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Abstract—We describe and apply a novel concept for
inferring coupling directions between dynamical systems
based on geometric properties in phase space reconstructed
from time series. The approach combines the recently in-
troduced techniques for (1) studying interacting networks
and (2) construction of complex networks from time se-
ries by their recurrence structure: we extend the approach
of cross-recurrence between two systems towards an inter-
system recurrence network and apply measures for study-
ing interacting networks on it. These measures allow us to
examine the emergence of typical geometric signatures in
the driven relative to those of the driving system and vice
versa, and, therefore, reveal signs of coupling directions.
We demonstrate this concept by investigating the coupling
between parts of the Asian monsoon system as seen from a
palaeo-climate perspective.

1. Introduction

The study of causal dependencies is one of the most im-
portant fields in complex systems theory. Available ap-
proaches range from using linear models [1], information
based methods [2], synchronisation [3], to recurrence based
approaches [4], to name a few. Here we propose a novel ap-
proach investigating the structures in a shared phase space
of interacting dynamical systems by means of intersystem
recurrence networks [5].

2. Recurrence Plots

Recurrence plots can been used as an approach for
analysing time series from dynamical systems by means
of graph-theoretical concepts [6–8]. It has been shown that
their structural properties are closely related to the geom-
etry of the underlying attractor and, hence, the resulting
system’s dynamics. A recurrence plot renders close states
in a phase space, which represents the phase space dynam-
ics and can be constructed from a measured time series if
the system variables are not available [9]:

Ri j(ε) = Θ(ε − d(xi, x j)), (1)

where d(·, ·) measures some distance (e.g., according to the
Euclidean or maximum norm) in phase space. The visuali-
sation of this symmetric matrix is the recurrence plot, and
the emergence of line structures in these recurrence plots

has been intensively utilised for characterising the dynam-
ical properties of the underlying time series by estimates
of dynamical invariants and novel measures of complexity
(recurrence quantification analysis, RQA) [9, 10].

For a complex network analysis the recurrence plot of a
time series can be re-interpreted as the connectivity pattern
of an associated complex network represented by an undi-
rected simple graph [7]. Specifically, given the definition
in Eq. (1) based on ε-recurrences, we can formally write
Ai j(ε) = Ri j(ε) − δi j (where δi j is Kronecker’s delta) to ob-
tain the adjacency matrix of the corresponding ε-recurrence
network (RN). The properties of such networks have been
widely studied [8, 11–13], and their practical use as an ex-
ploratory tool of time series analysis has been demonstrated
[7, 14].

Among others, one important measure of complexity de-
rived from a recurrence network is the clustering coefficient
[13, 15]

Cv =
2

kv(kv − 1)
N∆

v , (2)

where kv is the degree centrality (i.e., the number of neigh-
bors of v, which coincides with the local recurrence rate
RRv), and N∆

v is the total number of closed triangular sub-
graphs including v, which is normalized by the maximum
possible value kv(kv−1)/2. Cv corresponds to the probabil-
ity that two randomly chosen neighbors of v are also neigh-
bors. From the viewpoint of recurrences in phase space, Cv

is related to the effective dimensionality of the set of obser-
vations in the ε-neighborhood of a state v [12]. It is a pow-
erful measure for the classification of periodic and chaotic
behavior in parameter space and, hence, for the identifica-
tion of complex periodic windows [13].

3. Intersystem recurrence networks

Recurrence plots have been extended to cross-recurrence
plots in order to study recurrences in a shared phase space
[16]:

CRXY
i j (ε) = Θ(ε − d(xi, y j)), (3)

with ~xi and ~yi the phase space trajectories of two systems X
and Y . Cross-recurrence plots have been used to study in-
terrelationships between possibly coupled dynamical sys-
tems [10, 16].

Similar to the definition of recurrence networks, we can
use the cross-recurrence plot to define an intersystem re-
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currence network (IRN):

IR(ε) =

(
RX(εx) CRXY (εXY )

CRYX(εYX) RY (εY )

)
(4)

with CRXY being the cross-recurrence matrix between the
systems X and Y and RX = CRXX the recurrence ma-
trix of system X (and analogous for system Y). In some
cases it might be necessary to consider different recurrence
thresholds [11] for the individual blocks CRXY of the in-
tersystem recurrence matrix, i.e., it is not required to have
εXX = εYX = εYY .

The intersystem recurrence matrix, Eq. (4) combines all
information from the (intra-system) recurrence plots RX,Y

and the cross-recurrence plots CRXY and, thus, stands for a
straightforward generalisation of the established concept of
cross-recurrence plots. This formulation provides a generic
way for studying the mutual interrelationships between sets
of dynamical systems from a complex network perspective.
Thus, the intersystem recurrence network (IRN) is A(ε) =

IR(ε) − IN .

4. Network measures for IRNs

The IRN is a graph G = (V, E) with the set V of vertices
and set E of edges. It is separable into disjunct subsets
Vk ⊆ V and Ekl ⊆ E. Then Ekk contains the (internal) edges
within the subgraph or subnetwork Gk, while Ekl comprises
(cross-) edges connecting subnetworks Gk and Gl. The bi-
partite subgraphs Gkl = (Vk ∪ Vl, Ekl) contain all vertices
of the vertex subsets Vk and Vl, and the (cross-) edges Ekl

between these two sets. Thus, the graphs GX and GY cor-
respond to the intra-system RNs constructed from the sys-
tems X and Y , whereas GXY contain the cross-recurrence
structure in terms of the sets of cross-edges EXY . In the fol-
lowing, we will use the letters k, l to denote subnetworks
and v,w, p, q for single vertices.

We define the cross-degree kkl
v , which gives the number

of edges which connect vertex v in subgraph Gk (i.e., v ∈
Vk) to any vertex in subgraph Gl, as kkl

v =
∑

q∈Vl
Avq [5, 17].

The local cross-clustering coefficient Ckl
v estimates the

probability that two randomly drawn neighbours of vertex
v ∈ Vk from subgraph Gl are also neighbours [5]:

Ckl
v =

1
kkl

v (kkl
v − 1)

∑
p,q∈Vl

AvpApqAqv. (5)

For vertices v∗ with kkl
v∗ = 0, we define Ckl

v∗ = 0 in order
to avoid divergencies (alternatively, one could consider Ckl

v
as undefined for these vertices). Averaging over all ver-
tices v, we immediately get the corresponding global cross-
clustering coefficient Ckl

Ckl = 〈Ckl
v 〉v∈Vk . (6)

It is important to note that the global cross-clustering co-
efficient is not invariant under the permutation i ↔ j, i.e.,
CXY , CYX (Fig. 1), which is in fact the foundation of the
method presented in the following.

Gk Gl

Eklw

v

p

q

Figure 1: Two coupled subnetworks. The graph has global
cross-clustering coefficients of Ckl = 0.5 , Clk = 0.

5. Coupling directions

Let X and Y be two dynamical systems, allowing for the
construction of an IRN, the structure of which can be quan-
tified by the global cross-clustering coefficient CXY and
CYX .

In the uncoupled case, CXY and CYX will randomly arise
from the invariant densities of X and Y without any addi-
tional structural component. Therefore, we expect CXY =

CYX (Tab. 1).

For unidirectional coupling of the type ẏ ∝ f (x − y),
where f is a monotonic function of either positive or neg-
ative sign (for example, in the case of diffusive coupling,
f (x−y) = µXY (x−y), with µXY being the coupling strength).
If the coupling direction is X → Y and the coupling is large
enough, we are likely to also find a state y∗k in Y , which
is (cross-)recurrent to both xi and x j, due to the coupling’s
diffusive nature and thus the tendency to “drag” the trajec-
tory of Y towards X. The resulting “cross-triangle” adds to
the value of CYX according to their definition. On the other
hand, “cross-triangles” constituted by two recurrent states
in Y and one cross-recurrent state in X are merely coinci-
dental due to the driver-response-like coupling. We would
thus expect to see CYX > CXY in case of a unidirectional
coupling X → Y and vice versa for the opposite coupling
direction (Tab. 1).

For a symmetric bidirectional coupling, the mutual ef-
fects on both systems are equal and thus lead to IRN mea-
sures of the same magnitude. The same observation should
hold if the subsystems become synchronised (at least in a
generalised sense), e.g., in case of a sufficiently strong cou-
pling (Tab. 1).

Table 1: Qualitative behaviour of cross-clustering coeffi-
cient in different coupling situations.

Coupling direction Expected relation
no coupling CXY ≈ CYX

X → Y CXY < CYX

Y → X CXY > CYX

X ↔ Y CXY ≈ CYX
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Figure 2: Main wind directions of the Indian (ISM) and East-Asian Summer Monsoon (EASM) and locations of the Qunf
and Dongge caves [5].

6. Real-world example: Palaeo-climate variation

In order to demonstrate the potential of the proposed
method we consider the coupling between the East Asian
Summer Monsoon (EASM) and the Indian Summer Mon-
soon (ISM) as it performed in the last about 10,000 years
(Holocene). The Asian monsoon system is not only one
of the most important atmospheric circulation systems, it
also has a strong socio-economic impact because it affects
a major part of the world’s population [18].

The ISM and EASM transport moisture from different
sources to the continent (Fig. 2). Variations in oxygen iso-
tope ratios δ18O) measured in speleothems provide high-
resolution proxies for the monsoon activity in the past
[19, 20]. We use the variability of δ18O obtained from the
Dongge cave in Southeast China [19] and the Qunf cave in
Oman [20] (Fig. 2). The Dongge record D represents the
Holocene monsoon variation in the recent EASM region
and the Qunf record Q the monsoon variation in the ISM
region (Tab. 2).

Table 2: Time interval T (BP = years before 1950), mean
sampling time ∆t, number of observations N, and corre-
sponding reference of the studied climate proxies.

Record T (yr BP) ∆t (yr) N Ref.
Dongge D −50. . . 8880 4.2 2,124 [19]
Qunf Q 378. . . 10,300 7.1 1,405 [20]

Both D and Q were detrended by a 100-yr moving-
average filter. For the reconstruction of the phase space
we use time-delay embedding with an embedding dimen-
sion of d = 3 in both cases but different time delays of
τD = 3 for the Dongge record and τQ = 2 for the Qunf
record (according to the results of the false nearest neigh-
bors and auto-mutual information methods [21]). The dif-
ferent time delays account for their different average sam-
pling rates, leading to τ ≈ 13 years on average for both

records to make the considered state vectors actually com-
parable (cf. Tab. 2). From the embedded state vectors
we bootstrap 80% of the data and calculate the resulting
IRNs and their global cross-clustering coefficients, with
RRD = RRQ = 0.03 and RRDQ = RRQD = 0.02. This
procedure is carried out M = 10, 000 times to evaluate the
robustness of our results.

Figure 3 reveals that the distributions of the global cross-
clustering coefficients are clearly separated by CDQ > CQD.
From these results we infer that the coupling direction was
Q → D during the Holocene, i.e., under the assumption
that Q represents the ISM activity and D the EASM activ-
ity we find that the monsoon impact at the location of the
Chinese cave was not only controlled by the EASM but also
by the ISM, where the EASM did not have a comparably
strong impact on the location of the Oman cave.
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Figure 3: Normalised distributions of the global cross-
clustering coefficient inferred from the Dongge and Qunf
data by bootstrapping 80% of the data in M = 10, 000 real-
isations. The distributions of the intersystem measures are
clearly seperated with CDQ > CQD, indicating a possible
coupling direction Q→ D.
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