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Abstract — We present recently introduced new re-
currence plot based measures of complexity and il-
lustrate their potential with applications to the lo-
gistic map and heart rate variability data. These
new measures make the identification of chaos-chaos
transitions possible and identify laminar states. The
application to the heart rate variability data de-
tects and quantifies the laminar phases before a life-
threatening cardiac arrhythmia occurs; thereby fa-
cilitating a prediction of such an event.

1 INTRODUCTION

Numerous scientific disciplines use data analysis
techniques to get an insight into the complex pro-
cesses observed in nature which show generally a
nonstationary and complex behaviour. As these
complex systems are characterized by different
transitions between regular, laminar and chaotic
behaviours, the knowledge of these transitions is
necessary for understanding the process. Linear ap-
proaches of time series analysis are often not suffi-
cient and most of the nonlinear techniques (cf. [4]),
such as fractal dimensions or Lyapunov exponents,
suffer from the curse of dimensionality and require
rather long data series.

To overcome the difficulties with nonstationary
and rather short data series, the method of recur-
rence plots (RP) has been introduced [3]. An addi-
tional quantitative analysis of recurrence plots has
been developed to detect transitions (e. g. bifur-
cation points) in complex systems [12]. However,
these measures can identify only transitions be-
tween chaos and order. Therefore, we present here
three other measures basing on RPs and demon-
strate their potentials for a prototypical nonlinear
model and for cardiac data [9].

2 RECURRENCE PLOTS

The method of recurrence plots (RP) was firstly in-
troduced to visualize the time dependent behaviour
of the dynamics of systems, which can be pictured
as a trajectory ~x(t) = ~xi ∈ Rn (i = 1, . . . , N ,
t = i∆t, where ∆t is the sampling rate) in the
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n-dimensional phase space [3]. It represents the re-
currence of the phase space trajectory to a certain
state, which is a fundamental property of deter-
ministic dynamical systems. The main step of this
visualization is the calculation of the N ×N -matrix

Ri, j := Θ(ε − ‖~xi − ~xj‖), i, j = 1 . . . N,

where ε is a cut-off distance, ‖ ·‖ a norm (e. g. L2

or L∞ norm; in this work the L2 norm is used) and
Θ(x) the Heaviside function. The phase space vec-
tors for one-dimensional time series ui from obser-
vations can be reconstructed by using the Taken’s
time delay method ~xi = (ui, ui+τ , . . . , ui+(m−1) τ )
with dimension m and delay τ [10], whereby the
dimension m can be estimated by using methods
basing on false nearest neighbours (cf. [4]). The bi-
nary values in Ri, j can be simply visualized by a
matrix plot with the colours black (1) and white
(0).

The recurrence plot exhibits characteristic large-
scale and small-scale patterns which are caused by
typical dynamical behaviour [3, 14], e. g. diagonals
(similar local evolution of different parts of the
trajectory) or horizontal and vertical black lines
(state does not change for some time). Recently
introduced extensions to cross recurrence plots use
the diagonal structures and their distortions, re-
spectively, for finding similarities and time transfer
functions between two different systems [6, 8].

Zbilut and Webber have developed the recur-
rence quantification analysis (RQA) to quantify an
RP [14]. They defined measures using the recur-
rence point density and diagonal structures in the
recurrence plot, e.g. the recurrence rate RR (per-
cent recurrences, density of recurrence points), the
determinism DET (ratio of recurrence points form-
ing diagonal structures to all recurrence points),
the maximal length of diagonal structures Lmax (or
their averaged length L). A theoretical approach to
the RQA including the effect of observational noise
was recently published by Thiel et al. [11].

Trulla et al. have applied the RQA in order to
find transitions in dynamical systems [12]. They
have showed, that the RQA measures are able to
find transitions between chaos and order (periodical
states). But they could not find chaos-chaos transi-
tions, which are very typical in dynamical systems.
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Figure 1: Exemplary recurrence plot of the logistic
map for the band merging a = 3.679; RP parame-
ters are m = 1, τ = 1 and ε = 0.1σ.

3 MEASURES OF COMPLEXITY

Therefore, we have recently introduced two addi-
tional measures which are based on the vertical
structures in the RP [9, 7]. We define these mea-
sures analogous to the definition of DET and L
(and Lmax), but we consider the distribution P (v)
of the length of the vertical structures in the RP.

First, the laminarity LAM

LAM :=
∑N

v=2 vP (v)
∑N

v=1 vP (v)
,

is the ratio of recurrence points forming vertical
structures to all recurrence points and represents
the probability of occurrence of laminar states in
the system, but it does not describe the length of
these laminar phases. It will decrease if the RP con-
sists of more single recurrence points than vertical
structures.

Next, the trapping time TT

TT :=
∑N

v=2 vP (v)
∑N

v=2 P (v)
,

is the averaged length of the vertical structures.
The measure TT contains information about the
amount and the length of the laminar phases.

Finally, we use the maximal length of the vertical
structures in the RP

Vmax := max ({vl ; l = 1, 2, . . . L})
as a measure, which is the analogue to the standard
RQA measure Lmax.
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Figure 2: Laminarity (B) and trapping time (C) of
time series gained from the logistic map for vari-
ous control parameters (A). These measures reveal
laminar and intermittent states. The vertical dot-
ted lines show a choosing of points of band merg-
ing and laminar behaviour (a = 3.678, 3.727, 3.752,
3.791, 3.877, 3.927).

The distinction between these measures and the
traditional RQA measures is their ability to find
transitions between chaos and chaos [9].

4 APPLICATION TO THE LOGISTIC
MAP

In order to illustrate the potentials of LAM , TT
and Vmax, we firstly apply them to the logistic map
xn+1 = a xn (1 − xn), especially the interesting
range of the control parameter a ∈ [3.5, 4]. We gen-
erate for each control parameter a a separate time
series. In the analyzed range of a various regimes
and transitions between them occur, e. g. accumula-
tion points, periodic and chaotic states, band merg-
ing points, period doublings, inner and outer crisis
[1].

We compute the RP with a cut-off distance of
ε = 0.1 (in units of the standard deviation σ);
an embedding is not necessary here (i.e. m = 1
and τ = 1). The cut-off distance ε is selected to
be 10 percent of the diameter of the reconstructed
phase space. Smaller values would lead to a better
distinction of small variations (e. g. the range be-
fore the accumulation point consists of small varia-
tions), but the recurrence point density decreases in
the same way and thus the statistics of continuous
structures in the RP becomes soon insufficient.

For various values of the control parameter a the
RPs exhibits specific features (an exemplary RP is
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Figure 3: Recurrence plots of the heart beat interval time series at a control time (left) and before a VT
(right) with m = 6 and ε = 170. The RP before a life-threatening arrhythmia is characterized by big
black rectangles whereas the RP from the control series shows only small rectangles.

shown in Fig. 1). Periodic states cause continu-
ous and periodic diagonal lines in the RP but no
vertical or horizontal lines. Band merging points
and inner crisis represent states with short lam-
inar behaviour and cause vertically and horizon-
tally spread black areas in the RP. Fully developed
chaotic states (a = 4) cause a rather homogeneous
RP with numerous single points and rare short di-
agonal or vertical lines.

Therefore, the measures LAM , TT and Vmax,
which base on these vertical structures, find the
periodic-chaotic/ chaotic-periodic transitions as
well as the laminar states (Fig. 2 B, C). Since verti-
cal lines occur much more frequently at inner crisis
and band merging points (i.e. laminar states) than
in other chaotic regimes, LAM and TT grows up
at those points. Although Vmax also reveals lami-
nar states, it is quite different from the other two
measures, because it gives the maximum of all of
the durations of the laminar states [9].

Hence, the vertical length based measures yield
periodic-chaotic/ chaotic-periodic as well as chaos-
chaos transitions (laminar states).

5 APPLICATION TO HEART RATE
VARIABILITY DATA

A major challenge in biological physics is the anal-
ysis of cardiac time series. Heart rate variability
(HRV) typically shows a complex behaviour and
it is difficult to identify disease specific patterns.
Implantable cardioverter defibrillators (ICD) are a

safe and effective treatment for ventricular tachy-
cardia or fibrillation (VT). These fatal cardiac ar-
rhythmias are the main factors triggering sudden
cardiac death. A fundamental challenge in cardiol-
ogy is to find early signs of VT in patients with an
ICD based on HRV data (e.g. [2]). Recently studies
applied standard methods, methods basing on sym-
bolic dynamics as well as finite-time growth rates
to the HRV parameters from time and frequency
domain [2, 5, 13, 15].

The defibrillators used in this study are able to
store at least 1000 beat-to-beat intervals prior to
the onset of VT (10 ms resolution), corresponding
to approximately 9–15 minutes. We studied the
ICD stored beat-to-beat intervals before the onset
of 24 VT episodes and at 24 control intervals with-
out VT in 17 ICD patients of the Franz-Volhard-
Hospital with severe congestive heart failure. The
beat-to-beat intervals of the VT at the end of the
time series were removed from the tachograms so
that we analysed only the dynamics occurring im-
mediately prior to VT.

We calculate all standard RQA parameters de-
scribed in [14] as well as the new measures LAM ,
TT and Vmax for different embedding dimensions
m and vicinity threshold radii ε. We find differ-
ences between both groups of data for several of
the parameters mentioned above. However, the
most significant parameters are Vmax and Lmax for
rather large radii (Tab. 1). The vertical line length
Vmax is more powerful in significantly discriminat-
ing both groups than the diagonal line length Lmax,



as can be recognized by the higher p-values for
Vmax (Tab. 1). The RP before a life-threatening
arrhythmia is characterized by large black rectan-
gles, whereas the RP from the control series shows
only small rectangles (Fig. 3).

Table 1: Results of Lmax and Vmax shortly be-
fore VT and at control time, nonparametric Mann-
Whitney U-test, p – significance; * – p < 0.05; ** –
p < 0.01; ns – not significant p ≥ 0.05)

m ε
〈Lmax〉 〈Vmax〉

VT Ctr. p VT Ctr. p

3 77 396.6 261.5 ns 261.4 169.2 *
6 110 447.6 285.5 * 283.7 179.5 **
9 150 504.6 311.6 * 342.4 216.1 **

12 170 520.7 324.7 * 353.5 215.1 **

6 CONCLUSIONS

We have demonstrated that our new three measures
of complexity basing on recurrence plots are able
to identify chaos-chaos transitions and epochs of
laminar behaviour.

The application of these measures to heart rate
variability data, has shown, that they are able to
detect and quantify laminar phases before a life-
threatening cardiac arrhythmia and, thus, predict
such an event [9]. These findings can be of impor-
tance for the therapy of malignant cardiac arrhyth-
mias.

A download of a Matlab implementation is avail-
able at: www.agnld.uni-potsdam.de/˜marwan.
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