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Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon diagonal 
line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines can be cut by 
the borders of the RP and, thus, bias the length distribution of diagonal lines and, consequently, the 
line based RQA measures. In this letter we investigate the impact of the mentioned border effects and 
of the thickening of diagonal lines in an RP (caused by tangential motion) on the estimation of the 
diagonal line length distribution, quantified by its entropy. Although a relation to the Lyapunov spectrum 
is theoretically expected, the mentioned entropy yields contradictory results in many studies. Here we 
summarize correction schemes for both, the border effects and the tangential motion and systematically 
compare them to methods from the literature. We show that these corrections lead to the expected 
behavior of the diagonal line length entropy, in particular meaning zero values in case of a regular motion 
and positive values for chaotic motion. Moreover, we test these methods under noisy conditions, in order 
to supply practical tools for applied statistical research.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Recurrence quantification analysis (RQA) is a powerful tool for 
the identification of characteristic dynamics and regime changes 
[1,2]. This approach is successfully applied in many scientific dis-
ciplines [3–13]. Several measures of complexity are defined on 
geometric features (such as diagonal and vertical lines) in the re-
currence plot (RP), which represents time points j when a state 
�xi at time i recurs [14,3,1,2]. These line structures represent typ-
ical dynamical behavior and are related to certain properties of 
the dynamical system, e.g., chaotic or periodic dynamics. Therefore, 
their quantitative study by the RQA measures within sliding win-
dows is a frequently used task for the detection of regime changes 
[15–17,2]. However, as some RQA measures rely on the probabil-
ity distribution of the lengths of the diagonal lines in an RP, the 
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artificial alteration of these lines due to border effects [18,17], in-
sufficient embedding [1,19], or a certain sampling setting [20,21]
can have significant impact on these measures. A few ideas have 
been suggested to overcome such problems [18,22,23]. Here we 
review these ideas, propose novel correction schemes, and system-
atically compare them.

2. Recurrence quantification analysis and border effects

A recurrence plot (RP) is a binary, square matrix R representing 
the recurrences of states �xi (i = 1, ..., N , with N the number of 
measurement points) in the d-dimensional phase space [24,1]

Ri, j(ε) = �
(
ε − ‖�xi − �x j‖

)
, �x ∈Rd, (1)

with ‖ · ‖ a norm, ε a recurrence threshold, and � the Heavi-
side function. The RP consists of small-scale structures, such as 
single points and diagonal and vertical lines, which characterize 
important dynamical properties of the system. A diagonal line is a 
sequence of pairs of time points L := {(i, j), (i + 1, j + 1), . . . , (i +
� − 1, j + � − 1)} where Ri, j ≡ 1 for all index pairs in L. Diagonal 
lines in the RP represent the temporal duration that two distinct 
parts of the phase space trajectory run parallel (Figs. 1 and 2). The 
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Fig. 1. Parallel and close parts of a phase space trajectory (A) correspond to diago-
nal lines of length � in an RP (B). Diagonal lines can be cut by the border of the 
RP (green circles). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

histogram P (�) of the lengths of diagonal lines (Fig. 3) charac-
terizes the dynamics [25–27] and can be and has been used to 
quantitatively distinguish between RPs, the underlying dynamics, 
or to identify regime transitions [15,3,11–13].

For uncorrelated noise, the probability to find a line L of ex-
act length � decays exponentially [28] (Fig. 3A), i.e., the RP con-
sists only of very short diagonal lines, if there are any lines at all 
(Fig. 2A). In contrast, for chaotic dynamics, the RP contains diago-
nal lines of different lengths (Fig. 2C), resulting in a broad distri-
bution P (�) (Fig. 3C). The RP for a periodic system contains con-
tinuous, non-interrupted diagonal lines, virtually of infinite length 
(Fig. 2B). In principle, we would expect a discrete line length dis-
tribution with a peak at line length infinity. However, the lines are 
cut at the begin and end of the RP, such that an uncorrected con-
ventional line length measurement results in a discrete distribution 
P (�) with uniform characteristics (Fig. 3B).

The RP is a discrete matrix. Therefore, the creation of the his-
togram P (�) appears to be trivial. But it is not as simple as it looks 
at the first glance. Diagonal lines can be quite long and – as al-
ready mentioned – can exceed the finite size of the RP. In practice, 
this is a very common problem, particularly when a sliding win-
dow method is applied. How to count such diagonal lines? As we 
will see later, for some measures, it can be important to have the 
correct length of the lines, for other measures it does not play any 
role. In the original definition, the lines are also counted even if 
they were cut by the RP border [14,29,1].

Several measures for RP analysis have been introduced which 
use P (�). The firstly introduced measure was the determinism [29]. 
This measure is the fraction of recurrence points that form diago-
nal lines

D =
∑N

�=�min
P (�)∑N

�=1 �P (�)
(2)

and considers lines which have at least length �min, which in prin-
ciple is a free parameter, but often set to 2. Nevertheless the choice 
of the minimal line length can be crucial for the correct estimation 
of some RQA measures and we come back to that in Sect. 6.1. More 
details about this can be found in [1]. Since RPs of uncorrelated 
noise have mainly single points and only few and short diago-
nal lines, for such dynamics D has rather low values (although 
embedding can result in artificially high D values, see discussion 
in [19,30]). In contrast, RPs for deterministic dynamics contain of 
Fig. 2. RPs of (A) standard normal Gaussian numbers, (B) time-delay embedded sinusoidal with an oscillation period T = 100 time units (m = 2, τ = T /4), and (C) the Rössler 
system (a = 0.15, b = 0.2, c = 10) (only subsets shown). RPs were constructed from time series of 2,000 samples (in case of the Rössler system we removed transients) using 
a constant global recurrence rate of 4% with a fixed threshold and Euclidean norm.

Fig. 3. Diagonal line length distributions of the different systems types described in Fig. 2, gained from the conventional line counting.
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many diagonal lines, resulting in elevated values of D , with the 
special case of D = 1 for periodic and quasi-periodic dynamics. As 
this measure only quantifies whether a recurrence point is on a 
diagonal line or not, the actual length of a diagonal line is not im-
portant (i.e., whether the line crosses the RP border or not).

Another idea is to look at the average and maximal length of 
the detected diagonal lines (related to prediction time and Lya-
punov exponent, resp. [1]). The average, of course, depends on the 
actual line lengths and will be biased when diagonal lines cross 
the RP borders.

Because the shape of P (�) differs for different dynamics, the 
Shannon entropy of the probability distribution p(�) = P (�)∑

� P (�)
to 

find a diagonal line of exact length � was suggested [29]

S = −
N∑

�=�min

p(�) ln p(�). (3)

This measure was introduced in a pragmatic way to quantify the 
visual line structures in the RP and has been interpreted as the “in-
formation content of the trajectories” [31]. Here, the choice of the 
minimal line length �min has a significant effect, since it discards 
parts of the line length histogram and therefore alters its shape. 
For uncorrelated noise, S has low values, because p(�) is exponen-
tially decaying. For chaotic dynamics, p(�) is a broad distribution, 
resulting in quite large S values. However, for periodic signals p(�)

has more similarity with a uniform distribution if the mentioned 
border effects are not accounted for. Therefore, S is not low for pe-
riodic signals, although we would expect it, but rather large, even 
larger than for chaotic dynamics. Here, the effect of the sliced lines 
at the RP border has the strongest and remarkable effect, which is 
why we focus on this measure only in this letter. Maximal and 
mean diagonal line length and specifically determinism and their 
behavior with respect to border effects, the choice of further RP re-
lated parameters and its interpretation will be examined carefully 
in a forthcoming paper.

3. Correction schemes for counting diagonal lines

In this section we show two ways of overcoming the problem 
of biased diagonal line based measures due to the border effect. 
Either we manipulate the histogram of the diagonal lines (Sect. 3.1) 
or we change the shape of the RP in order to avoid a bias in the 
first place (Sect. 3.2).

3.1. Alternative ways of counting line lengths

Let R be a N × N recurrence matrix, Eq. (1), and P (�) the his-
togram of the diagonal lines contained in R. We now substantiate 
the definition of a diagonal line in an RP from Sect. 2. A diagonal 
line L of length � is a set of � index tuples (·, ·)k=1,..,�:

L� := {(i + k, j + k) | ∀k = 0, ..., � − 1 :(
1 − Ri−1, j−1

) (
1 − Ri+�, j+�

)
Ri+k, j+k ≡ 1}. (4)

The length of a line �, is usually the cardinality of this set |L|.
We denote any diagonal line which starts and ends at the bor-

der of R as a border diagonal, e.g., in case of the lower triangle of 
the RP, when starting at (i, 1) in the first column and ending at 
(N, N − i + 1) in the last row:

Lborder := {(i + k,1 + k) | ∀k = 0, . . . , N − i : Ri+k,1+k ≡ 1 ∨
(1 + k, j + k) | ∀k = 0, . . . , N − j : R1+k, j+k ≡ 1}.

(5)
Any diagonal of length �, which starts or ends at the border of R
and has an end or start point within the recurrence matrix, we call 
semi border diagonal:

Lsemi border

:= {(i + k, j + k) | ∀k = 0, . . . , � − 1 ∧ ( j = 1 ∨ i + � − 1 = N) :
Ri+k, j+k ≡ 1 ∨

(i + k, j + k) | ∀k = 0, . . . , � − 1 ∧ (i = 1 ∨ j + � − 1 = N) :
Ri+k, j+k ≡ 1}. (6)

3.1.1. Discard border diagonals from histogram (dibo correction)
The real length of the border diagonals is unknown. Therefore, 

we are not able to assign their true length to them and, hence, one 
option to deal with the missing length regarding the line length 
histogram is setting their length to zero. That is, we simply dis-
card all (semi-)border diagonals from P (�) and, thus, avoid the 
broad line length distribution as exemplary shown in Fig. 3B. As 
desired, this results in a lowered entropy value, but also has some 
drawbacks. In case of a perfectly sampled stationary periodic sig-
nal (without any noise contamination and without effects due to 
tangential motion, cf. Sect. 4) this method would empty the his-
togram P (�) completely, leaving an undefined entropy (Figs. 8, 12, 
13) and a mean and maximum line length of zero (cf. Fig. 4B for 
a result not corrected for tangential motion). In the following, we 
refer to this approach as dibo correction (DIscard BOrder diagonals).

3.1.2. Assign maximum line length to all border diagonals (Censi 
correction)

To avoid an empty diagonal line histogram, Censi et al. [18]
suggested to assign all border diagonals the length of the main di-
agonal of the RP (line of identity). Sticking to the aforementioned 
example of a perfectly sampled and uncontaminated stationary pe-
riodic signal, this modification would result in a delta peak in P (�)

(cf. Fig. 4C for a result not corrected for tangential motion), and 
therefore a sound defined entropy value of zero as well as mean-
ingful mean and maximal line length estimate (Figs. 8, 12, 13). 
For deterministic chaotic processes this correction scheme could 
underestimate the entropy, if the RP is smaller than the average 
length scale of the diagonal lines. Especially in a running window 
approach, this effect is assumed to be significant. We refer to this 
approach as Censi correction.

3.1.3. Keeping just the longest border diagonal (kelo correction)
In alternative to the correction in Sect. 3.1.1, all (semi-)border 

diagonals from P (�) are discarded, but the longest one (cf. Fig. 4D). 
This approach would also avoid the broad line length distribution 
shown in Figs. 3B and 4A, but would leave a valid definition of 
the entropy, since P (�) is not an empty set (cf. Figs. 8, 12, 13). 
The resulting entropy for the aforementioned example would be 
low. In contrast to the Censi correction, this approach would avoid 
the bias for deterministic chaotic processes when a windowing ap-
proach is applied. In the following, we refer to this approach as 
kelo correction (KEeping the LOngest border diagonal).

3.2. Alternative RP window shapes (window masking)

The origin of the border diagonals is related to a geometric dif-
ference between the RP and the diagonals. Therefore, a further 
approach to avoid the length bias of border diagonals is to ap-
ply a specific window to the RP which has the same geometric 
orientation as the diagonals. One realization of such a window is 
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Fig. 4. Diagonal line length histograms of the conventional line length computation (A) and of the presented correction schemes (B-E) for a monochromatic time-delay 
embedded sinusoidal with an oscillation period T = 100 time units (m = 2, τ = T /4, same as in Figs. 2B and 3B). An enlargement of the histograms from panels A to D, 
focusing on the shorter line lengths, is presented in panel F. A corresponding enlargement of panel E does qualitatively look the same, but with reduced frequencies, due to 
the smaller effective window size (see text for details). For a better visibility we enlarged single bars in panels B to E and limited the view to a frequency range [0 3] in 
panels A to E (in F the full range is used).
Fig. 5. Blue shaded alternative window shape with edge length s of a w × w re-
currence plot. s and w imply the number of RP matrix elements covered by the 
window shapes.

a 45° rotated cutout from the original RP (Fig. 5). Conventionally 
counting the lines of this rotated RP cutout preserves a delta peak 
distribution in P (�) in case of a periodic signal (cf. Fig. 4E for a re-
sult not corrected for tangential motion). However, with this shape 
we loose w2 − 2s2 = w2 − 1

2 w2 = 1
2 w2 data points with respect 

to the original RP. Note that s and w in Fig. 5 imply a number 
of data points, meaning hypotenuse and catheti of an isosceles tri-
angle have the same length (w = s

2 ). We argue that this approach 
could be rather useful in a running window approach over a global 
RP, where the size of the alternative shape could be chosen such 
that it contains as many data points as the classic, non-rotated, 
window. We refer to this approach as window masking. An alter-
native window shape would be a parallelogram with the top and 
bottom sides having the 45° direction [32].

4. Tangential motion in recurrence quantification analysis

Even though the considerations made in the preceding sections 
are valid and useful, the correction schemes presented in Sect. 3
most likely do not give the expected correction for the entropy of 
diagonal line lengths for experimental data, unless the data has 
been properly preprocessed. There are three reasons why the cor-
rection of the border diagonals in the diagonal line histogram P (�)

is not sufficient enough: (i) temporal correlations in the data, espe-
cially when highly sampled flow data is used, (ii) noise, and (iii) in-
sufficient embedding of the time series at hand (if needed) com-
bined with the effect of discretization and an inadequate choice 
of parameters needed to construct the RP (recurrence threshold 
method, recurrence threshold size, norm).

Temporal correlation means that states �x j preceding or suc-
ceeding a state �xi (or a recurring state �xk of �xi ), are very sim-
ilar to this one and, hence, falling into the neighborhood of �xi
(or �xk) and to be considered as recurrences, i.e., Ri, j := 1 for 
j = [i − m, . . . , i + n] or for j = [k − m, . . . , k + n] when Ri,k := 1
(Fig. 6A). This results in vertically extended sequences in the RP, 
i.e., thickening its diagonal lines. The thickening leads to an arti-
ficially enlarged number of diagonal lines, thus effecting the dis-
tribution P (�), and is often referred to as tangential motion [33,1]. 
Moreover, the thickening is not evenly distributed along a diagonal 
line (Fig. 6B). For border diagonals, this means that there are not 
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Fig. 6. (A) Tangential motion, i.e., points of a trajectory preceding and succeeding a (recurring) state (gray), cause thickening of diagonal lines in the RP (B), (C). The thickening 
of diagonal lines can vary, e.g., as in this example of the Rössler system (noise free case in B and additive noise in C). The diagonal lines are more thick at the beginning and 
become less thick with time. A diagonal line in an RP (B), (C) denotes a range of distances in the distance matrix falling under the recurrence threshold ε. Panels (D) and 
(E) show three “distance ranges” (we call such a range D in the text) corresponding to the three lines in (B), (C) respectively. Shown is a colorcoded, thresholded distance 
matrix with reversed z-axis for a better visibility (increasing distances from top to bottom). The colormap encodes zero distance as black and the distance corresponding to 
the recurrence threshold as gray.
only additional border diagonals (which could be handled by ap-
plying correction schemes as described in Sect. 3), but additional 
shorter diagonal lines, again leading to a broadening of the line 
length distribution P (�) (Fig. 4, in particular panel F) and an ele-
vated entropy S .

Additive noise causes the already thickened lines in the RP to 
appear more diffuse (Fig. 6C, E). Technically speaking, the noise 
alters the phase space trajectory, causing the pairwise distances 
to randomly scatter about their true/noise free values and, thus, 
the histogram P (�) gets enriched with small line lengths [34]. This 
eventually biases the RQA measures discussed in Sect. 2.

5. Correction schemes for reducing the effects of tangential 
motion

5.1. Perpendicular RP

A straightforward way to reduce the thickening of the diagonal 
lines from a theoretical perspective is the perpendicular RP, sug-
gested by Choi et al. [35]

R⊥
i, j(ε) = �

(
ε − ‖�xi − �x j‖

) · δ
(
�̇xi · (�xi − �x j)

)
, �x ∈Rd. (7)

This RP contains only those points �x j that fall into the neighbor-
hood of �xi and lie in the (d −1)-dimensional subspace of Rd that is 
perpendicular to the phase space trajectory at �xi . Although theoret-
ically there is no need for an additional parameter in order to con-
struct a perpendicular RP, in practical situations almost no points 
in Rd phase space end up on the mentioned (d − 1)-dimensional 
subspace of �xi (Poincaré section), due to limited resolution (dis-
cretization) of the data. Hence, it is reasonable to introduce an 
additional threshold parameter ϕ , which allows points �x j to be 
considered as perpendicular to �xi , if

arccos
�̇xi · (�xi − �x j)

|�̇xi | · |(�xi − �x j)|
∈

[(π

2
− ϕ

)
,
(π

2
+ ϕ

)]
. (8)
Thus, Eq. (7) transforms to

R⊥
i, j(ε,ϕ) = �

(
ε − ‖�xi − �x j‖

)
· �

(
ϕ −

∣∣∣∣arccos
�̇xi · (�xi − �x j)

|�̇xi | · |(�xi − �x j)|

∣∣∣∣−π

2

)
, �x ∈Rd.

(9)

Fig. 7B shows a perpendicular RP for a Rössler system (with pa-
rameters a = 0.15, b = 0.2, c = 10, transients removed). For the 
estimation of the tangential at each point in phase space we used 
the reference point, its predecessor and its successor. We set the 
angle threshold to ϕ = π

12 (= 15°).

5.2. Isodirectional RP

Requiring less computational effort, the iso-directional RP sug-
gested by Horai et al. [36] also promises to cope with the tan-
gential motion, but also inherits two additional parameters T and 
ε2 (Fig. 7C). In this approach two points in phase space are de-
noted recurrent, if their mutual distance falls within the recurrence 
threshold ε and the distance of their trajectories throughout T
consecutive time steps falls within a recurrence threshold ε2

R⇗i, j(ε, ε2, T ) = �(ε − ‖�xi − �x j‖)
· �(ε2 − ‖(�xi+T − �xi) − (�x j+T − �x j)‖), �x ∈Rd.

(10)

We achieved decent results when choosing T in the size of the 
decorrelation time (e.g., first minimum of the mutual information) 
and the second recurrence threshold as half of the size of the re-
currence threshold ε, which determines the parent RP.

5.3. True recurrence point RP (TRP)

Inspired by the work of Gao [37], Ahlstrom et al. [38] compute 
a normal RP, Eq. (1), but only accept those points to be recurrent, 
which “first” enter the ε neighborhood shown in Fig. 6A. To ensure 
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Fig. 7. Different approaches for avoiding the effect of tangential motion in a recurrence plot (RP), exemplary shown for the Rössler system (with parameters a = 0.15, 
b = 0.2, c = 10, sampling time 	t = 0.2). (A) Normal RP with fixed recurrence threshold ensuring 4% global recurrence rate as a basis to all other RPs shown in this 
figure. (B) Perpendicular RP with angle threshold ϕ = 15°, (C) isodirectional RP with T = 5 [sampling units] and ε2 = ε/2, (D) true recurrence point RP (TRP) with Tmin = 5
[sampling units], which coincides with the first minimum of the mutual information, (E) thresholded local minima approach with two parameters (LM2P) and τm = 5, and 
(F) diagonal RP.
this, they first identify all points which fall into an ε-neighborhood
of a certain point �xi

ζi ≡ {�x j1 , �x j2 , ... |Ri, jk
:= 1}, (11)

i.e., all points jk in column i of the RP. The time difference of two 
consecutive recurrence points �x jk , �x jk+1 is {T (1)

k = jk+1 − jk}k∈N in 
units of the sampling time (recurrence times of first type [37]) and 
these correspond to the vertical distances between these points 
in column i of the RP. They now discard all points from the RP, 
which vertical distance to its neighboring point in a column is 1 
and leaving all points with recurrence time larger than 1,

ζ ∗
i ≡ {�x j1 , �x j2 , . . . |Ri, jk

:= 1, T (1)

k > Tmin}, Tmin = 1. (12)

The authors call this modified RP a true recurrence point recurrence 
plot (TRP). This is different than simply discarding all points from 
the computations of Eq. (1) which fall within a certain time range 
wTheiler of the reference point (Theiler window [20])

Ri, j(ε) = �
(
ε − ‖�xi − �x j‖

)
, |i − j| > wTheiler, �x ∈ Rd. (13)

To obtain a TRP, we suggest to discard all recurrence points 
with recurrence times greater than wTheiler, i.e., Tmin = wTheiler in 
Eq. (12). The Theiler window should be set in the order of the 
decorrelation time or the delay, if time delay embedding is used 
for reconstructing the phase space vectors from time series.

However, the TRP most often leads to disjoint, deviated diago-
nal line structures (Fig. 7D), which correspond to the white em-
braced lines in Fig. 6D, E.
An alternative would be to use the mid-points of the recurrence 
sequences. This would also correspond to recurrence times as dis-
cussed in [39]. In Subsect. 5.5, we will develop another correction 
scheme which is motivated by these mid-point based “true recur-
rences”.

5.4. RP by means of local minima

Another approach for reducing the effect of tangential motion 
and which shares the basic idea from the TRP approach, was in-
troduced by Schultz et al. [22], who track the local minima of the 
distance matrix (corresponding to the maxima in Fig. 6D, E). Wendi 
& Marwan [23] then extended this idea in order to make the 
method more robust against noise. However, such local-minima 
based RP can contain bended or disrupted diagonal line structures. 
The key idea is to look for local minima in each column of the dis-
tance matrix, illustrated as an orange cross section in Fig. 6D, E. 
If such a local minimum is smaller than the recurrence thresh-
old, then it is a recurrence (LocalMinimaThresholded, LMT). In the 
two-parameter approach (LM2P) [23] shown in Fig. 7E, there is an 
additional constraint for two consecutive local minima to be dis-
placed by at least τm time steps.

5.5. Diagonal RP

We now propose an additional approach to cope with the tan-
gential motion, which does not need any additional parameters 
and leads to an RP of straight, unbended diagonal line structures 
(Fig. 7F). We call this approach the diagonal RP, since it generates 
an RP with only diagonal line structures that are just one point 
thick.

A diagonal line in an RP corresponds to a connected region 
in the distance matrix with distances smaller than the recurrence 
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threshold ε (Fig. 6D, E, white embraced region). We call such re-
gion a “distance range” D. Typically, the larger ε the larger the 
Di ’s in the RP. Moreover, tangential motion, noise and insufficient 
embedding affect the shape and width of the Di ’s. For the diag-
onal line based RQA measures we are interested in these ranges 
to be represented by single, connected diagonal lines in the cor-
responding RP. We choose the longest line of each Di to be its 
adequate representative in the RP. We define the “distance ranges” 
Di of an RP recursively as a set of adjacent diagonal lines L(m)

�m
of 

length �m (cf. Eq. (4)), initializing with the longest line L(k)
�k

, for 
which �k = max(� : P (�) > 0).

Di := {L(k)
�k

,L(m)
�m

| L(m)
�m

� L(m−1)
�m−1

� L(m−2)
�m−2

� ... � L(k)
�k

∨
L(m)

�m
� L(m−1)

�m−1
� L(m−2)

�m−2
� ... � L(k)

�k
}
(14)

with the line-neighbor-relations � and � defined by

∃p ∈ [1, ..., �m] ∃q ∈ [1, ..., �k] :

(im, jm)p :=
⎧⎨⎩(ik + 1, jk)q ∨ (ik, jk + 1)q, if L(m)

�m
� L(k)

�k

(ik − 1, jk)q ∨ (ik, jk − 1)q, if L(m)
�m

� L(k)
�k

(15)

where (im, jm)p=[1,...,�m] denote the index tuples corresponding 
to lines L(m)

�m
and (ik, jk)q=[1,...,�k] denote the index tuples corre-

sponding to the longest line L(k)
�k

. We then delete all lines con-
tained in Di from the histogram P (�) and define the next distance 
range Di+1 with a new L(k′)

�k′ from the histogram and so on until 
P (�) is an empty set.

We construct the new RP by keeping the longest line of each Di

(all the L(k)
�k

’s). Denote the set of index tuples (i, j) corresponding 
to the set of longest lines gained from the Di ’s as S, then

R↗
i, j =

{
1, if (i, j) ∈S

0, otherwise
(16)

Note that this algorithm constricts clusters of adjacent recur-
rence points to a single diagonal line, representing this “distance 
range” D (skeletonization). Although this method impresses with 
the absence of additional parameters, caution in its use is advised 
concerning the choice of the embedding parameters and the recur-
rence threshold. A wrong setup, specifically a too high recurrence 
threshold and/or a “wrong” time delay, could lead to an overall 
connected RP, which in turn would cause a diagonal RP consisting 
of just one single line in each triangle (if the main diagonal is dis-
carded). However, concerning the sensitivity to the choice of the 
recurrence threshold, our numerical investigations suggest a rather 
low risk of this special case and a broad range of threshold values, 
which do work well (cf. Sect. 6, Sect. A and figures therein).

6. Results: Efficience of correction schemes

We now apply the correction schemes for counting diagonal 
lines (Sect. 3) and suppressing tangential motion (Sect. 5) on a 
time discrete as well as time continuous example, in order to test 
their ability to give valid estimates for the entropy of diagonal line 
lengths, Eq. (3). In case of the former we choose the Logistic map 
xn+1 = rxn(1 − xn) with control parameter r = 3.5, leading to reg-
ular limit cycle behavior, and control parameter r = 3.8, where a 
chaotic regime is obtained. For the latter we show diagonal line 
length entropies of RPs of the Rössler system [40]
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b + z(x − c)

two parameter configurations, also leading to regular limit cycle 
avior (a = 0.15, b = c = 10) and chaotic motion (a = 0.15, b =
, c = 10) [41]. The results shown in this section are based on 

sembles of 100 realizations of each parameter setting for the 
ssler system and on ensembles of 1,000 realizations of each 
ameter setting for the Logistic map, gained from randomly 
sen initial conditions out of a uniformly distributed interval 
∈ [0, 0.5] (Logistic map), x(0), y(0), z(0) ∈ [0, 2] (Rössler sys-
). We numerically integrate the Rössler equations using the 
licit Runge-Kutta (4,5) formalism (Dormand-Prince pair) as pro-
ed by the ode45-solver in MATLAB [42] with a fixed sampling 
e of 	t = 0.2. For both systems we discard the first 2,500 
a points as transients, keeping 1,000 (Logistic map) and 2,000 
ssler) data points as the time series we base our further com-

tations on. For estimating the entropy, we use the Maximum-
elihood-estimator p(�) =̂ p̂(�) = #number of lines of length �

#number of all lines in the RP for the 
babilities.
Generally, we expect (near-)zero entropy values for the regular 
ime setups and high(er) values for the chaotic regime setups 
 both considered examples in the noise free case (cf. Sect. 2). 
reover, we expect the correction schemes for counting diagonal 

es (Sect. 3) to perform well in case of the Logistic map exam-
s, due to the absence of tangential motion. For the flow data 
the Rössler examples, we expect a combination of these correc-
n schemes with the correction schemes for tangential motion 
cribed in Sect. 5 to give reasonable results. In order to validate 

r results we compute the diagonal line length entropy analyti-
ly for the mentioned cases. March et al. [27] gave an expression 
 this:

eoretical = K2

(
1

γ
− 1

)
− lnγ , (18)

th γ = (1 − e−K2 ) and K2 the correlation entropy. Practically 
 compute the largest Lyapunov exponent for our experimental 
tings [43] and use Pesin’s identity to get the Kolmogorov en-
py K1. Because the correlation entropy is a lower bound for 
 Kolmogorov entropy [44], we expect the reference values com-

ted from Eq. (18) to give underestimated expectation values for 
 diagonal line length entropy.
The results confirm our expectations (Fig. 8). While the con-
tional way of counting diagonal lines, where border effects are 

t taken into consideration, lead to counterintuitive behavior, all 
 described correction schemes are able to distinguish chaotic 
m regular regimes in both exemplary systems. In this laboratory, 
ise free conditions, the entropy estimates in case of the regu-
 limit cycle regimes are zero (or in case of the dibo-correction 
eme not defined, due to the absence of any diagonal line). For 
o and kelo the estimated values for the chaotic Rössler regime 

l within the two standard deviation margin of the theoreti-
 values, whereas Censi’s correction scheme comes very close 
 the windowshape correction scheme misses it by approx. 5%. 

ain, we have to stress that we expect the expectation values to 
underestimated, i.e. we assume Censi’s method and the window 
sking do also perform well. Let us stick to the kelo correction 
eme for now and look how the different correction schemes for 
gential motion perform (Fig. 9). First of all we have to mention 
t we were not able to produce any kind of reasonable estimates 
ile using the perpendicular recurrence plot R⊥ , regardless of 
 angle threshold parameter. This straightforward approach is ex-
mely sensitive to any kind of noise and to the sampling time 
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Fig. 8. Diagonal line length entropy (left panel) of the proposed diagonal recurrence plot R↗ (cf. Sect. 5.5) of the Rössler system (reddish) and the Logistic map (bluish) 
in a regular limit cycle regime (bright) as well as in a chaotic regime (dark). Shown are medians of the diagonal line length entropies gained from 1,000 realizations of 
the Logistic map and 100 realizations of the Rössler example, respectively, for the different line counting correction schemes described in Sect. 3. Errorbars indicate two 
standard deviations of these distributions. Black stars show medians of ensembles of 1,000 analytically computed values derived from Eq. (18) (its errorbars, as two standard 
deviations of the ensemble distribution, are barely visible and smaller than markers used). In the right panel the residuals to these underestimated expectation values are 
shown. Firstly, RPs were obtained with a fixed recurrence threshold corresponding to 19% recurrence rate in case of the Rössler examples and a fixed recurrence threshold 
corresponding to 1/10 of the range of the underlying time series in case of the Logistic map examples (for noise free map data the ε-adjustment with respect to the global 
recurrence rate does not work properly). Then our proposed, parameter free correction scheme leading to the diagonal recurrence plot R↗ was applied. Results for a range 
of recurrence thresholds and for all tangential motion RP-correction schemes are shown in Fig. 12 and Fig. 13 in the Appendix A. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 9. Diagonal line length entropy (left panel) based on the proposed line counting correction scheme kelo (cf. Sect. 3.1.3) for the Rössler system (reddish) and the Logistic 
map (bluish) in a regular limit cycle regime (bright) as well as in a chaotic regime (dark). Shown are medians of the diagonal line length entropies gained from 1,000 
realizations of the Logistic map and 100 realizations of the Rössler example, respectively, for all the different tangential motion correction schemes described in Sect. 4, 
but the perpendicular recurrence plot R⊥ . Errorbars indicate two standard deviations of these distributions. Black stars show medians of ensembles of 1,000 analytically 
computed values derived from Eq. (18) (its errorbars, as two standard deviations of the ensemble distribution, are barely visible and smaller than markers used). In the right 
panel the residuals to these underestimated expectation values are shown. The normal RP with a fixed recurrence threshold corresponding to 19% recurrence rate in case 
of the Rössler examples and a fixed recurrence threshold corresponding to 1/10 of the range of the underlying time series in case of the Logistic map examples (for noise 
free map data the ε-adjustment with respect to the global recurrence rate does not work properly) serves as a basis for the RP correction schemes shown here. Results for 
a range of recurrence thresholds and for all tangential motion RP-correction schemes are shown in Fig. 12 and Fig. 13 in the Appendix A. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)
of the system under observation. It needs a fairly high density of 
state space points, in order to yield a non empty RP and, thus, any 
meaningful diagonal line length entropy estimate. Hence, we skip 
this approach in our further analysis, especially the dependence 
of the shown results to the choice of the recurrence threshold and 
additive noise, but will discuss the performance of the perpendicu-
lar RP for a high sampled Rössler setup in the next subsection. For 
a general use, we cannot recommend the application of perpen-
dicular RPs. Coming back to the results (Fig. 9), solely the LM2P 
approach and the diagonal RP perform as expected (zero-values in 
case of the regular regime setups and higher values for the chaotic 
regimes, clearly distinguishable). Only the proposed diagonal RP is 
able to give estimates within the errorbars of the theoretical val-
ues (which is why only this approach was selected for Fig. 8). Note 
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Fig. 10. Cut outs of (A, D) the perpendicular recurrence plot R⊥ , (B, E) normal RP, and (C, F) the diagonal recurrence plot R↗ of the highly sampled Rössler system in chaotic 
regime (here with a sampling time of 	t = 0.02). Top panels (A-C) show noise free cases, bottom panels (D-F) show their noise contaminated counterparts. Shown are results 
of additive white noise as 10% of the mean standard deviation of the multivariate signal gained from the numerical integration. Computations have been carried out by using 
a fixed recurrence threshold corresponding to 35% recurrence rate and an angle threshold ϕ = 15◦ for R⊥ .
that the reference values slightly underestimate the “true” value 
and we cannot quantitatively correct for this bias. As in Fig. 7, we 
set the parameters T , Tmin and τm to the corresponding first min-
imum of the auto mutual information and the second recurrence 
threshold for the isodirectional RP was again set to ε2 = ε/2, but 
we tried many parameter configurations.

6.1. Results for high sampled data and the effect of noise

For the sake of completeness and in order to investigate the 
behavior of our proposed methods under more realistic conditions, 
we now look at the noise corrupted Rössler system in the two 
dynamical regimes (Sect. 6), but with an increased sampling fre-
quency (sampling time 	t = 0.08) and with total lengths of the 
three numerically integrated time series of 10,000 (transients al-
ready removed). In this setup the perpendicular recurrence plot 
R⊥ (Sect. 5.1) yields meaningful results (Fig. 10), and we compare 
its utility with respect to the estimation of the diagonal line length 
entropy to the normal RP and the novel diagonal recurrence plot 
R↗ (Sect. 5.5).

Fig. 11 illustrates the capability of R↗ to cope with tangential 
motion, especially under noise. Due to a too high computational ef-
fort we did not compute an ensemble in this case as we did in the 
lower sampled cases, so the errorbars are missing. Here we added 
an auto regressive (AR) process of second order with an amplitude 
corresponding to 20% of the mean standard deviation of the mul-
tivariate signal.

xt = a1xt−1 + a2xt−2 + εt, (19)

with parameters a1 = 0.7, a2 = 0.15 and εt denotes a white noise 
process with zero mean and constant variance of unity. Outcomes 
for the normal RP and the perpendicular recurrence plot R⊥ can be 
found in the Appendix (Figs. 16, 17). Additive white noise of the 
same magnitude gave similar results to the ones discussed here.
As expected from the examples in the last section, the diagonal 
RP approach performs well under noise free conditions and all, but 
the conventional line counting algorithms yield zero-value entropy 
estimates for the regular regime (panel B) and clearly non-zero 
entropies in case of the chaotic regime (panel A) close to the un-
derestimated reference values. The perpendicular RP also performs 
well in noise free conditions (Fig. 16). Even the conventional line 
length counting leads to the desired zero entropy estimates in case 
of regular motion. In the presence of noise, however, R⊥ is not 
able to distinguish regular from chaotic behavior (Fig. 17), whereas 
R↗ still performs well, giving almost the same results as in the 
noise free setup. The explanation can be found in considering the 
RPs (Fig. 10). For this noiselevel our proposed skeletonization ap-
proach (Fig. 10F) leaves small lines of maximum length 4 after 
its application to the noisy normal recurrence plot (Fig. 10E) as 
noise-leftovers. The appearance of these lines is not a result of the 
dynamics itself. Noise enriches the RP and its corresponding di-
agonal line histogram with small line lengths depending on the 
noiselevel ([34], Fig. 10, Fig. 2A, Fig. 3A). By increasing the mini-
mum line length one gradually discards the majority of the lines 
contained in the histogram and, thus, increases the prominence 
of larger line lengths for the computation of the entropy. For a 
regular regime, the distribution of lines of intermediate length is 
broader for all the correction schemes, but the diagonal RP. There-
fore an increasing minimal line length increases the entropy in the 
presence of noise for all the correction schemes, but the diagonal 
RP (cf. Fig. 17). In case of a chaotic regime the distribution of di-
agonals due to the dynamics is broader anyway (Fig. 2C, Fig. 3C) 
leading to the same effect.

When increasing the minimal line length for the diagonal RP, 
the entropy estimates stay more or less constant after a certain, 
sufficiently high, minimum line length, which depends on the 
noiselevel (Fig. 11C, D). The offset to the underestimated refer-
ence value for the chaotic case grows for increasing noiselevels. 
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Fig. 11. Normalized diagonal line length entropy estimates for all described correction schemes for counting diagonal lines (Sect. 3) based on the diagonal recurrence plot R↗
(Sect. 5.5) of the high sampled Rössler system as a function of the chosen minimal line length �min. The top panels (A - chaotic motion, B - regular motion) show the noisefree 
case and in the bottom panels (C - chaotic motion, D - regular motion) the results for noise corrupted data are shown. We added noise from an auto-regressive (AR) process 
of second order as 20% of the mean standard deviation of the multivariate signal gained from the numerical integration (cf. Eq. (19)). The underlying RPs for obtaining R↗
were computed using a fixed recurrence threshold corresponding to 35% recurrence rate. The gray shaded areas show medians of ensembles of 1,000 analytically computed 
reference values for K1 ± two standard deviations of these distributions transformed by using Eq. (18). (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)
Note that the effect of additive noise is harder to tackle for the 
tangential motion correction schemes for high sampled data like 
in this case, than it is for lower sampled examples as discussed 
in Sect. 6. The higher the sampling, the finer the ramification of 
distance ranges Di (thickened diagonal lines). Results for all cor-
rection schemes for a wide range of the recurrence thresholds and 
under the influence of white noise for the lower sampled situation 
can be found in the Appendix (Figs. 14 and 15).

7. Discussion

In this letter we investigated the effect of the finite size of a 
recurrence plot on its diagonal line length based quantification. 
Specifically, we showed how these border effects influence the di-
agonal line length entropy and proposed three new line length 
counting correction schemes, which take these effects into ac-
count (cf. Subsects. 3.1.1, 3.1.3, 3.2) and systematically compared 
them to an already proposed correction by Censi et al. [18] (Sub-
sect. 3.1.2). It turned out that for noise free or slightly noise cor-
rupted map data all these correction methods solve the problem 
of the biased diagonal line length entropy due to lines cut by the 
borders of the RP. However, for flow data the effect of tangen-
tial motion has a much bigger influence on the entropy bias than 
the border effects. Therefore, we systematically compared already 
proposed ideas to handle tangential motion and proposed a new, 
parameter free method, the diagonal RP (cf. Sect. 5.5). It can prop-
erly tackle the tangential motion effects and yield, in combination 
with the border effect correction schemes, meaningful estimates 
for the diagonal line length entropy. We have to emphasize that 
this method, in contrast to other suggested ideas, also works for 
noise contaminated data, is not sensitive to the particular choice 
of the recurrence threshold, does not introduce any additional pa-
rameter, and is, therefore, easy to use. In case of a noise corrupted 
flow-like signal the diagonal line length entropy approaches its 
constant expectation value for sufficiently high choices of the min-
imal line length, when the diagonal RP together with Censi’s or 
our proposed border effect correction schemes is used. Fairly high 
recurrence thresholds (>10% recurrence rate) favor the diagonal RP
method for intermediate or high noise levels.
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Appendix A. Sensitivity of the results to the recurrence threshold

Fig. 12. Diagonal line length entropy estimates as a function of the recurrence threshold ε. Shown are results for all described correction schemes for counting diagonal lines 
(Sect. 3) and suppressing tangential motion (Sect. 4), except the perpendicular recurrence plot R⊥ . In the top panel (A) median diagonal line length entropy values gained 
from 100 realizations of the noise free regular limit cycle regime of the Rössler system are shown, whereas the bottom panel (B) shows its chaotic regime counterpart, see 
text in Sect. 6 for details. The gray-shaded surface denotes the theoretical expectation value (median) computed from Eq. (18). Results for the diagonal RP and the kelo 
correction scheme are shown in the bottom right subplot, which is a cutout of the orange bars in the bottom center subplot, here including errorbars as two standard 
deviations from the computed ensemble.
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Fig. 13. Diagonal line length entropy estimates as a function of the recurrence threshold ε. Shown are results for all described correction schemes for counting diagonal lines 
(Sect. 3) and suppressing tangential motion (Sect. 4), except the perpendicular recurrence plot R⊥ . In the top panel (A) median diagonal line length entropy values gained 
from 1,000 realizations of the noise free regular limit cycle regime of the Logistic map are shown, whereas the bottom panel (B) shows its chaotic regime counterpart, see text 
in Sect. 6 for details. The gray-shaded surface denotes the theoretical expectation value (median) computed from Eq. (18). Results for the diagonal RP and the kelo correction 
scheme are shown in the bottom right subplot, which is a cutout of the orange bars in the bottom center subplot, here including errorbars as two standard deviations from 
the computed ensemble. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 14. Diagonal line length entropy estimates as a function of the recurrence threshold ε. Shown are results for all described correction schemes for counting diagonal 
lines (Sect. 3) and suppressing tangential motion (Sect. 4), except the perpendicular recurrence plot R⊥ . In the top panel (A) median diagonal line length entropy values 
gained from 100 realizations of the additive noise contaminated regular limit cycle regime of the Rössler system are shown, whereas the bottom panel (B) shows its chaotic 
regime counterpart, see text in Sect. 6.1 for details. Here, we added white noise as 10% of the mean standard deviation of the multivariate signal gained from the numerical 
integration. The gray-shaded surface denotes the theoretical expectation value (median) computed from Eq. (18). Results for the diagonal RP and the kelo correction scheme 
are shown in the bottom right subplot, which is a cutout of the orange bars in the bottom center subplot, here including errorbars as two standard deviations from the 
computed ensemble. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 15. Diagonal line length entropy estimates as a function of the recurrence threshold ε. Shown are results for all described correction schemes for counting diagonal lines 
(Sect. 3) and suppressing tangential motion (Sect. 4), except the perpendicular recurrence plot R⊥ . In the top panel (A) median diagonal line length entropy values gained 
from 1,000 realizations of the additive noise contaminated regular limit cycle regime of the Logistic map are shown, whereas the bottom panel (B) shows its chaotic regime 
counterpart, see text in Sect. 6.1 for details. Here, we added white noise as 10% of the standard deviation of the time series. The gray-shaded surface denotes the theoretical 
expectation value (median) computed from Eq. (18). Results for the diagonal RP and the kelo correction scheme are shown in the bottom right subplot, which is a cutout 
of the orange bars in the bottom center subplot, here including errorbars as two standard deviations from the computed ensemble. (For interpretation of the colors in the 

figure(s), the reader is referred to the web version of this article.)
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Appendix B. Sensitivity of the results to noise

Fig. 16. Normalized diagonal line length entropy estimates as a function of the minimum line length �min for noisefree data from the high sampled Rössler system (cf. 
Sect. 6.1). In the left panels (A, C, E) the underlying system exhibits chaotic dynamics, whereas the right panels (B, D, F) show their regular counterparts. The normal RPs 
(A, B) and the perpendicular RPs (E, F) were constructed using a fixed recurrence threshold corresponding to 35% recurrence rate. The normal RPs served as input for 
obtaining the diagonal RPs R↗ (C, D) and for the computation of the perpendicular RPs R⊥ we used an angle threshold ϕ = 15°. The gray shaded areas show medians of 
ensembles of 1,000 analytically computed reference values for K1 ± two standard deviations of these distributions transformed by using Eq. (18). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 17. Normalized diagonal line length entropy estimates as a function of the minimum line length �min for noise corrupted data from the high sampled Rössler system (cf. 
Sect. 6.1). We added noise from an auto-regressive (AR) process of second order as 20% of the mean standard deviation of the multivariate signal gained from the numerical 
integration (cf. Eq. (19)). In the left panels (A, C, E) the underlying system exhibits chaotic dynamics, whereas the right panels (B, D, F) show their regular counterparts. The 
normal RPs (A, B) and the perpendicular RPs (E, F) were constructed using a fixed recurrence threshold corresponding to 35% recurrence rate. The normal RPs served as input 
for obtaining the diagonal RPs R↗ (C, D) and for the computation of the perpendicular RPs R⊥ we used an angle threshold ϕ = 15°. The gray shaded areas show medians of 
ensembles of 1,000 analytically computed reference values for K1 ± two standard deviations of these distributions transformed by using Eq. (18). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)
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