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We present new measures of complexity and their application to event-related potential data.
The new measures are based on structures of recurrence plots and makes the identification of
chaos–chaos transitions possible. The application of these measures to data from single-trials of
the Oddball experiment can identify laminar states therein. This offers a new way of analyzing
event-related activity on a single-trial basis.
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1. Introduction

Neurons are known to be nonlinear devices be-
cause they become activated when their somatic
membrane potential crosses a certain threshold
[Kandel et al., 1995]. This nonlinearity is one of
the essentials in neural modeling which leads to the
sigmoidal activation functions of neural networks
[Amit, 1989]. The activity of large formations of
neurons is macroscopically measurable as the elec-
troencephalogram (EEG) at the human scalp which
results from a spatial integration of postsynaptic
potentials [Nunez, 1981]. However, it is an unsolved
problem whether the EEG should be treated as
a time series stemming from a linear or a non-
linear dynamical system. Applying nonlinear tech-
niques of data analysis to EEG measurements has
a long tradition. Most of these efforts have been
done by computing the correlation dimension of
spontaneous EEG (e.g. [Babloyantz et al., 1985;
Rapp et al., 1986; Gallez & Babloyantz, 1991;
Lutzenberger et al., 1992; Pritchard & Duke, 1992]).
Theiler et al. [1992] applied the technique of surro-

gate data to correlation dimensions of EEG and re-
ported that there is no evidence of low-dimensional
chaos but of significance for nonlinearity in the data.

While correlation dimensions are only well de-
fined for stationary time series generated by a low-
dimensional dynamical system moving around an
attractor, these measures fail in investigating event-
related brain potentials (ERPs), [Sutton et al.,
1965] since they are nonstationary by definition.
Traditionally, ERP waveforms are determined by
computing an ensemble average over a collection of
stimulus time-locked EEG trials. This is based on
the following assumptions: (1) the presentation of
stimuli of the same kind is followed by the same
sequence of processing steps, (2) these processing
steps always lead to activation of the same brain
structures, (3) this activation always elicits the
same pattern of electrophysiological activity, which
can be measured at the scalp [Rösler, 1982] and
(4) spontaneous activity is stationary and ergodic
[beim Graben et al., 2000].

By averaging the data-points time-locked to the
stimulus presentation (cf. Oddball experiment) it is
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possible to filter out the signal (ERP) of the noise
(spontaneous activity). In the next step the func-
tional significance of a component is assessed. An-
tecedent conditions of the occurrence of a compo-
nent and variables, which influence its parameters
are defined. Now the commonalities of these factors
are identified. The generalization of all empirically
found influencing factors leads to a more abstract
cognitive theory of the functional meaning of an
event-related potential component and makes it us-
able for the validation of models of cognitive pro-
cesses.

The disadvantage of the averaging method is
the high number of trials needed to reduce the
signal-to-noise-ratio [Kutas & Petten, 1994]. This
is crucial for example for clinical studies, for stud-
ies with children and for studies where repeating a
task would influence the performance. So it is de-
sirable to find new ways of analyzing event-related
activity on a single-trial basis. Applying nonlinear
methods to electrophysiological data could be one
way of dealing with this problem.

To compute dimensions of ERPs, Molnár et al.
[1995] used the pointwise dimensions and reported
a drop of the pointwise dimension as a function
of time corresponding to the P300 component ob-
served in the Oddball experiment. Recently, con-
cepts of information theory have been introduced
to analyze ERPs. On one hand this is the wavelet
entropy of Quiroga et al. [2001] and on the other
hand symbolic dynamics of EEG and ERP [beim
Graben et al., 2000; Frisch et al., 2004; Steuer, 2004;
Schack, 2004].

A further promising approach is the recurrence
quantification analysis (RQA), which is based on
the quantification of the diagonal oriented struc-
tures in recurrence plots (RPs, [Webber Jr. &
Zbilut, 1994; Zbilut & Webber Jr., 1992]). The
RQA was broadly applied in a wide field of the
analysis of physiological data (e.g. [Casdagli, 1997;
Faure & Korn, 1998; Thomasson et al., 2001;
Marwan et al., 2002]). The important advantage of
methods based on the quantification of RPs is that
the required data length can be relatively short.
However, the measures of the classical RQA are
only able to recognize transitions between periods
and chaos and vice versa [Trulla et al., 1996]. In
this work, we will use recently introduced additional
measures based on RPs in order to find chaos–chaos
transitions in physiological data. These new mea-
sures use the vertical structures in the RP and are
able to identify laminar states [Marwan et al., 2002].

In the first section we will give a short intro-
duction into RPs and their quantification analysis.
In the next section we will introduce the new mea-
sures and finally we will apply them to event-related
potential data gained from the Oddball experiment.

2. Recurrence Plots and Their

Quantification

The method of recurrence plots (RP) was intro-
duced to visualize the time dependent behavior of
the dynamics of systems, which can be pictured as a
trajectory in the phase space [Eckmann et al., 1987].
It represents the recurrence of the m-dimensional
phase space trajectory xi ∈ Rm (i = 1, . . . , N , time
discrete) to a certain state. The main step of this
visualization is the calculation of the N ×N -matrix

Ri,j := Θ(εi − ‖xi − xj‖), i, j = 1, . . . , N , (1)

where εi is a state dependent cut-off distance, ‖ · ‖
is the norm of vectors, Θ is the Heaviside function
and N is the number of states. The phase space vec-
tors for one-dimensional time series ui from obser-
vations can be reconstructed with the Taken’s time
delay method xi = (ui, ui+τ , . . . , ui+(m−1)τ ) with
dimension m and delay τ [Kantz & Schreiber, 1997].
The recurrence plot exhibits characteristic large-
scale and small-scale patterns which are caused by
typical dynamical behavior [Eckmann et al., 1987;
Webber Jr. & Zbilut, 1994], e.g. diagonals (similar
local time evolution of different parts of the trajec-
tory) or horizontal and vertical black lines (state
does not change for some time).

Zbilut and Webber have developed the recur-
rence quantification analysis (RQA) to quantify an
RP [Webber Jr. & Zbilut, 1994; Zbilut & Webber
Jr., 1992]. They defined measures using the recur-
rence point density and diagonal structures in the
recurrence plot, the recurrence rate RR (density
of recurrence points), the determinism DET (ratio
of recurrence points forming diagonal structures to
all recurrence points), the maximal length of diag-
onal structures Lmax (or their averaged length L),
the Shannon entropy ENT of the distribution of the
diagonal line lengths and the trend TREND (pal-
ing in the RP). The computation of these measures
in shifted windows along the main diagonal of the
RP enables one to find characteristic excursions of
the trajectory in the phase space of the considered
system.

Trulla et al. have applied these measures in
order to find transitions in dynamical systems
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[Trulla et al., 1996]. They have showed, that the
RQA is able to find transitions between chaos and
order (periodical states). But they could not find
the chaos–chaos transitions.

3. Laminarity and Trapping Time

We have recently introduced two additional mea-
sures which are based on the vertical structures in
the RP [Marwan et al., 2002]. We define these mea-
sures analogous to the definition of DET and L,
but we consider the distribution P (v) of the length
of the vertical structures in the RP.

First, the laminarity LAM

LAM :=

N∑

v=2

vP (v)

N∑

v=1

vP (v)

, (2)

is the ratio of recurrence points forming vertical
structures to all recurrence points and represents
the probability of occurrence of laminar states in
the system, but it does not describe the length of
these laminar phases. It will decrease if the RP con-
sists of more single recurrence points than vertical
structures.

Next, the trapping time TT

TT :=

N∑

v=2

vP (v)

N∑

v=2

P (v)

, (3)

is the averaged length of the vertical structures. The
measure TT contains information about the amount
and the length of the laminar phases.

The difference between these measures and the
traditional RQA measures is their ability to find
transitions between chaos and chaos [Marwan et al.,
2002]. For example, such transitions can be found in
the logistic map xn+1 = axn(1−xn) with increasing
control parameter a ∈ [0, 4] and xn ∈ [0, 1] ⊂ R.
For such trajectories x(a) which contain laminar
states (e.g. a = 3.678, 3.791, 3.927), LAM and TT

show pronounced maxima (Fig. 1). The application
of these measures to heart rate variability data, has
shown, that they are able to detect and quantify
laminar phases before a life-threatening cardiac ar-
rhythmia and, thus, to enable a prediction of such
an event [Marwan et al., 2002]. These findings can

Fig. 1. Laminarity (B) and trapping time (C) of time series
gained from the logistic map for various control parameters
(A). These measures reveal laminar and intermittent states.
The vertical dotted lines show a choosing of points of band
merging and laminar behavior (a = 3.678, 3.727, 3.752, 3.791,
3.877, 3.927). The length of the data were N = 1000 and the
embedding parameters were m = 1, τ = 1 and ε = 0.1.

be of importance for the therapy of malignant car-
diac arrhythmias.

In the next section we will apply this extended
RQA to physiological data.

4. Event-Related Potentials

4.1. The Oddball experiment

As mentioned in the Introduction, the Oddball ex-
periment studies brain potentials during a stimulus
presentation.

The measurement of the EEG was done with
31 electrodes/channels (Table 1). The first 25 elec-
trodes were localized as shown in Fig. 2; the others
were reference electrodes. The sample interval for
the measurements was 4 ms.
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Table 1. Notation of the electrodes and their
numbering as used in the figures (electrodes
26–31 are reference electrodes).

# Electrode # Electrode

1 F7 14 T8
2 FC5 15 P7
3 F3 16 PZ
4 FZ 17 P3
5 F4 18 CZ
6 FC6 19 P4
7 F8 20 P8
8 T7 21 OZ
9 CP5 22 POZ

10 C3 23 PO3
11 FCZ 24 CPZ
12 C4 25 PO4
13 CP6

Fig. 2. Localization of the electrodes on the head.

Fig. 3. Mean event-related potentials for event frequencies of 90% (left, 40 trials) and 10% (right, 31 trials). The N100 and
P300 components are well pronounced for the frequencies of 10%. The lower plots show the ERP of selected electrodes. The
reference of the electrode numbers is given in Table 1.
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Probands were seated in a dimly lit room in
front of a monitor and were instructed to count
tones of high pitch. Each subject was tested in nine
blocks. The blocks varied in the probability of oc-
currence of the higher tones from 10 to 90%. Each
block contained at least 30 target tones. Response
was given in a three-alternative-choice (using cur-
sor keys of the keyboard). During the test, the EEG
was recorded. The stimuli were computer-generated
beeps of 100 ms length. Tones were either high
(1400 Hz) or low (1000 Hz). They were presented
with an interstimulus interval of 1000 ms.

After computing event-related voltage averages
for the experimental manipulations (10% up to 90%
target probability) one can observe a P300 ERP
component whose amplitude is anti-correlated to
the probability of the stimuli (surprise ERP, Fig. 3).

The P300 component of the ERP was the
first potential discovered to vary in dependence on
subject-internal factors like attention and expec-

tation instead of physical characteristics [Sutton
et al., 1965]. The amplitude of the P300 compo-
nent is highly sensitive to novelty of an event and
its relevance. So this component is assumed to re-
flect the updating of the environmental model of the
information processing system (context updating),
[Donchin, 1981; Donchin & Coles, 1988].

4.2. Data analysis

Our focus will be directed to the ERP data of two
extreme event probabilities. Henceforth, the time
(measured in ms) is denoted as t, the trial number
as i and the electrode as e (the allocation of the
electrode numbers with their notion, see Fig. 2).

The first set ERP90 contains 40 trials of ERP
data for an event frequency of 90% and the second
set ERP10 contains 31 trials for an event frequency
of 10%. Both data sets can be rather well discrim-
inated in the N100 and P300 components by the

Fig. 4. Event-related potentials for selected trials of the event frequencies of 90% (left) and 10% (right). Both, ERP10 and
ERP90 of single trials can be strongly or weakly pronounced, respectively, which makes their discrimination difficult. The
reference of the electrode numbers are given in Table 1.
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average over all trials (Fig. 3). As expected, both
components have increased for lower event proba-
bilities (ERP10). The maxima of the P300 are lo-
cated around the central and central-parietal elec-
trodes. However, the single trials do not obtain such
a clear result. The P300 component is only well pro-
nounced in 15 trials. When the single trials are ob-
served, then extreme values can also occur in the
ERP90 data and vanish in the ERP10 data (Fig. 4).
We applied also a statistical variance-based T-test
to the single trial ERP data. However, this method
could also not clearly distinguish the single trials.

The recurrence quantification analysis (RQA)
is based on the structures obtained by recurrence
plots (RPs). The RPs were firstly computed for the

means of ERP90 and ERP10 over all trials and then
for the single trials. This was done with the em-
bedding parameters m = 3, τ = 3 and ε = 10%
(fixed amount of nearest neighbors). The embed-
ding parameters were estimated by using the stan-
dard methods false nearest neighbors (dimension)
and mutual information (delay) [Kantz & Schreiber,
1997]. Due to the N100 and the P300 components in
the data, the RPs show varying structures changing
in time (Fig. 5). Diagonal structures and clusters of
black points occur. The nonstationarity of the data
around the N100 and P300 causes extended white
bands along these times in the RPs. However, the
clustered black points around 300 ms occur in al-
most all RPs of the ERP10 data set.

Fig. 5. ERP data for event frequencies of 90% (upper left) and 10% (upper right), and their corresponding recurrence plots
(lower plots). For the lower event frequency, more cluster of recurrence points occur at 100 ms and 300 ms.
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Fig. 6. Averaged RQA measures for the ERP data of both event frequencies (averaged over all trials). Whereas the measures
do not reveal any transitions in the ERP90 data, they clearly recognize the transitions for the ERP10 data.
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Fig. 7. RQA measures for selected single trials and the central-parietal electrode (black). The trial-averaged RQA measures
for the same electrode is shown in blue (the light blue band marks the 95% significance interval).
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Fig. 8. RQA measures for the same trials as in Fig. 7, but shown for all electrodes.
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The RQA was computed from the RPs of
ERP90 and ERP10 for the single trials, in sliding
windows over the RPs (which have the dimension
m = 3) with a length of 240 ms and with a shifting
step of 8 ms. This window length corresponds with
a data length of 60 values.

The mean of all RQA variables of ERP10 reveal
typical structures in the data (Fig. 6, right column).
They indicate the transitions corresponding to the
N100 and P300 components around the central elec-
trodes. The RQA variables for the ERP90 do not
reveal these transitions (Fig. 6, left column). The
onset of the increasing of the parameter is about
120 ms before the event. This is due to the win-
dowed analysis of the RPs (240 ms windows). We
have chosen the middle of the RP window for the
time, what results in a 120 ms earlier onset of the
RQA variables.

The four RQA variables are quite different, es-
pecially in their amplitude. For ERP10, LAM and
TT are the best pronounced parameter and have
two distinct maxima at some electrodes; DET and
L reveal these maxima at these electrodes too, but
are lesser pronounced (Fig. 6). These maxima occur
at the transition around 100 ms and 300 ms after
the event and occur at the electrodes F3, F4, FZ,
C3, FCZ, PZ, POZ and PO3. Differences between
the various transitions found by these measures also
occur in time and brain locations (electrodes). But,
the study was not detailed enough in order to give
reliable results.

The analysis of the single trials achieves sim-
ilar results (Figs. 7 and 8 show the results for se-
lected trials). The LAM clearly found the N100 and
P300 components for ERP10 in 26 trials (of 31), but
not for the ERP90 trials. The other measures have
lesser maxima and, thus, are not suitable for such
recognition.

This result indicates that our introduced mea-
sures of complexity (especially LAM) are able to
recognize transitions in brain potentials, which are
caused by e.g. stimulative events. These transitions
can be found in the single trials, which is an im-
provement to the classical method of averaging all
observations.

5. Summary

We have applied an extended recurrence quantifica-
tion analysis (RQA) to physiological event-related
potential data (ERP). The classical RQA consists
of measures which are mainly based on diagonal

structures in the recurrence plots (RPs), e.g. the de-
terminism (DET ), which is the ratio of recurrence
points located on connected diagonal structures in
the RP, and the averaged diagonal line length (L).
We have extended the RQA with two recently in-
troduced measures, the laminarity (LAM) and the
trapping time (TT ). These measures are analo-
gously defined as DET and L, but provided by the
vertical structures in recurrence plots. Whereas the
classical RQA enables the identification of period-
chaos transitions, the new measures make the iden-
tification of chaos–chaos transitions and laminar
states possible.

The classical method to study ERP data is to
average them over many trials. Our aim was to
study the single trials in order to find transitions
in the data.

The application of the extended RQA to ERP
data has discriminated the single trials with a dis-
tinct P300 component due to a high surprise mo-
ment (less frequent events) against such trials with
a low surprise moment (high frequent events). Con-
sidering the raw ERP10 data, the P300 component
can only be found in half of all trials. Also a sta-
tistical variance test fails to distinguish clearly the
trials. The LAM is the most pronounced parameter
in this analysis. It measures the ratio of recurrence
points located on connected vertical structures in
an RP. These structures correspond with laminarity
within the underlying process. In the ERP data, the
LAM reveals transitions from less laminar states
to higher laminar states after the occurrence of the
event and a transition from higher laminar states to
less laminar states after about 400 ms. These tran-
sitions occur around bounded brain areas (parietal
to frontal along the central axis). The comparable
measures DET/LAM and L/TT are quite different
in their amplitude. There should also be differences
in time and brain location of the found transitions.

These results show that the measures based
on vertical RP structures make the identification
of transitions possible, which are not found by the
classical RQA measures. They indicate transitions
in the brain processes into laminar states due to the
surprising moment of observed events.

A future work will be concerned with the devel-
opment of a statistical evaluation of these results.
Furthermore, this investigation has to be extended
to ERP data gained from other frequent events
and a detailed study of the comparable measures
DET/LAM and L/TT should give hints about the
different transitions in the brain processes.
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