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Abstract—The method of recurrence plots and algo-
rithms for their quantification are extended to analyse spa-
tial data thus allowing to study recurrent structures in 2D
images. To verify its capabilities, the method is tested on
prototypical 2D models. Next, the developed approach is
applied to assess the bone structure from CT images of hu-
man proximal tibia. It is found that the spatial structures in
trabecular bone become more self-similar during the bone
loss in osteoporosis.

1. Introduction

Recurrence is a fundamental property of various dynam-
ical processes in nature. The investigation of recurrent be-
haviour can help to reveal dynamical properties of the sys-
tem and to predict its states in the future. In order to study
of nonlinear chaotic systems, several methods for the inves-
tigation of recurrences were developed. In 1987, Eckmann
et al. introduced recurrence plots (RPs) for visualisation of
phase space trajectories [2]. Together with different quan-
tification approaches [6, 11], this method has been known
in a growing scientific community.

RP based methods are successfully applied to a wide
class of data and signals, e.g., from life and Earth sci-
ences. They are especially suitable for the investigation
of short and “nonstationary” data. This method works with
time series or data, which are at least presented by one-
dimensional (1D) series. However, recurrences occur not
only in the time domain of processes; spatial objects can
also exhibit typical recurrent structures. However, in their
present state, RPs cannot be directly applied to spatial (or
any other higher-dimensional) data. In order to study spa-
tial recurrences, the method of RPs has to be extended.

In the following, we will present a possibility to anal-
yse spatial recurrences. For this purpose, we extend the
existing method of recurrence plots and their quantification
to evaluate 2-dimensional (2D) data. This extension en-
ables 2D image analysis with RPs. We apply this method
to Peripheral Quantitative Computed Tomography (pQCT)
images of bone in order to investigate differences in trabec-
ular bone structures at different stages of osteoporosis.

2. RecurrencePlots

2.1. Definition

The main intention for introducing recurrences plots
(RPs) was to visualize the behaviour of m-dimensional
phase space trajectories Xi € R™ [2]. An RP is a graph-
ical representation of such points in time, when the tra-
jectory recurs in an e-neighbourhood to a former state. A
recurrence of a state at time i at a different time j is pic-
tured within a 2D squared matrix with black and white dots,
where black dots mark recurrence, and both axes are time
axes (Fig. 1). This can be mathematically expressed as

Rj=0(s—[x-%). %eR™ ij=1..N, (1)

where N is the number of considered states X;, ¢ is a thresh-
old distance, || - || a norm and ©(-) the Heaviside function.

It should be emphasized that this method is a pairwise
test of states on a trajectory which is — although lying in
an m-dimensional space — a 1D object. The axes of the
RP correspond with the time which is given by pursueing
a state on the trajectory. From Eq. (1) it is obvious that the
RP is symmetric.
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Figure 1: (A) Examplary recurrence plot for the logistic
map xi;1 = ax(1l — x) with a = 3.87, representing single
dots and line structures as typical for chaotic systems. (B)
Recurrence plot of superpositioned harmonic oscillations
(f(X) = sin(x) sin(x/2)), representing periodically occur-
ring diagonal lines.
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Table 1: Several recurrence quantification measures [6, 11].

RQA measure equation meaning
recurrence rate RR = % Zi'?ljzl Ri; pe_rgentage of recurrent states in the system; prob-
ability of the recurrence of any state
- e . . .
determinism DET = ZE";,‘+R() percentage of recurrence points which form diago-
M nal lines; related with the predictability of the sys-
tem
L. N VPW) . . .
laminarity LAM = W percentage of recurrence points which form verti-
v cal lines; related with the laminarity of the system
. . IP(l . . - .
averaged diagonal line length L = ? ~min P(f)) related with the predictability time of the system
1=l
(S
trapping time TT = ZZ"L\;(S;) related with the laminarity time of the system

2.2. Quantification

An RP uncovers epochs of similar dynamical evolution
of the considered system. For i = j, we get the line of
identity (LOI) Ri; = 1, which is the main diagonal line in
the RP (Fig. 1). For i # ], epochs of similar dynamical
evolution with the duration | are represented as diagonal
lines of length |

1-1
1 Riti Lj+ 1_[ Ri+/l,j+/l =1 (2)
=0

An RP of a periodic process contains continuous diagonal
lines with a periodic distance from each other (Fig. 1B).
Moreover, an RP can also contain vertical (and horizon-
tal) lines of length v, which represent states which do not
change for some time v

[

V—

(1 - Ri,j+v) Rijw = 1. (3)

hi
o

These diagonal and vertical lines are the base for the
quantification of RPs. Using the distributions of the lengths
of diagonal lines P(I) and vertical lines P(v), different mea-
sures of complexity were introduced (detailed definitions
and descriptions of these measures can be found in [4]).
Here we focus on the recurrence rate RR, determinism
DET, averaged diagonal line length L, laminarity LAM and
trapping time TT (Tab. 1).

For the definition of a diagonal or vertical line, several
measures need a predefined minimal length |, OF Viyin, re-
spectively. These minimal lengths should be as minimal as
possible, but large enough to exclude line-like structures
which represent only single, non-recurrent states, which
may occur if the threshold & is chosen too large or the data
are rather smooth.

These measures help to find transitions in data series [6,
10] or to study interrelations between different systems [5].
Using the distributions of the diagonal line lengths, basic
dynamical invariants, like K; entropy, can be estimated [9].

2.3. Extension to two dimensions

Now we propose an extension of RPs to spatial (2D)
data. With this step we leave the field of deterministic dy-
namical systems and focus on the potential of the RPs in
identification of similar (recurrent) features in spatial data.

For a 2D (cartesian) system of size N; x N, we extend
the recurrence plot to

Ni2.

(4)
Thus, we consider each spatial direction as a single 1D data
series, but compare each of them with all others. The re-
sulting RP has now the dimension 4 and cannot be visu-
alised anymore, but its quantification is still possible.

Analogous to the 1D case, wherethe LOIR; j = 1Vi = |
is a 1D line, we define a diagonal oriented, 2D structure
in the 4D recurrence plot, the surface of identity (SOI):
Ri i, = 1, which is in fact a 2D plane.

Ril,iz,h,iz =0 (‘9 - ”Xh,iz - Xth”) > i1,2’ jl,2 =1...

2.4. Quantification of higher-dimensional RPs

Because the recurrence quantification is based on diag-
onal and vertical line structures in RPs, the definition of
equivalent structures in the 4D RP is crucial for its quan-
tification analysis. Analogous to the definition of diagonal
and vertical lines, Egs. (2) and (3), we define a diagonal
squared surface of size |12 by

-1
(1= Riyetigrjust. o) 1_[ Riy+asipttaji+asiort, = 1, (5)

A1,42=0

and a vertical squared surface of size v? by

v-1

(1 - Ril,iz,jl+V,Jz+V) n Rivizjireniore = 1. (6)
¢1.42=0

Using these definitions, the frequency distributions P(l)
and P(v) of the sizes of diagonal and vertical surfaces in
the RP can be calculated. The recurrence quantification
measures, as defined in Tab. 1, can then be applied to these
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distributions, thus, these quantification measures are now
suitable for characterizing 2D spatial data. In the follow-
ing we apply the proposed spatial recurrence analysis on
prototypical examples and 2D images of human bone.

3. Applications

3.1. Example

At first, we consider three 2D model examples. The first
image (A) is uniformly distributed white noise, the second
(B) is produced by a 2D linear auto-regressive process of
2nd order (2D-AR2) and the third (C) represents periodi-
cally recurrent structures (Fig. 2). All these examples have
a geometric extension of 200 x 200 pixels? and their pixel
values were normalized to a mean of zero and a standard
deviation of one.

A

Figure 2: 2D examples representing (A) uniformly dis-
tributed white noise, (B) a 2D auto-regressive process and
(C) periodically recurrent structures.

The resulting RPs are 4D matrices of size 200, and can
hardly be visualized. Next, we compute the recurrence
quantification measures as defined in Sec. 2.4 for the size
distributions of diagonal and vertical planes in the 4D RPs.
We use a threshold £ = 0.2, and for the minimal size of the
diagonal and vertical planes lyin = 3 and Vyin = 4.

Except the recurrence rate RR, the recurrence quantifica-
tion measures discriminate significantly between the struc-
tures in the three examples (Tab. 2). RRis roughly the same
for all examples. This is because all images were normal-
ized to the same standard deviation and all pixel values oc-
cur equally frequent in all three images. For the random
image (A), the determinism DET and laminarity LAM tend
to zero, as expected, because the pixel values heavily fluc-
tuate even between adjacent pixels. For the 2D-AR2 im-
age (B), DET and LAM are slightly above zero, revealing
the correlation between adjacent pixels. The last exam-
ple (C) has, as expected, the highest values in DET and
LAM, because same structures occur many times in this
image. Although the trend of DET and LAM seems to be
similar, there is a significant difference between both mea-
sures. Whereas LAM represents the probability that a spe-
cific value will not change over spatial variation (what re-
sults in extended same-coloured areas in the image), DET
measures the probability that similar changes in the image
recur. LAM is twice of DET for the 2D-AR2 image, reveal-
ing that there are more extended areas with same pixel val-
ues in the image than such areas where pixel values change

in a similar way. These examples show that the proposed
spatial recurrence analysis can reveal and quantify spatially
recurrent structures. Next we try to uncover such recurrent
structures in 2D pQCT data of bone of different stages of
osteoporosis.

Table 2: Recurrence quantification measures for prototypi-
cal 2D examples.
Example RR DET LAM L TT

(A) noise 0218 0007 0006 3.7 3.0
(B) 2D-AR2 0221 0.032 0.065 3.1 3.1
(C) periodic  0.219 0.322 0312 58 56

3.2. pQCT data of proximal tibia

Osteoporosis is a disease characterized by bone loss and
changes in the bone structure. In the last years, the focus
changed to structural assessment of the trabecular bone, be-
cause bone densitometry alone cannot explain all variation
in bone strength. Furthermore, the rapid progress in the de-
velopment of new high-resolution CT scanners facilitates
investigations of the bone micro-architecture. Different ap-
proaches using methods coming from nonlinear dynam-
ics were recently proposed in order to evaluate structural
changes [1, 8] or even to predict fracture risks or biome-
chanical properties of bones [3, 7]. These approaches use
e.g. fractal properties or complexity of trabecular network.
Using the RP based method, we will focus on the recurrent
structures and their extensions obtained from a pQCT im-
ages of trabecular bone at different stages of osteoporosis
as assessed by bone mineral density (BMD). Being applied
to such images, RP provides information about recurrences
of bone and soft tissue.

Figure 3: Axial pQCT slice of human proximal tibia ac-
quired 17 mm below the tibial plateau. The BMD is
65.5 mg/cm?.

The spatial recurrence analysis is applied to high-
resolution pQCT axial slices of human proximal tibia, pixel
size 200 um, slice thickness 1 mm (Fig. 3). The images
were acquired from 26 bone specimens with a pQCT scan-
ner XCT-2000 from Stratec GmbH, Germany. The trabec-
ular bone mineral density of these specimens ranges from
0 to 150 mg/cm®. A standardized image pre-processing
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was applied to exclude the cortical shell from the analysis
[8]. The RP quantification was computed for ¢ = 40 HU,
|min = 2 and Vimin = 2.

The new RP measures reveal a relationship between re-
current structures in pQCT images of trabecular bone and
degree of osteoporosis, represented by the BMD (Fig. 4).
RR increases for decreasing BMD. Spearman’s rank order
correlation coefficient R between RR and BMD is —0.95.
DET and LAM are less anti-correlated than RR (Rper =
—-0.69, Riav = —0.80). With decreasing bone mass, the
spatially distributed structures in the corresponding pQCT
image, which can be bone or marrow patterns, become
more and more self-similar. This corresponds with our pre-
vious findings, that the complexity of the trabecular micro-
architecture decreases during bone loss [8].
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Figure 4: Recurrence rate obtained from 4D RPs of pQCT

images of human proximal tibia of different osteoporotic

stages.

The other measures L and TT are weakly anti-correlated
with BMD (R. = -0.36, Ryt = -0.57, resp.). The sizes
of the recurrent structures do not change much during the
development of osteoporosis.

3.3. Conclusions

Applying the proposed spatial extension of RPs we find
that this method is able to reveal recurrent structures in 2D
images. It can be used to quantify structures in medical CT
images. This approach could provide a base for the devel-
opment of a method for assessment of structural alteration
in trabecular bone during the development of osteoporosis
or in microgravity position. Presented results are work in
progress and should be considered as preliminary.
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