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Recurrence plots and recurrence quantification analysis have become popular in the last two
decades. Recurrence based methods have on the one hand a deep foundation in the theory of
dynamical systems and are on the other hand powerful tools for the investigation of a variety
of problems. The increasing interest encompasses the growing risk of misuse and uncritical
application of these methods. Therefore, we point out potential problems and pitfalls related to
different aspects of the application of recurrence plots and recurrence quantification analysis.
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1. Introduction

Since its introduction in 1987 by Eckmann et al.
[1987], and the development of different quantifica-
tion approaches, recurrence plots (RPs) have been
widely used for the investigation of complex systems
in a variety of different disciplines, as physiology,
ecology, finance or earth sciences (e.g. [Marwan,
2008; Schinkel et al., 2007; Zbilut et al., 2004;
Facchini et al., 2007; Belaire-Franch, 2004; Pecar,
2003; Trauth et al., 2003; Čermák, 2009]). RPs may
attract attention because of their ability to produce
beautiful or fancy pictures, as in the case of the
colorful representations of fractal sets [Mandelbrot,
1982]. The recent remarkable increase of applica-
tions can be traced down in part to several free soft-
ware packages available for calculating recurrence
plots and the corresponding recurrence quantifica-
tion analysis (RQA). Since these methods are also
claimed to be very powerful even for short and non-
stationary data, we should be careful not to consider
them as a kind of a magic tool, which works on all

kinds of data. Owing to the fact that these methods
are indeed in some sense powerful and rather adapt-
able to various problems, it is really important that
the user knows how these methods work and has
understood the ideas behind the RP and the mea-
sures of complexity derived from it. Any uncritical
application will lead to serious pitfalls and misinter-
pretations. As the number of applicants increases,
the risk of careless application of RPs and RQA
grows.

In this article, we try to highlight some of
the pitfalls which can occur during the application
of RPs and RQA and present future directions of
research for a deep theoretical understanding of the
method.

2. Recurrence Plots and Recurrence
Quantification

Although similar methods have already existed
before, the RP, Ri,j = Θ(ε − ‖xi − xj‖), for the
analysis of the dynamics of a dynamical system by
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using its phase space trajectory was introduced by
Eckmann et al. [1987]. This method can be used in
order to visualize the recurrence of a state, i.e. all
the times when this state will recur. In the 1990’s,
a heuristic approach of quantification RPs by its
line structures has led to the recurrence quantifi-
cation analysis (RQA) [Webber Jr. & Zbilut, 1994;
Marwan et al., 2002b]. In this approach, the den-
sity of recurrence points as well as the histograms
P (l) of the lengths l of the diagonal and ver-
tical lines in the RP are quantified. The den-
sity of recurrence points (recurrence rate) coincides
with the definition of the correlation dimension
[Grassberger & Procaccia, 1983]. Moreover, RPs
contain much more information about the dynam-
ics of the systems: dynamical invariants like Rényi
entropy or correlation dimensions can be derived
from the structures in RPs [Faure & Korn, 1998;
Thiel et al., 2004], RPs can be used to study syn-
chronization [Romano et al., 2005; Senthilkumar
et al., 2006] or to construct surrogate time series
[Thiel et al., 2008] and long time series from ensem-
ble measurements [Komalapriya et al., 2010]. For a
comprehensive introduction we point to [Marwan
et al., 2007].

3. Pitfalls

3.1. Parameter choice for
recurrence analysis

RP and RQA depend on some parameters which
should be properly chosen. For the actual recur-
rence analysis, a recurrence threshold is necessary.
This measure is probably the most crucial one and
is discussed in the next subsection.

As already mentioned, the quantification of
recurrence structures depends on lines in the RP;
by defining a minimal length of such lines, it is pos-
sible to adjust the sensitivity of line based recur-
rence measures. In Secs. 3.3 and 3.4 we will come
back to this parameter.

If we start our recurrence analysis from a time
series, we have first to reconstruct a phase space by
using a proper embedding, e.g. time-delay embed-
ding [Packard et al., 1980]. This involves the proper
setting of two additional parameters: the embed-
ding dimension m and the time-delay τ . Although
the estimation of dynamical invariants does not
depend on the embedding [Thiel et al., 2004], the
RQA measures depend on the embedding. Standard

approaches for finding optimal embedding param-
eters, like false nearest neighbors for embedding
dimension and auto-correlation or mutual informa-
tion for time-delay, can be widely found in the liter-
ature (e.g. [Kantz & Schreiber, 1997]). However, it
is recommended to visually cross-check the embed-
ding parameters by looking at the resulting RP.
Nonoptimal embedding parameters can cause many
interruptions of diagonal lines, small blocks, or even
diagonal lines perpendicular to the LOI (this cor-
responds to parallel trajectory segments running
in opposite time direction; Fig. 1). The experience
has shown that the delay is sometimes overesti-
mated by auto-correlation and mutual information.
The embedding dimension has also to be consid-
ered with care, as it artificially increases diagonal
lines (will be discussed in Sec. 3.3) [Marwan et al.,
2007].

In general, it is recommended to study the
sensitivity (or robustness) of the results of the
recurrence analysis on the parameters (recurrence
threshold, embedding parameters).

Although not really a parameter, it is worth to
briefly discuss the different recurrence definitions.
The most frequently used definition is to consider
neighbors in the phase space which are smaller than
a threshold value (the recurrence threshold). Dis-
tances can be calculated using different norms, like
Maximum or Euclidean norm [Marwan et al., 2007].
Maximum norm is sometimes preferred because of
its better computational efficiency (only minor dif-
ferences in the results when compared to Euclidean
norm). Another definition of recurrence considers
a fixed amount nearest neighbors. This recurrence
criterion is used when the number of neighbors is
important. Pitfalls related to these recurrence cri-
teria are also discussed in Sec. 3.7. More interesting
are combinations of the above criteria with dynam-
ical properties of the phase space trajectory, e.g.
perpendicular RPs (Sec. 3.3), or recurrence based
on order patterns [Groth, 2005]. Order patterns are
representations of the local rank order of a given
number d of values of the time series (order pat-
tern dimension). As the number of order patterns
is equal to d!, the dimension should not be cho-
sen too large, because many order patterns will
appear rather seldom and the RP will be sparse.
Even d = 4 is often already inappropriate, there-
fore, d = 3 is the best choice in most cases (depend-
ing on the problem of interest, d = 2 may also
be appropriate).
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Fig. 1. Recurrence plots of the Rössler oscillator with parameters a = b = 0.25 and c = 40 using different embedding:
(a) m = 1, τ = 1, (b) m = 3, τ = 12, (c) m = 3, τ = 6 (adaptive recurrence threshold to ensure (a) RR = 0.1,
(b, c) RR = 0.05). Nonoptimal embedding can cause line structures perpendicular to the main diagonal, wobbly or interrupted
lines (a, b).

3.2. Recurrence threshold selection

The recurrence threshold ε is a crucial parameter in
the RP analysis. Although several works have con-
tributed to this discussion (e.g. [Thiel et al., 2002;
Matassini et al., 2002; Marwan et al., 2007; Schinkel
et al., 2008]), a general and systematic study on the
recurrence threshold selection remains an open task
for future work. Nevertheless, recurrence threshold
selection is a trade-off from having as small thresh-
old as possible but at the same time a sufficient
number of recurrences (i.e. recurrence structures).

However, the diversity of applicability of RP
based methods causes a number of different criteria
for the selection of the threshold: studying dynam-
ical properties (dynamical invariants, synchroniza-
tion) requires a very small threshold [Marwan et al.,
2007; Donner et al., 2010]; twin surrogates or tra-
jectory reconstruction methods may require larger
thresholds [Hirata et al., 2008]; noise corrupted
observation data requires even larger thresholds
[Thiel et al., 2002]; for studying dynamical tran-
sitions, the threshold selection can be even without
much importance, because the relative change of the
RQA measures does not depend too much on it in
a certain range; for the detection of certain signals
a specific fraction of the phase space diameter (or
standard deviation of the time series) is required
[Schinkel et al., 2008].

Several “rules of thumb” for the choice of ε have
been advocated in the literature, e.g. a few per cent
of the maximum phase space diameter [Mindlin &
Gilmore, 1992], a value that should not exceed
10% of the mean or the maximum phase space

diameter [Koebbe & Mayer-Kress, 1992; Zbilut &
Webber Jr., 1992], or that the recurrence rate
RR =

∑
i,j Ri,j/N

2 is approximately 1% [Zbilut
et al., 2002]. A recently proposed criterion employ-
ing the relationship between recurrence rate and ε
defines an optimal value by using the position of the
maximum of the first derivative of the recurrence
rate dRR/dε [Gao & Jin, 2009]. Such approach can
produce ambiguous and highly unstable results, as
slight variations in ε (as possible by minor errors in
finding this value or by nonstationary time series)
cause high variation in the recurrence structure.
Next, the position of the maximum of dRR/dε
depends strongly on the chosen norm and embed-
ding, and may lead to an overestimation of an opti-
mal ε. And, finally, there are systems which can
have more than one maximum [Donner et al., 2010].

Another criterion for the choice of ε takes into
account that a measurement of a process is a com-
position of the real signal and some observational
noise with standard deviation σ [Thiel et al., 2002].
In order to get similar results as for the noise-free
situation, ε has to be chosen such that it is five times
larger than the standard deviation of the observa-
tional noise, i.e. ε > 5σ. Although this criterion
holds for a wide class of processes, it is difficult to
estimate the amount of observational noise in the
signal.

For (quasi-)periodic processes, it has been sug-
gested to use the diagonal structures within the
RP in order to find the optimal ε [Matassini et al.,
2002]. In this approach, the density distribution of
recurrence points along the diagonals parallel to the
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LOI is investigated on dependence of ε in order to
minimize the fragmentation and thickness of the
diagonal lines with respect to the threshold. How-
ever, this choice of ε may not preserve the important
distribution of the diagonal lines in the RP if obser-
vational noise is present (the estimated threshold
can be underestimated).

The selection of an optimal recurrence thresh-
old ε is not straightforward and depends on the
particular problem and question.

3.3. Indicators of determinism

The length of a diagonal line in the RP corresponds
to the time the system evolves very similar as during
another time, i.e. a segment of the phase space tra-
jectory runs parallel and within an ε-tube of another
segment of the phase space trajectory. Determin-
istic systems are often characterized by repeated
similar state evolution (corresponding to a local
predictability), yielding a large number of diagonal
lines in the RP. In contrast, systems with indepen-
dent subsequent values, like white noise, have RPs
with mostly single points. Therefore, the fraction
of recurrence points forming such diagonal lines (of
length l ≥ lmin)

DET =

∑
l≥lmin

lP (l)

∑
i,j

Ri,j

(1)

can be calculated and is, therefore, called deter-
minism in the RQA. Somehow this measure can

be interpreted as an indication of determinism in
the data. But we should be careful in using the
term determinism in a more general or mathe-
matical sense. In a deterministic system, we can
calculate the same exact state by using given ini-
tial conditions, i.e. there is no stochastic process
involved. Different methods can be used to test
for determinism in time series, e.g. a combined
modeling-surrogate approach [Small & Tse, 2003] or
an analysis of the directionality of the phase space
trajectory [Kaplan & Glass, 1992].

High values of DET might be an indication of
determinism in the studied system, but it is just
a necessary condition, not a sufficient one. Even
for nondeterministic processes we can find longer
diagonal lines in the RP, resulting in increased
DET values. For example, the following (non-
deterministic) auto-regressive process xi = 0.8xi−1+
0.3xi−2 − 0.25xi−3 + 0.9ξ (where ξ is white Gaus-
sian noise) has a DET value of 0.6 (embedding
dimension m = 4, delay τ = 4, and fixed recur-
rence rate of 0.1). As it was shown in [Thiel et al.,
2003], stochastic processes can have RPs contain-
ing longer diagonal lines just by chance (although
very rare). Moreover, due to embedding we intro-
duce correlations in the RP and, therefore, also
uncorrelated data (e.g. from white noise process)
have spurious diagonal lines [Thiel et al., 2006;
Marwan et al., 2007] (Fig. 2). Moreover, data
pre-processing like low-passfiltering (smoothing) is
frequently used. Such pre-processing can also intro-
duce spurious line structures in the RP. Therefore,
from just a high value of the RQA measure DET we
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Fig. 2. (a) Recurrence plot of one realization of Gaussian white noise, calculated using embedding dimension m = 6, delay
τ = 1, and a recurrence threshold of ε = 0.2. The embedding causes a number of long lines. (b) Correlation between a single
recurrence point at (15, 30) and other recurrence points in the RP of white noise demonstrating the effect of embedding for
a bogus creation of long diagonal lines (estimated from 1000 realizations). (c) The histogram of line lengths found in the RP
shown in (a). The maximum length is Lmax = 17, a value, which would not be uncommon for a deterministic process.
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have to be careful in inferring that the studied sys-
tem would be deterministic. For such conclusion we
need at least one further criterion included in the
RP: the directionality of the trajectory [Kaplan &
Glass, 1992]. One possible solution is to use iso-
directional RPs [Horai et al., 2002] or perpendic-
ular RPs [Choi et al., 1999]; if then the measure
reaches DET ≈ 1 for a very small recurrence density
(i.e. RR < 0.05), the underlying system will be a
deterministic one (like a periodic or chaotic system).

3.4. Indicators of periodic systems

As explained in the previous section, deterministic
systems cause a high value in the RQA measure
DET. This measure has been successfully used to
detect transitions in the dynamics of complex sys-
tems [Trulla et al., 1996]. A frequently used exam-
ple in order to present this ability is the study of
the different dynamical regimes of the logistic map,
where DET is able to detect the periodic windows
(by values DET = 1). Therefore, it is often claimed
that this measure is able to detect chaos-period
transitions.

However, we can also find such high DET values
for non-periodic, but chaotic systems. For example,
the Rössler system [Rössler, 1976],

(
dx

dt
,
dy

dt
,
dz

dt

)

= (−y − z, x + 0.25y, 0.25 + z(x − c)), (2)

exhibits in the parameter interval c ∈ [35, 45] a tran-
sition from periodic to chaotic states [Fig. 3(a)]. But
due to the smooth phase space trajectory and high
sampling frequency (sampling time ∆t = 0.1), the
RP for the chaotic trajectory consists almost exclu-
sively of diagonal line structures (Fig. 4), resulting
in a high value of DET, i.e. DET ≈ 1 [Fig. 3(b)].

A very high value of DET is not a clear or
even sufficient indication of a periodic system. High
values can be caused by very smooth phase space
trajectories. This should also be considered when
looking for indications of unstable periodic orbits
(UPOs), where DET or mean and maximal line
lengths L and Lmax may not be sufficient. A solu-
tion could be to increase the minimal length lmin
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Fig. 3. (a) 1st and 2nd positive Lyapunov exponents of the Rössler oscillator with parameters a = b = 0.25 and c ∈ [35, 45].
A periodic window occurs between c = 36.56 and c = 37.25. However, the DET measures reveals an almost constant very high
value of approximately DET = 0.94. Used RP parameters: dimension m = 3, delay τ = 6, adaptive recurrence threshold to
ensure RR = 0.05.
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Fig. 4. Recurrence plot of the Rössler oscillator with param-
eters a = b = 0.25 and c = 40. For these parameters, the
Rössler system is in a chaotic regime (λ1 = 0.14), but the
RP consists almost only of diagonal lines. Used RP param-
eters: dimension m = 3, delay τ = 6, adaptive recurrence
threshold to ensure RR = 0.05.

of a diagonal recurrence structure which is consid-
ered to be a line. However, a better solution is to
look at the cumulative distribution of the diago-
nal line lengths and estimate the K2 entropy (but
this requires much longer time series, cf. Sec. 3.9).
Recent work has shown that measures coming from
complex network theory, like clustering coefficient,
applied to recurrence matrices are more powerful
and reliable for the detection of periodic dynamics
[Marwan et al., 2009; Zou et al., 2010; Donner et al.,
2011].

3.5. Indicators of chaos

The RP visualizes the recurrence structure of the
considered system (based on the phase space trajec-
tory). The basic idea behind RPs comes, in general,
from the study of chaos. Therefore, it can be consid-
ered as a nonlinear tool for data analysis. But this
cannot be a criterion to understand complex struc-
tures in the RP or high values of RQA measures as
indicators of chaos or nonlinearity in the dynamical
system.

As mentioned above, uncorrelated stochastic
systems have mostly short or almost no diagonal

line structures in their RPs, whereas deterministic
and regular systems, like periodic processes, have
mostly long and continuous diagonal line structures.
Chaotic processes have also diagonal, but shorter
lines, and can have single recurrence points. Nev-
ertheless, only by looking at the appearance of an
RP it is difficult (almost impossible) to infer about
the type of dynamics; only periodic and white noise
processes can be identified with some certainty.

The alternative is to look at the RQA mea-
sures quantifying the structures in an RP which
are related to some dynamical characteristics of
the system. As diagonal lines in the RP corre-
spond to parallel running trajectory segments, it
is clear that the length of these lines is somehow
related to the divergence behavior of the dynami-
cal system. Divergence rate of phase space trajec-
tories is measured by the Lyapunov exponent. In
fact, the lengths of the diagonal lines are directly
related to dynamical invariants as K2 entropy or
D2 correlation dimension [Faure & Korn, 1998;
Thiel et al., 2004]. The K2 entropy is the lower limit
of the sum of the positive Lyapunov exponents.

For example, RQA measures based on the
length of the diagonal lines, like determinism DET
and mean line length L, also depend on the type
of dynamics of the systems (rather low values
for uncorrelated stochastic (white noise) systems,
higher values for more regular, correlated and also
chaotic systems). It has been suggested to measure
the length of the longest diagonal line Lmax and
interpret its inverse DIV = 1/Lmax as an estimator
of the maximal Lyapunov exponent [Trulla et al.,
1996]. However, this interpretation incorporates
high potential of erroneous conclusions derived from
RQA.

First, the main diagonal in the RP (i.e. the
line of identity, LOI) is naturally the longest diag-
onal line, where from it is usually excluded from
the analysis. However, due to the tangential motion
of the phase space trajectory,1 subsequent phase
space vectors are often also considered as recur-
rence points (known as sojourn points) [Marwan
et al., 2007]. These recurrence points lead to further
continuous diagonal lines directly close to the LOI.
Without excluding an appropriate corridor along
the LOI (the Theiler window), Lmax will be arti-
ficially large (≈ N) and DIV too small.

Second, as explained above, even white noise
can have long diagonal lines [Thiel et al., 2003],

1Tangential motion becomes even more crucial and influential for highly sampled or smooth systems.
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leading to a small DIV value just by chance (Fig. 2).
Although the probability for the occurrence of such
long lines is rather small, the probability that lines
of length two occur in RPs of stochastic processes is,
on the contrary, rather high. Only one line of length
two is enough to get a finite value of DIV which
might be misinterpreted as a finite Lyapunov expo-
nent and that the system would be chaotic instead
stochastic.

Therefore, we have to be careful in interpret-
ing the RQA measures themselves as indicators of
chaos. Moreover, such conclusion cannot be drawn
by applying a simple surrogate test where the data
points are simply shuffled (such a test would only
destroy the correlation structure within the data,
and, thus, the frequency information).

RP or RQA alone cannot be used to infer
nonlinearity from a time series. For this purpose,
advanced surrogate techniques are more appropri-
ate [Schreiber & Schmitz, 2000; Rapp et al., 2001].

3.6. Discrimination analysis and
detection of deterministic
signals

RQA is also a powerful tool in order to distinguish
between different types of signals, different groups

of dynamical regimes, etc. (e.g. [Zbilut et al., 1998;
Marwan et al., 2002b; Facchini et al., 2007; Litak
et al., 2010]). However, the selection of applicable
RQA measures is a crucial task. Not all measures
will be useful for all questions. Their application
needs justification in terms of the purpose of the
intended analysis. For example, for processes which
do not contain laminar regimes, or if we are not
interested in the detection of such laminar regimes,
it would not make sense to use RQA measures based
on vertical recurrence structures (like laminarity or
trapping time) [Marwan & Kurths, 2009].

3.7. Indicators of nonstationarity
and transition analysis

RQA is powerful for the analysis of slight changes
and transitions in the dynamics of a complex sys-
tem. For this purpose we need a time-dependent
RQA (a RQA series) that can be realized in two
ways (Fig. 5):

(1) The RP is covered with small overlapping win-
dows of size w spreading along the LOI and in
which the RQA will be calculated, Ri,j|k+w−1

i,j=k .
(2) The time series (or phase space trajectory)

is divided into overlapping segments xi|k+w−1
i=k
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Fig. 5. Two possibilities of windowed RQA: (a) Windowing of time series and (b) windowing of RP. The example is an
auto-regressive process: xi = 0.95xi−1 + 0.05xi−2 + 0.9ξ (where ξ is white Gaussian noise), the RP is calculated using a
constant number of neighbors (10% of all points) and without embedding. The sub-RPs at the bottom clearly demonstrate
the differences between the two approaches.
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from which RPs and subsequent RQA will be
calculated separately.

Such time dependent approach can also be used
to analyze the stationarity of the dynamical system.

Here we should note the following important
points. The time scale of the RQA values depends
on the choice of the point on the window that
should be considered as the corresponding time
point. Selecting the first point k of the window as
the time point of the RQA measures allows us to
directly transfer the time scale of the time series to
the RQA series. However, the window reaches into
the future of the current time point and, thus, the
RQA measures represent a state which lies in the
future. Variations in the RQA measures can be mis-
interpreted as early signs of later state transitions
(like a prediction). A better choice is therefore to
select the center of the window as the current time
point of the RQA. Then the RQA considers states
in the past and in the future. If strict causality is
required (crucial when attempting to detect subtle
changes in the dynamics just prior to the onset of
dramatic state changes), it might be even useful to
select the end point of the window as the current
time point of the RQA (using embedding we have to
add (m− 1)τ − 1). For most applications the center
point should be appropriate.

Another important issue that can rise from the
different windowing methods (1) or (2), which are
only equivalent when we do not normalize the time
series (or its pieces) from which the RP is calculated
and when we chose a fixed threshold recurrence cri-
terion. If we normalize the time series just before
the RP calculation, we get differently normalized
segments resulting in different sub-RPs (and thus
different RQA results) than such derived directly
by moving windows from the RP of the entire time
series (Fig. 5 and Table 1). A similar problem arises
when we use a fixed number of nearest neighbors for
the definition of recurrence, because there is a big
difference when considering the entire time series
in order to find the k nearest neighbors or just
a small piece of it. Nevertheless, both approaches
(1) and (2) can be useful and depend on the given
question. If we know that the time series shows some
nonstationarities or trends which are not of inter-
est, then approaching (2) can help to find transi-
tions that neglect these nonstationarities. But, if we
are interested in the detection of the overall changes
(e.g. to test for nonstationarity), we should keep the
numerical conditions for the entire available time

Table 1. Selected RQA measures derived from
(a) windowing of time series and (b) windowing of
RP of an auto-regressive process and windowing as
shown in Fig. 5.

Window 1–250 251–500 501–750 751–1000

(a)

RR 0.10 0.10 0.10 0.10
DET 0.62 0.74 0.48 0.79

L 3.13 3.69 2.75 3.75

(b)

RR 0.18 0.12 0.20 0.19
DET 0.81 0.81 0.69 0.95

L 3.78 4.27 2.90 9.50

constant and choose approach (1). Anyway, for each
RQA we should explicitly state how the windowing
procedure has been performed.

The choice of the window size itself needs the
same attention. Because the RQA measures are
statistical measures derived from histograms, the
window should be large enough to cover a suffi-
cient number of recurrence lines or orbits. A too
small window can pretend strong fluctuations in the
RQA measures just by weak statistical significance
[the RQA measure TREND is very sensitive to the
window size and can reveal even contrary results,
cp. Fig. 7(b)]. Therefore, conclusions about non-
stationarity of the system should be drawn with
much care. Moreover, statements on stationarity
of the system itself are questionable at all (if not
enough knowledge about the system is available),
because detected nonstationarity in an observed
finite time series does not mean automatic nonsta-
tionarity in the underlying system. For example, an
auto-regressive process is stationary by definition,
but its RP and RQA can reveal a nonstationary
signal (Figs. 6 and 7).

3.8. Significance of RQA measures

Related to the preceding issue on windowed RQA
is the question on the significance of the RQA vari-
ation. A suboptimal scaling of the variation of the
RQA measures can mislead to conclusions that the
studied system has changed its regime or that it
would be nonstationary [Figs. 8(a) and 8(b)]. There-
fore, it is strongly recommended to cross-check the
scaling of the presentation and to present confidence
intervals [Figs. 8(c) and 8(d)]. Confidence intervals
can be calculated in various ways, but we should
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Fig. 6. RP of the same auto-regressive process as presented
in Fig. 5, which is by definition stationary. The RP is calcu-
lated using maximum norm, ε = 2 and without embedding.

avoid deriving them by simply shuffling the original
data. One approach could be a bootstrap resam-
pling of the line structures in the RP [Marwan
et al., 2008; Schinkel et al., 2009]. Another approach
fits the probability of serial dependences (diag-
onal lines) to a binomial distribution [Hirata &
Aihara, 2011]. Whatever approach we choose, the

estimation of the confidence intervals is not a triv-
ial task, but in the future, the standard software for
RQA should include such tests.

A common statement on recurrence analysis is
that it is useful to analyze short data series. But
we have to ask, how short is short? The required
length for the estimation of dynamical invariants
will be discussed in the following subsection. Apply-
ing RQA analysis we should be aware that the RQA
measures are statistical measures (like an average)
and need some minimal length that a variation can
be considered to be significant.

3.9. Dynamical invariants from
short time series

An RP analysis is appropriate for analyzing short
and nonstationary time series, as it is often stated
in many reports [Fabretti & Ausloos, 2005; Schinkel
et al., 2007; Zbilut et al., 1998]. However, this state-
ment holds actually only for the heuristic measures
of complexity as introduced for the RQA or for
the detection of differences or transitions in data
series. If we are interested in the dynamical invari-
ants derived from RPs, the length N of the time
series becomes a more crucial part like it is for the
standard methods of nonlinear data analysis.

The derivations of dimensions (D1, D2) and
dynamical invariants (like K2) from the RPs hold
only in the limit N → ∞ and small ε (ε → 0).
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Fig. 7. Two exemplary RQA measures, (a) recurrence rate RR and (b) paling trend (TREND), of the auto-regressive process
as presented in Fig. 5 for three different window sizes w (w = 75, 150, 250). (a) The strong variation in RR pretends a nonsta-
tionarity in the signal. (b) TREND depends rather strongly on w, resulting in contrary outcomes, e.g. revealing high values
for w = 75, but small values for w = 200 at the same time period t = 700, . . . , 800. The RQA is calculated using maximum
norm, ε = 0.3 and without embedding (the windows are moved by w/2, i.e. 50% overlap; the RQA time point is set to the
center of the RQA window).
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Fig. 8. Two exemplary RQA measures, (a, c) determinism DET and (b, d) laminarity (LAM), of the auto-regressive process
as presented in Fig. 5. (a, b) The scaling of the y-axis is affecting a strong variation in the RQA measures — a potential for
wrong conclusions. (c, d) Considering a 5% confidence interval of the RQA measures (details can be found in [Marwan et al.,
2008]) and a better value range for the y-axis, we cannot infer that the values of the RQA measures as shown in (a) and (b)
significantly vary. The RQA is calculated using a window size of w = 250 and a window step of ws = 20, using maximum
norm, ε = 0.3 and without embedding (the RQA time point is set to the center of the RQA window). LAM is the fraction of
recurrence points forming vertical lines in an RP (analogously as DET for the diagonal lines).

Nevertheless, an estimation of dynamical invari-
ants from shorter time series is feasible. We have
to regard the following factors if discussing the
time series length: the number of orbits repre-
senting stretching, the number of recurrences fill-
ing out a sufficient part of the attractor, and the
number of data points necessary for an accept-
able phase space reconstruction [Wolf et al., 1985].
Since these factors may require different minimal
lengths, the largest of these lengths should be
considered.

For example, numerical considerations for the
estimation of the attractor (correlation) dimen-
sion D2 using the Grassberger–Procaccia algorithm
[Grassberger & Procaccia, 1983] lead to the require-
ment log N > D2/2 log(1/�) (where � = S/ε is the

fraction the recurrence neighborhood of size ε covers
the entire phase space of diameter S) [Eckmann &
Ruelle, 1998]. Considering a � = 0.1 and a deci-
mal logarithm, for finding D2 = 10 we need at least
N = 100 000 data points. Furthermore, � = 0.1 is
actually too large and we need much smaller ε.

For Lyapunov exponents (and analogously for
K2), a rough estimate based on the mentioned
requirements suggests minimal time series lengths
of 10D2 to 30D2 (with attractor dimension D2) [Wolf
et al., 1985]. Accordingly, a system with D2 = 3
requires 1000–30 000 data points (a more strict
consideration even requires log N > D2 log(1/�)
[Eckmann & Ruelle, 1998]).

Therefore, to guarantee useful results we need
long time series. If we calculate dimensions or K2
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from short time series the results are probably
worthless.

3.10. Synchronization and line of
synchronization

Cross recurrence plots (CRPs) can be used for the
investigation of the simultaneous evolution of two
different phase space trajectories [Marwan et al.,
2002a; Marwan & Kurths, 2002; Zolotova et al.,
2009; Ihrke et al., 2009]. The line of identity
(LOI) in the RP becomes a line of synchroniza-
tion (LOS) in the CRP. Two more-or-less identi-
cal systems but with differences on the time-scale
will reveal a bowed LOS [Marwan et al., 2002a;
Marwan & Kurths, 2005]. An off-set of the LOS
away from the main diagonal is an indication of a
phase shift or a delay between the two considered
systems.

However, because this method tests if the two
trajectories visit the same region in the phase
space, it can be used only to study complete
synchronization (CS) or a kind of a generalized
correlation (although with possible delays), or
to get the relation between the transformations
between their time-scales. Moreover, the data under
consideration should be from the same (or a very

comparable) process and, actually, should represent
the same observable. Therefore, the reconstructed
phase space should be the same.

For the study of the LOS the distance matrix
may be more appropriate because it contains more
information, especially if the data series show non-
stationarities. Then, the LOS can be found by
using efficient algorithms like dynamic time warp-
ing [Sakoe & Chiba, 1978]. Nevertheless, it is always
very important to check if the found LOS makes
sense; for instance, it is possible to find several
LOS (cp. Application in magneto-stratigraphy in
[Marwan et al., 2007]).

3.11. Macrostructures and
sampling

For the visual interpretation of an RP and also for
a reliable RQA we should remember that our data
are discretised time or data series. The sampling of
the signal has an importance which should not be
underestimated. If the sampling frequency is just
one magnitude higher than the system’s main fre-
quencies, and their ratio is not a multiple of an inte-
ger (i.e. we have an intrinsic phase error), an inter-
ference triggered by the sampling of the continuous
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Fig. 9. RP of a modulated harmonic oscillation sin(2π1000(π + t)+ 2π sin(2π44t)t). (a) Nontrivial macrostructures (gaps) in
the RP due to the interference of the sampling frequency of 1 kHz and the frequency of the modulated harmonic signal. (b)
Corresponding RP as shown in (a), but for a higher sampling frequency of 10 kHz. As expected, the entire RP now consists of
the periodic line structures due to the oscillation. Used RP parameters: dimension m = 3, delay τ = 1, recurrence threshold
ε = 0.05σ (maximum norm).
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Fig. 10. RP of the x-component of the Rössler oscillator, Eq. (2), with parameters a = b = 0.2, c = 5.7. The sampling time
is (a) ∆t = 0.05 and (b) ∆t = 1. The embedding was chosen in both settings to be equivalent: dimension in (a) and (b) is
m = 3, the delay in (a) τ = 20, but in (b) τ = 1; recurrence threshold ε = 1.5 (maximum norm). Due to the low sampling in
(b), many diagonal lines vanish.

signal can produce large empty regions in the recur-
rence matrix, although they should not be there
[Facchini et al., 2005; Facchini & Kantz, 2007].
Nonstationarities or modulations in frequency or

phase cause nontrivial gaps or macrostructures in
the recurrence matrix (Fig. 9). We should be aware
that such gaps can occur in particular when we use a
low sampling frequency. The recurrence structure of

Fig. 11. Screenshot of the RP as shown in Fig. 9(b) for two different window sizes of display on a computer screen (using
Matlab R©). Although the RP consists only of continuous diagonal lines as represented in Fig. 9(b), its size (N = 5511) exceeds
the screen resolution and requires downsampling, leading to artifical macrostructures.
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interest can appear rather different; diagonal lines
can vanish or can be reduced to just single points
yielding biased RQA measures (Fig. 10).

Nevertheless, tiny modulations in frequency or
phase in oscillating signals can be detected by
RPs, which are nondetectable by standard methods
(spectral or wavelet analysis). This turns RPs to a
powerful tool for the analysis of slight modulations
in oscillatory signals like audio signals.

Please note that macrostructures are also an
apparent problem when displaying large RPs on
a computer screen (and up to a certain amount
on print outs). The resolution of modern com-
puter screens is around 72 ppi (points per inch,
72 ppi corresponds to around 28 points per cen-
timetre). The presentation of RPs in a window of,
e.g. 6 inch allows only the display of around 430
points. Larger RPs will be rendered using downsam-
pling or interpolation, resulting in similar interfer-
ence effects and artificial secondary macrostructures
as described above; such macrostructures will even
change for different window sizes (Fig. 11). There-
fore, we should take care in visual interpretation of
patterns found in large RPs which are represented
on computer screens.

4. Conclusions

We have illustrated several problems regarding the
application of recurrence plots (RPs) and recur-
rence quantification analysis (RQA) which need
our attention in order to avoid wrong results. The
uncritical application of these methods can lead to
serious pitfalls. Therefore, it is important to under-
stand the basic principles and ideas behind the
measures of complexity forming the RQA and the
different techniques to study the numerous phe-
nomena of complex systems, like transitions, syn-
chronization, etc. Nevertheless, the recurrence plot
based techniques are still a rather young field in
nonlinear time series analysis, and many open ques-
tions remain. For example, systematic research is
necessary to define reliable criteria for the selection
of the recurrence threshold, and the estimation of
the confidence of the RQA measures will be a hot
topic in the near future.
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