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Abstract

We study an innovative modification of recurrence plots defining the recurrence
by the local ordinal structure of a time series. In this paper we demonstrate that in
comparison to a recently developed approach this concept improves the analyis of
event related activity on a single trial basis.
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1. Introduction

A basic research in cognitive science deals with the study of the behaviour of the brain after
short, surprising stimuli. Such event related changes can be measured as changes in the
brain potentials with electroencephalography (EEG), and are calledevent related potentials
(ERPs)(Sutton et al., 1965).

Traditionally, ERP waveforms are determined by computing an ensemble average of a
large collection of EEG trials that are stimulus time locked. This is based on the following
assumptions: (1) the presentation of stimuli of the same kind is followed by the same se-
quence of processing steps, (2) these processing steps always lead to activation of the same
brain structures, (3) this activation always elicits the same pattern of electrophysiological
activity, which can be measured at the scalp (Rösler, 1982) and (4) spontaneous activity is
stationary and ergodic.

EEG data contain a composition of different effects in the brain. Other signals not
related with ERPs are regarded in this context as noise. In order to find characteristic ERPs
in such strongly noisy EEG data, EEGs of a number of trials are measured. By averaging the
data points, which are time locked to the stimulus presentation, it is possible to filter out the
ERP signal of the noise (spontaneous activity). This way, a positive potential 300 ms after
the stimulus (P300) was the first ERP discovered. It was inferred that the P300 component
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varies in dependence on subject internal factors, like attention and expectation, instead on
physical characteristics (Sutton et al., 1965). The amplitude of the P300 component is
highly sensitive to the novelty of an event and its relevance (surprising moment), so this
component is assumed to reflect the updating of the environmental model of the information
processing system (context updating) Donchin (1981); Donchin and Coles (1988).

A disadvantage of the averaging is the high number of trials needed to reduce the signal-
to-noise-ratio. This disadvantage is crucial for example in clinical studies, studies with
children and studies in which repeating a task would influence the performance. Moreover,
several high frequency structures of the ERPs are filtered out by using the averaging method.
Therefore, new methods for the analysis of event related activity on a single trial basis are
highly desirable.

A recently developed approach based on the recurrence quantification analysis has
proven its ability to indicate transitions in the brain processes due to the surprising mo-
ment and to distinguish ERPs (Marwan and Meinke, 2004). In this paper we demonstrated
an improvement in the analysis by an innovative modification of the recurrence plots, where
the recurrence is defined by order patterns (Groth, 2005).

This paper is organized as follows. First we briefly review the recurrence plots and
its recurrence quantification analysis. Then, the modification of recurrence plots by order
patterns is introduced. Finally, we compare both approaches on event related data from the
Oddball experiment.

2. Recurrence Plots

We develop a recurrence quantification based onrecurrence plots (RP). A RP is aN × N
matrix representing neighbouring states~xi in a d-dimensional phase space (Fig. 1) (Eck-
mann et al., 1987)

Ri, j(ε) =

{
1 :

∥∥~xi −~xj

∥∥ ≤ ε
0 : otherwise

~xi ∈ Rd, i, j = 1. . .N, (1)

whereN is the number of considered states~xi; ε is a threshold distance and‖ ·‖ a norm.
Hence, (1) is a pairwise test of the closeness of points on a phase space trajectory: points
which fall in the neighbourhood of sizeε arerecurrence points. Another definition of RPs
does not use such a fixed thresholdε: only the F nearest neighbours are considered to
be recurrence points. This is thefixed amount of nearest neighbours (FAN)method and
coincides with the original definition of RPs by Eckmann et al. (1987). The ratioF/N is
the recurrence point density of the RP and we denote it asεFAN = F/N.

In RPs we obtain different structures: If the phase space trajectory returns to itself and
runs close for some time we obtain diagonal lines. Vertical lines or areas indicate phase
space trajectory which remain in the same area of the phase space for some time, and single
dots indicate that the phase space trajectory heavily fluctuates. The phase space vectors
can be reconstructed with the Taken’s time delay method~xi = (ui,ui+τ, . . . ,ui+(m−1) τ) from
one-dimensional time seriesui (observation) with embedding dimensionm= 2(d+1) and
delayτ (Takens, 1981; Kantz and Schreiber, 1997).
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Figure 1. (A) Segment of the phase space trajectory of the Lorenz system (for standard
parametersr = 28, σ = 10, b = 8

3; Lorenz, 1963) by using its three components and (B)
its corresponding recurrence plot. A point of the trajectory atj which falls into the neigh-
bourhood (grey circle in (A)) of a given point ati is considered as a recurrence point (black
point on the trajectory in (A)). This is marked with a black point in the RP at the location
(i, j). A point outside the neighbourhood (small circle in (A)) causes a white point in the
RP. The radius of the neighbourhood for the RP isε = 5.

To characterize the dynamics of the underlying system several measures were intro-
duced (Webber Jr. and Zbilut, 1994; Marwan et al., 2002; Marwan, 2003). Here we focus
on the following four measures. We denote the frequency distribution of the lengths of
diagonal lines byP(l) and that of vertical lines byP(v).

Thedeterminismis the amount of recurrence points forming diagonal lines with regard
to the total amount of recurrence points

DET(ε) =
∑N

l=lmin
l P(ε, l)

∑N
i, j Ri, j (ε)

. (2)

Processes with stochastic behaviour cause none or very short diagonals, and thus we
get low DET. Deterministic processes cause longer diagonals and less single, isolated
recurrence points, and we get higherDET. The thresholdlmin excludes the diagonal lines
which are formed by the tangential motion of the phase space trajectory. Forlmin = 1 the
DET = 1, thereforelmin should be at least 2. To exclude the tangential motion,lmin can be,
e. g., determined with the autocorrelation time (Theiler, 1986), but it has to be taken into
account that a too largelmin can worsen the histogramP(l) and thus the reliability of the
measureDET.

Diagonal structures indicate segments of the trajectory which are close to another seg-
ment of the trajectory at different time. Thus these lines are related to the divergence of the
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trajectory segments. Theaverage diagonal line length

L(ε) =
∑N

l=lmin
l P(ε, l)

∑N
l=lmin

P(ε, l)
(3)

is the average time that two segments of the trajectory are close to each other, and can be
interpreted as the mean prediction time. Although several authors stated that the inverse of
the length of the diagonal lines correlates with the largest positive Lyapunov exponent (e. g.
Trulla et al., 1996), it is important to note that this relationship is more complex.

Analogous to the definition of the determinism (2), we define the ratio between recur-
rence points forming vertical structures and the entire set of recurrence points as

LAM(ε) =
∑N

v=vmin
vP(ε,v)

∑N
v=1vP(ε,v)

, (4)

the laminarity. The computation ofLAM is realized for thosev that exceed a minimal
lengthvmin in order to decrease the influence of sojourn points. For maps,vmin = 2 is used.
LAM represents the occurrence of laminar states in the system without describing the length
of these laminar phases. If the RP consists of more single recurrence points than vertical
structuresLAM decreases.

The average length of vertical structures (cp. Eq. (3)) is defined as

TT(ε) =
∑N

v=vmin
vP(ε,v)

∑N
v=vmin

P(ε,v)
, (5)

and is calledtrapping time. WithTT we measure the mean time that the system will abide
at a specific state (how long a state will be trapped). The computation also uses the minimal
lengthvmin as forLAM.

Note that these measures can be computed from an entire RP or in moving windows
(i. e. sub-RPs) covering the main diagonal of the RP. The latter allows us to study the
change of these measures with time, which can reveal transitions in the system. Whereas
the diagonal-wise defined measures are able to find chaos-order transitions (Trulla et al.,
1996), the vertical-wise defined measures indicate chaos-chaos transitions (Marwan et al.,
2002).

3. Order Patterns Recurrence Plots

In (1) a recurrence is defined by spatial closeness between phase space trajectories~xi or
embedded time seriesui. Now we neglect the norm‖ ·‖ and define a recurrence by the local
order structure of a trajectory. Given a one-dimensional time series(u1, . . . ,ui, . . . ,uN) we
start to compared = 2 time instances and define the order patterns as

πi =

{
0 : ui < ui+τ

1 : ui > ui+τ
(6)

with the scaling parameterτ (tied ranksui = ui+τ are assumed to be rare). Next, ford = 3
there are six order patterns betweenui, ui+τ and ui+2τ possible (Fig. 2). In general the
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Figure 2. Order patterns of dimensiond = 3 (tied ranksui = ui+τ are assumed to be rare).

d components in~xi = (ui,ui+τ, . . . ,ui+(d−1)τ) can formd! different patterns. On systems
with continuous distribution of the values the equality has measure zero and we neglect
this. From these order patterns we get a new symbolic time seriesπi and define theorder
patterns recurrence plot (OPRP)as (Groth, 2005)

Ri, j(d) =

{
1 : πi = πj

0 : otherwise
i, j = 1. . .N. (7)

The order patterns decompose the phase space~x into d! equivalent regions and recur-
rence is given if the trajectory runs throw the same region at different time. A main advan-
tage of this symbolic representation is the well-expressed robustness against non-stationary
data. The order patterns are invariant with respect to an arbitrary, increasing transforma-
tion of the amplitude. A common approach to overcome the problem of a non-stationary
amplitude is the decomposition of a signal into instantaneous phase and amplitude, where
only the phase is studied. In (Groth, 2005) relations between phase and order patterns are
represented.

Furthermore a robust complexity measure based on this symbolic dynamics was al-
ready proposed (Bandt and Pompe, 2002) and successfully applied to epileptic seizure de-
tection(Cao et al., 2004).

4. Event Related Potentials

4.1. The Oddball Experiment

The Oddball experiment studies brain potentials during a stimulus presentation. In the
present Oddball experiment accoustic stimuli were used. Test subjects were seated in front
of a monitor and had to count tones of high pitch using the cursor keys of the keyboard.
During these tests, the EEG of the subjects was recorded. The experiment was repeated
in nine blocks containing at least 30 target tones. The blocks varied in the probability of
occurrence of the higher tones from 10 to 90 %. The accoustic stimuli were computer-
generated beeps of 100 ms length and of either high (1400 Hz) or low (1000 Hz) pitch.
They were presented with an interstimulus interval of 1000 ms.

The measurement of the EEG was performed with 31 electrodes/ channels (Tab. 1),
where electrodes 26-31 were reference electrodes. The sample interval for the measure-
ments was 4 ms (250 Hz).

We focus on the ERP data for an event frequency of 90% (ERP90) and 10% (ERP10).
For ERP90, a set of 40 trials and for ERP10 a set of 31 trials are measured. The averaging
of the potentials of ERP90 and ERP10 over the trials reveals the P300 ERP component,
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Table 1. Notation of the electrodes and their numbering as used in the figures
(electrodes 26–31 are reference electrodes).

# Electrode # Electrode # Electrode # Electrode
1 F7 8 T7 15 P7 22 POZ
2 FC5 9 CP5 16 PZ 23 PO3
3 F3 10 C3 17 P3 24 CPZ
4 FZ 11 FCZ 18 CZ 25 PO4
5 F4 12 C4 19 P4
6 FC6 13 CP6 20 P8
7 F8 14 T8 21 OZ

where its amplitude is higher for ERP10 (higher surprise moment, Fig. 3) (Marwan and
Meinke, 2004). This confirms the knowledge about this ERP, that is related on subject-
internal factors like attention and expectation instead of physical characteristics (Sutton
et al., 1965) and its amplitude is sensitive to novelty of an event and its relevance (context
updating, Donchin, 1981; Donchin and Coles, 1988).
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Figure 3. Mean event related potentials for event frequencies of 90 % (left, 40 trials) and
10 % (right, 31 trials) at selected electrodes. The P300 component is well pronounced for
the frequencies of 10 %.

4.2. Recurrence Quantification

Recurrence quantification measures were already successfully applied to ERP data (Mar-
wan and Meinke, 2004). In this work it has been shown that especially the measuresDET,
L, LAM andTT can be used for discrimination the events on a single trial bases.

In order to uncover transitions in the brain processes during unexpected stimulation
on a single trial basis, we firstly compute common RPs and their quantification similar
as presented in (Marwan and Meinke, 2004). The quantification is applied on moving
windows of size 240 ms (60 samples) with a shifting step of 8 ms, which allows us to
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study the time dependence of the recurrence measures. We use the embedding parame-
tersm= 3 andτ = 12 ms and a neighbourhood criterion ofεFAN = 10% (fixed amount of
nearest neighbours). The embedding parameters dimension and delay were estimated by
the standard methods false nearest neighbours and mutual information, respectively (Kantz
and Schreiber, 1997). The neighbourhood criterion of 10 % nearest neighbours was found
heuristically to be reliable even for non-stationary data.

The RPs of the ERP90 and ERP10 data sets contain diagonal lines and extended white
areas (Fig. 4). One white band is located at the time of the stimulus. Other white bands
which are located around 250 and 400 ms, occur almost only for ERP10 data and correspond
with the P300 component. Moreover, clustered black points around 300 ms occur also only
in RPs of the ERP10 data set.

The application of the recurrence quantification measures to these ERP data discrimi-
nates the single trials with a distinct P300 component resulting from a low surprise moment
(high frequent events) in favour of such trials with a high surprise moment (less frequent
events). In a previous study it was found thatLAM is the most distinct parameter for this
discrimination (Marwan and Meinke, 2004). In the ERP data, theLAM reveals transitions
from less laminar states to more laminar states after the occurrence of the event and a tran-
sition from more laminar states to less laminar states after approximately 350 ms. These
transitions occur around bounded brain areas (parietal to frontal along the central axis). The
comparable measuresDET andLAM as well asL andTT reveal similar results, because
extended black areas contain also a high amount of diagonal lines (Figs. 5 and 6).
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Figure 4. Recurrence plots (RPs) for the ERP90 and ERP10 measured at the central-parietal
electrode (CPZ). For the ERP10, more cluster of recurrence points occur around 300 ms.
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Figure 5. RQA measures for selected single trials and the central-parietal electrode (solid
line). The trial-averaged RQA measures for the same electrode is shown with a dashed line
(the light grey band marks the 95 % significance interval).
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Figure 6. RQA measures for the same trials as in Fig. 5, but shown for all electrodes.
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Next we compute OPRPs and quantify them by using the same moving windows as
for the common RPs. We use the dimensiond = 3, i. e. six order patterns and a delay of
τ = 20 ms.

The OPRPs are different in comparison to the common RPs (Fig. 7). They are more
homogeneous and do not reveal such “disruption” as shown in Fig. 4. This is due to the
robustness of OPRPs with respect to non-stationarity.

All measures gained from OPRPs reveal significant differences between ERP90 and
ERP10. For the same trial, we find a more distinct difference using OPRPs than common
RPs (Fig. 8). The quantification measures for ERP10 reveal high amplitudes at approxi-
mately 300 ms after the stimulus, wheras for ERP90 they vary within their standard devia-
tion.

In contrast to the analysis with common RPs, the measures based on OPRPs are more
different for different channels (Figs. 6 and 9). Electrodes in the frontal-central area (FZ,
FCZ, CZ) reveal high amplitudes inDET, L, LAM and TT between 100 and 400 ms.
Electrodes in the right frontal to parietal area (F4, C4, CP6, P4, PO4) reveal high amplitudes
in these measures around 300 to 400 ms after the stimulus.
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Figure 7. Order patterns recurrence plots (OPRPs) for the ERP90 and ERP10 measured
at the central-parietal electrode (CPZ). Their appearance differs from those of common
recurrence plots (Fig. 4)
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Figure 8. RQA measures for selected single trials and the central-parietal electrode (solid
line). The trial-averaged RQA measures for the same electrode is shown with a dashed line
(the light grey band marks the 95 % significance interval).
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Figure 9. RQA measures for the same trials as in Fig. 8, but shown for all electrodes.
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5. Conclusions

From these results we can infer that the application of order patterns is more appropriate
in order to study event related potentials on a single trial basis. In comparison with the
common recurrence plots, the transition to order patterns has the advantage to reveal more
significantly the P300 component and, moreover, differentiates better between single elec-
trodes.

As already found in a previous work, the P300 component is related with specific chaos-
chaos transitions where laminar states occur (Marwan and Meinke, 2004). These transitions
can also be detected with order patterns. Using OPRPs, these transitions can be localized
in the frontal-central and slightly right frontal to parietal regions.

The reliability of this method is currently tested by using EEG data of linguistic exper-
iments Schinkel et al. (subm). A further improvement of this approach could be possible
by using a spatio-temporal approach for the reconstruction of the phase space trajectory
Mandelj et al. (2001).
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