dot plot) in several disciplines [4–7].
In the following we use the Euclidean norm in Eq. (1).
Although developed as quantifiers of structures in a RP (for

interpretation of the line structures, cf. [8]), the RQAmeasures have
a certain meaning in the sense of recurrences. For example, the
density of points in a RP of size N × N ,

RR =
1
N2

∑
i,j

Θ(ε − ‖Exi − Exj‖), (3)

called correlation sum, recurrence rate or percentage recurrences [2,
9], can be interpreted as the probability that any state of the system
will recur in the future. In addition, the fraction of recurrence
points forming diagonal line structures

DET =

∑
l≥lmin

l P(l)∑
l
l P(l)

, (4)

called determinism [2], can be interpreted as the probability that
two closely evolving segments of the phase space trajectory will
remain close for the next time step (P(l) is the histogram of
lengths of the diagonal line structures and lmin is the minimal
length of a diagonal line necessary to be considered as a line; in
the present work we use lmin = 2). The notation determinism
was not chosen to explain determinism in a mathematical sense,
but to emphasise the observation that RPs of stochastic processes
usually reveal fewer diagonal lines, whereas RPs of deterministic
processes consist of many longer diagonal line structures. The
occurrence of longer diagonal line structures is more related to
the auto-correlationwithin the data (an auto-correlated stochastic
process, as an iterated auto-regressive model (AR) does, can also
have longer diagonal lines). Therefore, from a high value of this
measure we cannot conclude that the process is deterministic.
Diagonal structures in a RP appear when two segments of the

phase space trajectory run parallel within an ε-tube for some time,
where ε is theminimal distancewhich is used to define recurrence.
The length of a diagonal line corresponds to the time of such a
parallel run. It is obvious that the states of stochastic processes
(with zero or at least less auto-correlation) will not run closely
for a longer time. Hence we will not find many or longer diagonal
lines in a RP of such systems. Vertical recurrence structures appear
if the state of the system changes very slowly, as is typical for
intermittency. The vertical distance between points in a RP are
related to recurrence times.
Further RQA measures quantify such diagonal line structures,

and other measures quantify vertical structures in the RP (for
definitions and meanings cf. [2,10]). In this present study we will
focus only on the two measures RR and DET .
The measures of complexity provided by RQA can be used to

distinguish different types of dynamical behaviour of systems. For
example, they can be used to detect different types of transitions,
such as those between period–chaos, chaos–chaos or strange non-
chaotic behaviour [10–12]. The RQA can also distinguish between
certain stochastic and deterministic processes [13,14].
Analysing several examples in noisy environments (linear ad-

ditive noise) with a rather small signal-to-noise ratio (SNR), Rohde
et al. claimed that ‘‘detectors based on certain statistics derived

from recurrence plots are sub-optimal when compared to well-
known detectors based on the likelihood ratio’’ and ‘‘their per-
formance in classical signal detection problems does not compare
well with traditional approaches’’ [1]. In our opinion this is a very
strong statement. From our investigationswe are able to show that
the conclusions of Rohde et al. may hold for certain linear systems
and under certain assumptions. In the following we will show that
considering more general, complex and especially nonlinear pro-
cesses, RP based measures are powerful tools for the detection of
deterministic signals and outperform classical approaches.

2. Detection of deterministic signals in noise

Rohde et al. have compared the abilities of several RQA
measures and traditional likelihood ratios in order to detect
deterministic signals in an incoming signal (measurement). The
problem can be formulated by considering the following two
hypothesis:

H0: signal absent, x(t) = ξ(t)
H1: signal present, x(t) = s(t)+ ξ(t)

where ξ is noise and s is a deterministic signal [1]. It is
assumed that in the observed signal the original signal s is not
changed (it comes in with linear additive noise). Based on a
comparison of receiver–operator characteristics (ROC), they found
that well-known detectors based on the likelihood ratio would
outperform the measures of complexity derived by RQA. The idea
for discriminating H1 from H0 is that by applying a threshold η on
a certain discriminant measure λ; the test λ ≥ η would give us a
decision in favour of hypothesis H1.
The proposed discriminant in [1] was defined as the average

over the entire squared distance matrix

λ =
1
N2

∑
i,j

D2i,j, (5)

which is related to the power detector.

2.1. Detection of unknown signals

For this study Rohde et al. [1] used a harmonic random process

s(t) = cos(20t + φ) (6)

with a random phase φ (white uniformly distributed noise in the
interval [−π, π ]) and a sampling interval of∆t = 1.
The authors used an embedding procedure to reconstruct the

phase space trajectory using an embedding dimension of m = 4
and a delay of τ = 12, while for the RP they took a threshold
of ε = 1.5. In order to calculate the ROC, the authors used
1000 realisations of a signal corresponding to H0 and of a signal
corresponding toH1 (private communication with G.K. Rohde; this
detail was not provided in [1]). Assuming a normal distribution for
the detectionmeasures, the resulting distributions of themeasures
were fitted by such a normal distribution, which is then used
to derive the ROC. However, we found that, in general, normal
distributions for the measures cannot be assumed, in particular
for the average of the squared distance plot λ (Fig. 1). Thus, the
ROC based on such a wrong assumption is biased, in particular
for low embedding dimension and delay. Therefore, we used the
empirically found distributions of the measures to derive the ROC.
In the calculation of the RP and the squared distance matrix,

in [1] the data were not normalised. However, the normalisation is
a crucial point. Adding noise to a signal, the variance of the noise
corrupted signal can be different from the noise alone. Therefore,
we can simply distinguish the signal from the noise using their
variances. We would not need any other detector, neither the
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Fig. 1. Distributions of the measures (A) λ, (B) RR and (C) DET for 10,000 realisations of white Gaussian noise (m = 2, τ = 2, ε = 0.5). Fits of corresponding Gaussian
distributions are shown (in gray).
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Fig. 2. ROC for themeasuresλ, RR andDET for the detection of a deterministic signal fromwhite Gaussian noise. The signal used here is a harmonic signal s(t) = cos(20t+φ),
using a sampling interval of∆t = 0.01, data length N = 1, 000 and 10,000 realisations (the same result can be achieved using∆t = 1). The SNR is (A) 0.1 and (B) 0.5; the
embedding parameters arem = 2, τ = 15 and the RP threshold ε = 1.

power detector, nor the RQAmeasures (and the variancemay even
outperform them). However, in practice there would not be such
a link between the variances and the signals, and we would not
know which signal is just noise and which one contains a signal.
Therefore, for unknown signals it would be most likely that they
will be normalised to some equal statistics. Here wewill normalise
the signals to the same standard deviation before analysis and
apply the same recurrence threshold ε.
By applying normalisation, we are not able to detect a

deterministic signal for a SNR of 0.1 with any of the discussed
measures (Fig. 2A). SNR = 0.1 is indeed a rather high amount of
noise and a big challenge for every method of signal detection (at
least without prior knowledge about the signal).
Considering less noise, e.g. SNR = 0.5, we find that at least the

RQA measure DET is able to detect the deterministic signal and
even outperforms the detector λ (Fig. 2B; details of this analysis
are added to the figure’s caption). We have found similar results
in favour of the RQA measure for the chirp signal and the Duffing
system as used in [1]. The reason is that the RPs of such systems
consist mainly of diagonal lines, which will remain as a significant
amount if the signal is corrupted by some additional noise (Fig. 3B).
Therefore, the values of RQA measures quantifying diagonal line
structures, as DET , are high. In contrast, the RP of noise consists
mainly of single recurrence points, causing very low values in the
RQAmeasures quantifying diagonal line structures. For higher SNR
(SNR > 1), the performance of themeasure RR becomes better and
RR is also able to detect the signal.
The authors of [1] also tested measures based on the vertical

line structures in a RP (e.g., laminarity). Vertical line structures are
a sign of laminar phases in the analysed system. Due to a lack
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Fig. 3. Recurrence plot of the noise corrupted harmonic signal as used in Fig. 2
(SNR = 2). The embedding parameters are m = 2, τ = 8 and the RP threshold
ε = 1.

of laminar phases in the tested model, it is no surprise that such
measures are not able to detect anything in this model.

2.2. Detection of known signals

In case the signal s is known, Rohde et al. proposed the
application of a correlation detector and a cross recurrence plot
(CRP) [13,15]. Themeasured signal is compared against the known
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Fig. 4. (A) ROCs for the correlation receiver, the measure λ and the RQA measures RR and DET derived from a CRP for the detection of a noise corrupted signal from noise
using a probe signal (SNR = 0.5). The incoming signal x consists of the original signal s plus noise ξ . (B) ROCs for the correlation receiver, themeasure λ and the RQAmeasure
RR derived from a JRP (SNR = 0.3). Here the signal s exists as a transformation of the measured signal x (x = s2+ ξ ). In both cases the signal is a stochastic harmonic process
s(t) = cos(20t + φ)with random phases φ, using a sampling interval of∆t = 0.01, data length N = 1000 and 10,000 realisations. The embedding parameters arem = 2,
τ = 15 and the RP threshold ε = 1 (for JRP, ε is chosen such that the RR of the RP is 0.1).

signal by the CRP. Rohde et al. compared the λ detector, Eq. (5),
with the correlation detector. But they have not applied RQA
measures (like RR) on such a CRP, as Zbilut et al. did [13]. Therefore,
we argue that the statement that ‘‘the performance of the CRP
detector proposed by Zbilut and colleagues [13] falls significantly
below that of the traditional correlation receiver’’ [1] is actually not
justified by the presented results.
For the signal and the probe, the authors used a cosine wave

without phase randomisation. For this special case, the correlation
receiver detector works very well, even for very low SNR as used
by Rohde et al. (SNR = 0.01). For this low SNR, we have found that
the CRP based RQA is indeed not able to detect the deterministic
signals. However, it can detect deterministic signals for higher SNR.
But using a stochastic harmonic process, Eq. (6), i.e. considering

phase randomisation, the correlation receiver also fails (even for
high SNR), because of the random phase mismatch between the
signal and the probe. In contrast, the CRP based RQA is then able
to detect the deterministic signal where the well-known detector
fails (Fig. 4A).
To understand the reason why the CRP works where the

correlation receiver fails let us assume that we have two identical
signals Ex = Ey. The corresponding CRP would be the same as
the RP of one of those signals. We focus on the main diagonal
line in the RP, which is also known as line of identity (LOI) [16].
Now we add small distortions to one of these signals, say a small
amount of additive noise. The LOI is now interrupted (because
we do not have identical states anymore; this line is now called
line of synchronisation (LOS) [16]). The same happens to other
diagonal line structures in the CRP. For two different systems, such
diagonal lines correspond to those times, when the states of the
two systems are similar and experience a similar evolution [2]. If
the two systems are rather similar but have a difference in their
phase, then simply the LOS departs from the main diagonal [2,16].
The lengths of the diagonal lines remain unchanged. Therefore, the
RQA of the CRP would detect the deterministic signal even if there
is a phase difference between signal and probe.
It is very important to emphasise that the correlation receiver

detector works only well for linear problems. If we generalise the
problem by allowing some functional change of the signal due to
observation, i.e. by modifying the alternative hypothesis to

H1: signal present, x(t) = f (s(t))+ ξ(t),

the correlation receiver will fail (even for high SNR and no phase
difference between signal and probe; Fig. 4B).
Instead of using a CRP, we suggest the calculation of a joint

recurrence plot (JRP) for the detection of known signals [2,17].

The difference between these bi-variate methods is that a CRP
tests for simultaneously occurring similar states, whereas a JRP
tests for simultaneously occurring recurrences of states [2]. This
is qualitatively different. The advantage of the JRP is that it is not
as sensitive to the strong change of the amplitude of a state due to
the noise as a CRP would be.
A JRP is the Hadamard product of the RPs of both systems. For

simplicity, the recurrence thresholds for the two RPs should be
chosen in such a way that the RPs contain the same number of
recurrence points (i.e. RR should be equal). If both systems have the
same recurrence structure, their JRP equals their RPs. Considering
an increasing difference in their recurrence structures, the JRP loses
more and more points (RR decreases). Therefore, the recurrence
rate RR of the JRP (relative to the RR of the original RPs) can be used
to compare two systems regarding their coinciding recurrence
structure.
The measure RR derived from the JRP is able detect a

deterministic signal using a probe signal, even if the signal was
modified during the measurement process, as simulated by the
applied function f . For example, in the case of f (s) = s2 and
SNR = 0.3, the correlation receiver is not able to detect the signal,
whereas the RR derived from the JRP detects it clearly (Fig. 4B).

3. Conclusion

We conclude that the RQA can indeed be a powerful tool for
the detection of deterministic signals and, hence, confirm previous
studies [13,14,18,19]. However, a large amount of noise (as often
occurs in real data, e.g. from EEG analysis, cardiology or geology)
reduces the ability to detect deterministic signals of each method.
The advantage of the RQA based approach is its ability to detect
deterministic signals in the case of phase differences and nonlinear
transformations of the input signal.
Finally, we should clearly state that all applications of RQA

in order to detect determinism are pure heuristic approaches.
High values of the RQA measure determinism do not imply a
deterministic system in an exact mathematical sense. Using RQA
we cannot conclude that a system is deterministic or not, but we
can distinguish between systems of certain recurrence behaviour
which may be characteristic for typical processes, such as white
noise, correlated noise, chaotic maps, (quasi-)periodic processes
etc. (in fact, using the discussed RQA measures and even the λ
measure, we are able to distinguish an AR process fromwhite noise
—note that anARprocess is not a deterministic process).Moreover,
the application of measures based on recurrence line structures
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needs justification in terms of the purpose of the intended analysis.
For example, measures quantifying vertical recurrence structures
are not appropriate if we are not interested in the detection
of laminar phases. Therefore, it is important to understand the
idea behind the measures of complexity provided by RQA before
uncritical application.
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