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Abstract. In the last two decades recurrence plots (RPs) were introduced in many
different scientific disciplines. It turned out how powerful this method is. After
introducing approaches of quantification of RPs and by the study of relation-
ships between RPs and fundamental properties of dynamical systems, this method
attracted even more attention. After 20 years of RPs it is time to summarise this
development in a historical context.

1 Introduction

The technique known as recurrence plot is 20 years old. However, recurrences were studied
and employed long before. The Maya calender is one example where we can find the principle
of recurrences as the basic idea. We encounter recurrences in different aspects in nature and
social life.
With the birth of the modern mathematics in the 19th century recurrence was discovered to

be a fundamental property of conservative dynamical systems. Poincaré formulated his thesis
in the work about the restricted three-body system, which won him a prize sponsored by
Oscar II of Sweden and Norway. Poincaré found that “In this case, neglecting some exceptional
trajectories, the occurrence of which is infinitely improbable, it can be shown, that the system
recurs infinitely many times as close as one wishes to its initial state.” (translated from [51].)
In the following years, several important mathematical works were performed (e.g. [26]).
However, more than a half century had to pass for recurrences to be comprehensively studied

on numerical simulations and real measurements. Not until the introduction of powerful com-
puters such numerically costly studies were possible. As an example, we may take the Lorenz
system, which was one of the first numerical models exhibiting recurrences and chaotic behav-
iour [35]. Recurrences were analysed by first return maps [52], space time separation plots [53],
return time and recurrence time statistics [3,23].
The persistent growth of computer power allowed even more computer intense investigations,

as a pair-wise comparison of all possible combinations of pairs of a data series. This can be done
by the similarity matrix, a graphical representation of the similarity of all pair-wise combinations
in the considered data series. Although strictly speaking, the idea of a distance metric can be
traced back to the Pythagorean Theorem, the modern concept of this tool dates back to the
1920s in both applicative [69] as well as methodological fields [36]. The work of Kruskal in the
1960s [30] was one of the most quoted works in statistics and deeply affected many fields of
investigation from ecology to psychology and economics. All these fields appeared as separate by
physical science so that the appreciation of these works remained limited in physics. However,
these authors deeply investigated and exploited this approach for an analysis of distance spaces
allowing for an unbiased representation of virtually all kind of data without any constraint
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Fig. 1. (A) Recurrence plot and (B) “close returns plot” of the x-component of the Lorenz system
[35]; in both representations the same data is used. Diagonal lines in (A) correspond to horizontal lines
in (B). Used RP parameters: m = 5, τ = 5, ε = 7.6, L∞-norm.

about their characteristics. In this manner, they paved the way for the nowadays recognized
ability of recurrence based methods to deal with non-stationary, non-linear and relatively short
data series.
With the intense usage of computers, the similarity matrix was re-invented by several

scientific disciplines around the change from the 1970s to 1980s, and therefore different terms
for the same technique, like dot plot [8], contact map [9,24], similarity matrix [29,31] or
distance matrix [60] emerged. In the field of chaos theory it found its way a few years later
as the recurrence plot [10] (Fig. 1A). Now the aim was to compare all possible states repre-
sented by a higher-dimensional phase space trajectory. In case the trajectory runs through a
region in the phase space it passed before, then we consider it as a recurrence. A recurrence
means that the recurrent state is somehow similar to a former state. This definition of simi-
larity offers leeway to adopt the method to the needs of the investigation, as we will see later.
Thus, the recurrence plot technique was not really new. The intention of Eckmann et al. was to
have another representation of the dynamics of the systems. However, they immediately noted
that further important information, like determinism, divergence and drifting behaviour can be
found in such plots. They also stated that the lengths of the diagonal line structures in the RP
are related to the positive Lyapunov exponent.

2 The birth of the recurrence plot

By utilisation of the similarity matrix as a tool to visualise recurrences of higher-dimensional
phase space trajectories, Eckmann et al. did not expect to establish a new direction in nonlinear
data analysis. Nevertheless, 1987 is considered to be the birth of recurrence plots and their
quantification as a modern tool of nonlinear data analysis.
Short time later (no later than 1992), different authors independently introduced another

kind of representation of recurrences [48,78]. They did not compare all possible time points, but
only a given time into the past and future (Fig. 1B). Here a further name appeared: the close
returns plot. Such a representation can be more intuitive, in particular for beginners, because
the line structures of the recurrence plot will be parallel to the x-axis.

3 Recurrence quantification analysis

These first years were characterised by a rather rare application of this method (Fig. 2). The
appearance of recurrence plots in publications was somehow exotic. Moreover, up to this time,
recurrence plots were just a visualisation tool, what yielded to the disadvantage that the user



Recurrence Plots 5

had to detect and interpret the patterns and structures revealed by the recurrence plot. Low
screen and printer resolutions further worsened this issue. To overcome this subjective part of
the method, starting in the late eighties, Zbilut and Webber tried to quantify the structures of
the RP. At first they just determined the density of recurrence points in the RP and studied the
histogram of the lengths of diagonal lines [74,80,81]. In the following five years, they introduced
the known measures of complexity based on diagonal line structures of recurrence plots and
therewith established the recurrence quantification analysis (RQA):

– percentage recurrences or recurrence rate
– percentage determinism
– maximal line length and divergence
– Shannon entropy of the distribution of the line lengths
– trend.

For a definition of these measures we refer to [42]. The usefulness of these measures was shown
by an increasing number of applications to real data. However, until 1995, only few applications
of RPs and RQA appeared in publications.
Since the early nineties, Webber provides a freely available software (RQA Software) which

can be used to compute RPs and the RQA measures. In 1996, Kononov started the Visual
Recurrence Analysis (VRA) software. It has a user-friendly graphical interface and computa-
tional enhancements. Therefore, this software is rather popular. The TISEAN package, provided
by Hegger, Kantz and Schreiber, was also one of the first software packages able to compute
RPs (but without quantification, just RPs). For locations of these software in the WWW we
refer to the web site http://www.recurrence-plot.tk.
As a next milestone we find the introduction of the time-dependent RQA. The RQA mea-

sures are calculated from windows moved along the main diagonal of the RP. This allows for
the study of the evolution of the RQA measures over time [70]. It was shown that with this
approach it would be possible to detect transitions in dynamical systems. At this moment, only
transitions between regular and non-regular dynamics (like period-chaos transitions) could be
detected. In the same year, a publication with the promising title “Recurrence plots revisited”
appeared [4]. It suggested to use RPs to reconstruct the driving force of dynamical systems and
introduced the idea of meta recurrence plots, based on windowing and local correlation sum.
The major methodological work on the RP and RQA during the 1990s was performed by

the group around Zbilut and Webber in Chicago. Since the mid-1990s, the scientific community
became more and more aware of RPs, as the continuously increasing number of publications
between 1996 and 2004 demonstrates (Fig. 2).
Towards the end of the 1990s, first theoretical studies on the RP regarding their relationship

with dynamical invariants and the preservation of the topology appeared. McGuire et al. ana-
lytically demonstrated that the distance matrix as the base of the RP preserves all information
to reconstruct the underlying data series [47]. Faure and Korn have shown that the cumula-
tive distribution of the lengths of the diagonal lines is directly related to the K2 entropy [15].
The link between the columns of the RP and the information dimension was discussed by Gao
and Cai [16].
In 1998, Iwanski et al. already discussed the issue whether it is really necessary to embed in

order to derive quantities for the description of the dynamics. The authors based their discussion
on more heuristic numerical work and by using the RQA measure maximal line length. This
issue was further discussed by Gao and Cai [16], who also used the RP in order to estimate
recurrence times. They defined two types of recurrence times based on the vertical distance
between recurrence points in the RP.

4 Extensions for the recurrence plot and quantification analysis

In 1999, the perpendicular RP was suggested as a refinement in order to estimate the divergence
of the states [7]. Here a recurrence is defined using the additional condition that the recurrence
points have to lie on a plane which is perpendicular to the phase space trajectory of the
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Fig. 2. Publications about RPs and RQA for the last 20 years (May 2008).

reference point. The iso-directional RP, introduced in 2002, goes in a similar direction [25].
Its additional recurrence condition requires that the recurrent phase space trajectories have
to evolve in parallel, i.e. in the same direction. Unfortunately, these variants of a RP are not
popular, probably because of their higher computational efforts.
Also around the change to the new millennium, the RP technique was extended to the

bivariate cross recurrence plot (CRP) [38,77]. This bivariate extension tests for simultaneous
occurrences of similar states in two different systems. Consequently, cross recurrence quantifi-
cation analysis followed. This technique can be used to detect deterministic signals [77] and
to study complex interrelations between different systems [39,44]. Here delay based variants
of the RQA measures were introduced [39]. Furthermore, CRPs appeared rather illustrative
to study differences or transformations of time scales of similar observations [43]. This feature
was later used to understand changing shapes of line structures in RPs [40]. The detection of
deterministic signals by using RQA was further demonstrated by Zbilut et al. [76].
With the introduction of CRPs, the freely available CRP Toolbox for MATLAB, written by

Marwan, appeared. This toolbox is platform independent and contains almost all RP related
tools and measures. It is noteworthy that also commercial software started to include at least
the computation of RPs, like Dataplore (ixellence GmbH, Germany). For locations of these
software in the WWW we again refer to the web site http://www.recurrence-plot.tk.
With the new millennium, further measures of complexity were added to the RQA. Marwan

et al. introduced measures based on vertical line structures in the RP which are called laminarity
and trapping time [45]. Using these measures it was possible to detect chaos-chaos transitions.
At the same time, in bio-informatics RPs and RQA were employed to investigate the spatial

structure of biopolymers [19]. This was a deep change in perspective, because here these methods
do not analyse time series but spatial series or even spatial structures (starting directly from
distance matrices without the need of a pre-existing series, [73]) and makes the technique to
come back to its ‘purely statistical’ lineage (as opposite to the dynamical lineage).

5 Theoretical basis and dynamical invariants

Between 2002 and 2006, Romano and Thiel published several pioneering articles related to
different aspects of RPs. They theoretically justified the choice of the recurrence threshold
for data with observational noise and were able to analytically describe an RP for noise
[63,66]. They explained the link between the line lengths of the diagonal lines and the
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Fig. 3. (A) Pattern of gaps (large white areas) in a recurrence plot of a modulated harmonic oscillation
cos(2π1000t+0.5 sin(2π38t)) sampled with 1 kHz. These gaps represent missing recurrences due to the
sampling frequency close to the frequency of the harmonic signal. (B) Corresponding RP as shown in
(A), but for a higher sampling rate of 10 kHz. As expected, the entire RP now consists of the periodic
line structures due to the oscillation. Used RP parameters: m = 3, τ = 1, ε = 0.05σ, L∞-norm.

dynamical invariants [68]. This work led to further studies about the influence of embedding
[37,64,65].
In 2004, a real multivariate extension of RPs, the joint recurrence plot (JRP) was introduced

[58]. JRPs test for simultaneous occurrences of recurrences in different systems and are proper
means for the detection of general synchronisation [55]. Romano et al. have further demon-
strated how to use a delay based RQA measure (probability of recurrence, τ -recurrence rate)
for the detection of phase synchronisation, even for non-phase coherent oscillators [57]. The
probability of recurrence can be used to detect the direction of the coupling between systems
[56]. During this time, the idea of twin surrogates appeared, which are dynamics preserving
surrogates based on recurrences [42,67]. Such surrogates can be used to derive a statistical
inference for a synchronisation analysis. Moreover, a spatial extension of RPs was introduced,
resulting in RPs of higher dimension (like 4D or 6D) [41].
Instead of using spatial information of the phase space trajectory for the definition of recur-

rence, Groth has suggested to use the local rank order [21]. The local rank order defines specific
order patterns whose recurrences are represented by the order patterns RP. This definition of
a RP can help to overcome problems with changing amplitudes (e.g. drift).
The work of the Potsdam group was continued by Zou, Ngamga, and Schinkel who worked

on a theoretical approach for recurrences of quasiperiodic systems [83,84], on different kinds of
transitions, as to strange non-chaotic attractors [49], and on order patterns RPs [61].
The sampling rate of oscillating signals can be of importance for the detection of recurrences

[12,13]. Under certain conditions, large gaps can appear in a RP where actually recurrence
points should be (Fig. 3). This feigned disadvantage can be indeed rather helpful for the detec-
tion of slight frequency changes in oscillating signals which are not visible by standard spectral
analysis.
In 2008, Rohde et al. linked statistical properties of the distance matrix to the variance

and covariance (at least for stochastic processes) [54]. Krishnan et al. considered RPs from a
completely different point [27,28]. They stressed the fact that a RP can be considered as the
adjacency matrix of a complex network, allowing topological analysis of networks or graphs
by means of RQA. This approach is especially interesting in many interdisciplinary scientific
research.

6 The spreading application fields

In the last years, RPs again received more attention. Since 2005, more than 50 publications
appear per year (Fig. 2). Whereas in the beginning of the applications of RPs, the method
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Fig. 4. Usage of the CRP Toolbox for Matlab since 2003.

was mainly applied in life sciences for the detection of diseases (e.g. in cardiology, neuro-
psychology), the method became popular in other scientific fields during the years. Starting
in 1994, a first application in earth sciences (detection of variation in solar activity [32]), in
1996 in finance (detection of chaos in financial time series [17]), and in 1999 in engineering
(electronic circuits [11]), chemistry (detection of transitions during chemical reactions [59])
and applied physics (detection of resonances in atomic nuclei [72]) appeared. Since 2000 we find
numerous applications in many disciplines, from physiology, to biology, earth sciences, acoustics,
engineering and material sciences, finance and economics, to fundamental research in chemistry
and physics; an illustrative overview of examples can be found in [42]. As an addition to these
examples, we consider in the following exemplary some recently published works. There are of
course many more interesting articles, but a discussion of all of them is quite far beyond the
scope of this review. Here we focus on rather new, innovative or spectacular applications of
RPs and RQA.

In cardiology, heart sound analysis receives again more attention in the last years. The
automatic detection of the third heart sound is a big challenge, but desirable as a low cost
ability to early detect serious cardiac diseases just before a worse stage of the disease. RQA is
proposed to be a good candidate for the automatic detection of the third heart sound [1]. In
protein research, RQA has become a powerful tool to sudy protein structures and folding by
hydrophobicity patterns and net charge [18,19,79].

In earth and environmental science, various works show that RPs are getting attention
also in these fields. CRPs have been employed in order to study the asynchrony between the
appearances of sunspots in the solar northern and southern hemisphere [33,82]. The authors
infered from their studies an increased asynchrony in the mid of the last century. RPs found
their entrance into seismology, where the temporal distribution of earthquakes was qualitatively
studied with these plots [5]. RQA was used to investigate the dynamics of dissolved oxygen in
an Italian lake and to infer their characteristic time scales [14]. This method was also proposed
for monitoring regime shifts in environmental time series, like lake eutrophication and sea water
oxygen variability in coastal regions [75]. Based on (iso-directional) RPs the calling behaviour
of Japanese tree frogs were analysed [2]. This study revealed an anti-phase synchronisation of
the frogs’ calls and certain transitions between different calling behaviours.

We can also find an increasing number of applications in technology and engineering. For
example, the heat release of a spark ignition engine was studied using RPs and RQA in order
to investigate instabilities in the combustion process [34,62]. With the application of RQA on
underwater acoustic signals, it seems possible even to identify and classify different types of
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ships [6]. RQA was employed further to study convection dynamics in toroidal plasma [71] and
flow patterns in a two-phase oil/water mixture [50]. It was also suggested as a tool for the
analysis of dynamical patterns in IP-network traffic [46]. Sitting posture and discomfort during
long motorway driving was also studied by means of RQA, where it has been shown that RQA
measures are good indicators for a change in discomfort [22].
This increasing popularity is also illustrated by the number of downloads and application

fields of the CRP Toolbox (cf. http://www.recurrence-plot.tk).
For the proposed usage of the CRP Toolbox we have a statistics of the main purposes

of application, which allows us to estimate the distribution of applications of recurrence plot
based techniques in different scientific disciplines since 2003 (Tab. 1, Fig. 4). Although we
found few repetitions of downloads, the main distribution of application fields is not affected by
such repetitions. A further problem in analysing these data is, that we sometimes got multiple
choices of scientific fields, even rather unlike combinations, like earth science and neuro science.
The selection of the scientific fields and sub-fields may occur rather arbitrary. We do not claim
that it is a complete and best selection. However, it is mainly based on the submitted scientific
fields or research interests of the users. Some noteworthy and interesting fields are hidden
within the more general subjects, like artificial intelligence (in engineering), image processing
or telecommunications (in computer and IT networks) or volcanology (in geophysics). Several
users have not provided information about the intended purpose. We should also mention that
we ensure a strict data policy and use the provided data only for a statistical analysis like this.
For a usage statistics we consider two separate periods: a first period between May 2003 and

October 2005 with 383 downloads and a second between November 2005 and May 2008 with
728 downloads, revealing the increasing popularity of RPs and the needs of a corresponding
Matlab toolbox. The distribution of the application fields has only slightly changed between

Table 1. Scientific fields of usage of the CRP Toolbox since 2003 (May 2003–October 2005, November
2005–May 2008; descending order of usage in period 2005–2008).

Field Subject 2003–2005 2005–2008

Life sciences Psychology/cognitive and neuro sciences 54 147 152 275
Medicinal research/bio-electronics 59 75
Cardiology 24 36
Genomics/DNA sequencing 2 6
Proteins/systems biology 8 6

Engineering Engineering 39 56 63 131
Computer and IT networks 7 30
Speech signals/audio analysis 8 18
Traffic and transportation 2 14
Metal processing and analysis 0 6

Earth sciences Atmosphere and weather/climatology 10 59 29 89
Solar and astrophysics 9 14
Hydrology 4 12
Ecology 19 11
Geology 5 9
Geophysics 4 5
Seismology 6 4
Geography 2 5

Physics Applied physics 20 31 38 72
Theoretical physics 11 34

Economics Finance and markets 35 41 41 55
Economics 6 14

Education/Teaching 3 21
Chemistry 2 12
Social sciences 1 2
Others 43 71



10 The European Physical Journal Special Topics

these two periods; only the increase of applications in engineering (from 15% to 18%) and
the slight decrease in earth sciences (from 15% to 12%) is remarkable (Fig. 4). Therefore, in
the following we discuss only the second period. The main application fields are life sciences
(275 downloads), where psychology, neuro and cognitive sciences (EEG measurements) take the
largest part (152 downloads) and cardiology only the third largest part (36 downloads) behind
different medical problems (75 downloads). The next application fields are engineering (131),
earth sciences (89), physics (72), economics (55), education (21), chemistry (12) and even social
sciences (2). For 71 downloads we have not received sufficient information about the purpose
of the usage.

7 Outlook

A rather curious sign that RPs are at the final step to really become widely known and accepted,
we conclude with the 2008 April hoax of the Australian office of the internet company Google.
In a press release on April 1st, 2008, Google announced the launch of a new search technology
called gDay, which would be able to accurately predict future internet content [20]:

“. . . Using Google’s index of historic, cached web content and a mashup of numerous
factors including recurrence plots and fuzzy measure analysis, gDay creates a sophisti-
cated model of what the internet will look like 24 hours from now – including share price
movements, sports results and news events. . . . ”

As we know, many things Google introduced turned out to be quite popular later.

The author thanks A. Giuliani, C. Webber Jr. and J.P. Zbilut for helpful comments and sugges-
tions. This work has been supported by the project MAP AO-99-030 of the Microgravity Application
Program/Biotechnology from the Human Spaceflight Program of the European Space Agency (ESA).
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