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The appropriate selection of recurrence thresholds is a key problem in applications of recurrence
quantification analysis and related methods across disciplines. Here, we discuss the distribution of
pairwise distances between state vectors in the studied system’s state space reconstructed by means of
time-delay embedding as the key characteristic that should guide the corresponding choice for obtain-
ing an adequate resolution of a recurrence plot. Specifically, we present an empirical description of
the distance distribution, focusing on characteristic changes of its shape with increasing embedding
dimension. Our results suggest that selecting the recurrence threshold according to a fixed percentile
of this distribution reduces the dependence of recurrence characteristics on the embedding dimension
in comparison with other commonly used threshold selection methods. Numerical investigations on
some paradigmatic model systems with time-dependent parameters support these empirical findings.
Published by AIP Publishing. https://doi.org/10.1063/1.5024914

Recurrence plots (RPs) provide an intuitive tool for visu-
alizing the (potentially multi-dimensional) trajectory of
a dynamical system in state space. In case only uni-
variate observations of the system’s overall state are
available, time-delay embedding has become a standard
procedure for qualitatively reconstructing the dynamics in
state space. The selection of a threshold distance ε, which
distinguishes close from distant pairs of (reconstructed)
state vectors, is known to have a substantial impact on the
recurrence plot and its quantitative characteristics, but
its corresponding interplay with the embedding dimen-
sion has not yet been explicitly addressed. Here, we point
out that the results of recurrence quantification analy-
sis (RQA) and related methods are qualitatively robust
under changes of the (sufficiently high) embedding dimen-
sion only if the full distribution of pairwise distances
between state vectors is considered for selecting ε, which
is achieved by consideration of a fixed recurrence rate.

I. INTRODUCTION

A vector time series {�xi}N
i=1 [with �xi = �x(ti)] provides an

approximation of a specific trajectory of a given dynami-
cal system in finite-time and (for time-continuous dynamical
systems) finite-resolution. In many real-world applications,
however, inferring complete dynamical information from
observations is hampered by the fact that only some of the
dynamically relevant variables are directly observable. In
such cases, it has been demonstrated1 that it is possible to
qualitatively reconstruct representations of the unobserved
components of a higher-dimensional system by means of
embedding techniques applied to a suitably chosen individual
component.2 Specifically, time-delay embedding has become

a)Electronic addresses: hkraemer@pik-potsdam.de and hkraemer@uni-
potsdam.de

a widely utilized method in nonlinear time series analysis,
where a series of univariate observations {xi} (the actual time
series at hand) is unfolded into a sequence of m-dimensional
state vectors {�xi}1,3 defined as �xi = (xi, xi−τ , . . . , xi−(m−1)τ )

T ,
where m and τ denote the chosen embedding dimension and
embedding delay, respectively.

Introduced by Eckmann et al.,4 recurrence plots (RPs)
provide a versatile tool for visualizing and quantitatively ana-
lyzing the succession of dynamically similar states in a time
series. For this purpose, dynamical similarity is measured
in terms of some metric distance di,j = ‖�xi − �xj‖ defined in
the underlying system’s (reconstructed) state space. Based on
the resulting distance matrix d = (di,j), a recurrence matrix
R = (Ri,j) is defined as a thresholded version such that its
entries assume values of 1, if the distance between the two
associated state vectors is smaller than or equal to a threshold
ε, and 0 otherwise:

Ri,j(ε) =
{

1 : di,j ≤ ε,

0 : di,j > ε,
i, j = 1, . . . , N . (1)

Equivalently, we can write

Ri,j(ε) = �(ε − di,j), i, j = 1, . . . , N , (2)

where �(·) is the Heaviside function. In this definition, the
threshold ε is fixed with respect to all pairwise distances con-
tained in d, and we will focus only on this kind of threshold
application throughout this paper. An alternative definition of
the recurrence matrix,4,5 which shall not be further considered
in this study, replaces the global, fixed recurrence threshold ε

applied to all state vectors �xi by an adaptive local one that
is defined such that the number of recurrences (i.e., close
state vectors) is the same for each �xi (fixed amount of nearest
neighbors),4 leading to a constant local recurrence rate.

According to the above definition, for a given time
series, the recurrence matrix depends on the chosen recurrence

1054-1500/2018/28(8)/085720/11/$30.00 28, 085720-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5024914
https://doi.org/10.1063/1.5024914
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5024914&domain=pdf&date_stamp=2018-08-29


085720-2 Kraemer et al. Chaos 28, 085720 (2018)

threshold ε together with the selected norm ‖ · ‖ used for
defining pairwise distances between the state vectors. In this
work, we will restrict ourselves to two of the most commonly
used norms: the Euclidean (L2) and maximum (L∞, supre-
mum, Chebychev) norms. Specifically, we will study how the
distributions of pairwise L2 and L∞ distances depend on the
embedding dimension.

Previous studies have provided various complementary
suggestions for (i) selecting the right method of determin-
ing the recurrence threshold and (ii) choosing its actual value
in some automatic way based on the specific properties of
the system under study. Corresponding approaches include
the spatial extent of the trajectory in the (reconstructed)
state space,6,7 signal to noise ratio,7–10 the specific dynami-
cal system underlying the time series under investigation,8,11

or properties of the associated recurrence network12,13 with
the adjacency matrix Ai,j = Ri,j − δi,j (with δi,j being the Kro-
necker symbol) like the percolation threshold,14,15 the second
smallest eigenvalue of the graph’s Laplacian,16 breakdown
of ε−1 scaling of the average path length,14 or information-
theoretic characteristics.17 In practice, the appropriate choice
of the method for determining the recurrence threshold, as
well as its resulting value itself, can depend on the specific
problem under study and take any of the above criteria or
even some multiple-objective considerations based on differ-
ent criteria into account. To this end, a general solution to
the second problem of selecting a specific value of ε has not
yet been obtained, and we will also not address this prob-
lem specifically in the course of the present paper. Instead,
we are attempting to provide some further insights into the
first, more conceptual problem setting (i.e., which type of
approach for selecting recurrence thresholds should be taken
in case of varying situations such as different embedding
dimensions).12–14,17

As we will further detail in the course of this paper,
some previously suggested approaches6,7,10,18 to link a recur-
rence threshold to a certain percentage of the maximal or
mean distance of all pairwise distances of state vectors (i.e., a
given fraction of the attractor’s diameter in the reconstructed
state space) cause the resulting recurrence characteristics to
strongly depend on the embedding dimension. The reason
for this behavior is that in addition to a general increase of
distances19 (depending on the chosen norm),18 the shape of
the distance distribution also changes with increasing embed-
ding dimension (see Fig. 1 and further discussions in Sec. II).

It should be noted that embedding a time series with
m ∼ O(101) or even larger can become necessary when the
correlation dimension D2 of the attractor is rather large. This
is due to the fact that Takens’ theorem (and several exten-
sions thereof) guarantees the existence of a diffeomorphism
between the original and the reconstructed attractor if m satis-
fies m � 2D2 + 1.1,5,20 Hegger et al.21 emphasize that it is also
advisable to choose a rather high value of m when dealing with
time series originating from a D-dimensional deterministic
system that is driven by P slowly time dependent parameters.
An appropriate yet conservative choice for m then fulfills m �
2(D + P). Concerning practical applications of nonlinear time
series analysis, one commonly deals with signals originat-
ing from complex, non-stationary systems and, therefore,

high embedding dimensions can become necessary, requiring
threshold selection methods which lead to robust results of
RQA and related state space based techniques that are robust
under different choices of the embedding dimension.

In Sec. II, we study the influence of an increasing embed-
ding dimension on the shape of the distance distribution in
more detail. We deduce that, in order to avoid problems aris-
ing due to an unfavorable fixed recurrence threshold when
varying m, we could choose ε as a certain percentile of
the distance distribution rather than a certain percentage of
the maximum or mean phase space diameter. Successively,
Sec. III presents a numerical example of a classical Lorenz-
63 system with a time-dependent parameter, illustrating that
the changes in some recurrence characteristics with varying
embedding dimension are particularly small under a fixed
recurrence rate in comparison with other strategies. Finally,
the main results of this study are summarized in Sec. IV.

II. INFLUENCE OF EMBEDDING DIMENSION ON THE
DISTANCE DISTRIBUTION

Let us consider a univariate time series {xi} of length
N . As an overarching question, we study the effect of time-
delay embedding on the distribution of all pairwise distances
of its reconstructed state vectors. The variation of this distri-
bution with increasing embedding dimension m is expected
to depend on the chosen norm used for the calculation of
distances. Note that the effective number of state vectors
Neff(m) = N − (m − 1)τ available for estimating the proba-
bility distribution of distances in m dimensions will decrease
with m. In order to avoid sample size effects in comparing
the results for different m, we therefore choose N sufficiently
large so that 1 − Neff(mf )/N � 1, where mf is the largest
considered embedding dimension.

A. Maximum norm

Numerical results for different types of systems demon-
strate (see Appendix A) that the largest of all pairwise L∞
distances, d(∞)

max , stays constant with increasing embedding
dimension, whereas the mean of all pairwise L∞ distances,
d(∞)

mean, monotonically increases with m (Fig. 3). In order
to understand this observation, recall that the L∞ distance
between two embedded state vectors �xi = (xi,1, xi,2, . . . , xi,m)T

and �xj = (xj,1, xj,2, . . . , xj,m)T is

‖�xi − �xj‖∞ = max
k=1,...,m

∣∣xi,k − xj,k

∣∣ = d(∞)
i,j (m). (3)

For m = 1 (i.e., no embedding), the distance between two
observations at times ti and tj, therefore, is simply d(∞)

i,j (1) =∣∣xi − xj

∣∣. For m = 2, we find

d(∞)
i,j (2) = max{∣∣xi − xj

∣∣ ,
∣∣xi+τ − xj+τ

∣∣}
= max

{
d(∞)

i,j (1),
∣∣xi+τ − xj+τ

∣∣} � d(∞)
i,j (1). (4)

By induction, we can easily show that

d(∞)
i,j (m) = max

{
d(∞)

i,j (m − 1),
∣∣xi−(m−1)τ − xj−(m−1)τ

∣∣}
and, therefore,

d(∞)
i,j (m) � d(∞)

i,j (m − 1), ∀ m > 1. (5)
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FIG. 1. Selected histograms of the L2 [(a),(c),(e)] and L∞ [(b),(d),(f)] distances of N = 1500 independent random numbers with uniform [(a),(b)] and Gaussian
[(c),(d)] distribution as well as [(e),(f)] for the y component of the Lorenz-63 system [Eq. (11), N = 6000, see Sec. III] with control parameters σ = 10, β = 8/3,
and r linearly increasing from 180 (chaotic regime) to 210 (periodic regime), for different embedding dimensions m.

Hence, considering all possible pairs of state vectors
(�xi, �xj) from the time series, the largest L∞ distance

d(∞)
max (1) = max

i,j
[d(∞)

i,j (1)] = max
i,j

[d(∞)
i,j (m)] = d(∞)

max (m), ∀ m

cannot change with m, since the largest maximum distance
will already appear for m = 1. The mean distance

d(∞)
mean(m) = 1

N2
eff(m)

Neff(m)∑
i,j=1

d(∞)
i,j (m),
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FIG. 2. Time-dependence of RTE (ensemble means and two-sided 90% confidence intervals from 1000 independent realizations) based on the y component of
the non-stationary Lorenz-63 system (see text for details) using the L2 norm. The blue lines show the results for time-delay embedding with different embedding
dimensions (m = 3, . . . , 10) and for four different methods to select the recurrence threshold according to (a) a certain percentile of the distance distribution
and some percentage of the (b) maximum, (c) mean, and (d) median distance between state vectors on the reconstructed attractor. The actual threshold values
(4th percentile, 8%, 24%, and 24%, respectively) have been chosen such that the global recurrence rate of approximately 4% is achieved for each method in the
embedding scenario with m = 3. The red line shows the reference time series gained from 1000 independent realizations of the non-stationary Lorenz-63 system
by randomly choosing initial conditions and using all three components as state variables. Shaded areas (gray and red) indicate the two-sided 90% confidence
intervals estimated from the respective ensembles.

however, necessarily increases with m or stays mostly con-
stant. More specifically, as m increases, smaller distances
systematically disappear so that the entire distribution is sys-
tematically shifted towards its (constant) maximum, thereby
becoming narrower and exhibiting an increasing mean along
with decreasing variance. We conjecture that, for large m, the
distribution of d(∞)(m) will converge to a limiting distribution
(see below) possibly depending on the embedding delay τ .

B. Euclidean norm

In the case of the L2 (Euclidean) norm, both mean
and maximum of all pairwise distances [d(2)

mean(m) and
d(2)

max(m), respectively] monotonically increase with rising m
(Appendix A, Fig. 4). This can be understood as follows:
The L2 distance between two points in an m-dimensional state
space, �xi and �xj, is given as

‖�xi − �xj‖2 =
( m∑

k=1

∣∣xi,k − xj,k

∣∣2
) 1

2

= d(2)
i,j (m). (6)

For the squared L2 distance, this implies[
d(2)

i,j (1)
]2

= (xi − xj)
2,[

d(2)
i,j (2)

]2
= (xi − xj)

2 + (xi−τ − xj−τ )
2

=
[
d(2)

i,j (1)
]2

+ (xi−τ − xj−τ )
2

�
[
d(2)

i,j (1)
]2

, (7)

...[
d(2)

i,j (m + 1)
]2

�
[
d(2)

i,j (m)
]2

� · · · �
[
d(2)

i,j (1)
]2

, (8)

which explains the observed behavior of both mean and maxi-
mum distances using the L2 norm. Specifically, unlike for L∞,
the maximum L2 distance between two points is not bound by
the largest pairwise distance in one dimension.

In a similar way, we may argue for all Lp distances [p ∈
(0, ∞)] defined as

‖�xi − �xj‖p =
( m∑

k=1

∣∣xi,k − xj,k

∣∣p
) 1

p

= d(p)

i,j (m), (9)

that, by the same argument as above,[
d(p)

i,j (m + 1)
]p

�
[
d(p)

i,j (m)
]p

, (10)

implying again a monotonic increase of mean and maxi-
mum distances with rising embedding dimension (recall the
positive semi-definiteness of distances and p).
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C. Changing shape of distance distribution with
increasing embedding dimension

Building upon our previous considerations and numerical
results, a mathematically more specific yet challenging ques-
tion is how exactly an increasing embedding dimension m is
affecting the shape of the distribution of all pairwise distances
rather than just its central tendency (mean).

For the maximum norm, one may argue that the individ-
ual components of each embedded state vector are commonly
constructed such that they are as independent as possible.22

Accordingly, for a system without serial correlations (i.e.,
uncorrelated noise), the absolute differences d = d(∞)(1)

between the components of two state vectors are also inde-
pendent, identically distributed (i.i.d.), and lie within the
interval [0, dmax]. In such a case, for sufficiently large m, the
pairwise L∞ distance between two state vectors can be inter-
preted as the maximum of m i.i.d. variables that are bounded
from above, which should follow a reversed Weibull distribu-
tion according to the Fisher-Tippett-Gnedenko theorem from
extreme value statistics. Note, however, that this expectation
is valid only if m is sufficiently large and the i.i.d. assumption
is (approximately) fulfilled, both of which do not necessar-
ily have to be the case for real-world time series. Moreover,
it is not guaranteed that the given distance distribution in
one dimension lies within the domain of attraction of the
reversed Weibull class,23 which calls for further theoretical
investigation in each specific case.

For other Lp norms including the Euclidean norm, the
aforementioned considerations do not apply. Instead, for any
Lp, norm with p < ∞,

• the pairwise distances dp are of the form (
∑

i zp
i )

1/p

(i = 1, . . . , m) as given in Eq. (9) with approximately i.i.d.
variables zi.

• From the central limit theorem, it follows that the distribu-
tion of dp is approximately a normal distribution with mean
and standard deviation growing proportionally with m and√

m, respectively, for large m.
• The coefficient of variation of dp thus declines approxi-

mately as ∼ 1/
√

m.
• For large m, also d = (dp)1/p is approximately nor-

mally distributed with mean and standard deviation
growing approximately as ∼ m1/p and ∼ √

m dz1/p

dz |z=m ∼√
mm1/p−1 = m1/p−1/2.

• The coefficient of variation of d thus behaves approxi-
mately as ∼ m1/p−1/2/m1/p = 1/

√
m, just as for dp.

• As a consequence, the relative variability of d narrows in
the same fashion for all p < ∞ as m grows, and only the
growth of the absolute scale of d with m depends on p
(“curse of dimensionality”19).

The considerations made above do explain the numerical
results in Fig. 1, showing histograms of the distances of three
different time series for selected values of the embedding
dimension m and for the L2 and L∞ norms. In addition to time
series fulfilling the i.i.d. assumption [Figs. 1(a)–1(d)], here
we are also interested in deterministic systems. As an illus-
trative example, we choose the Lorenz-63 system [Eq. (11),

Figs. 1(e) and 1(f)] in some non-stationary (drifting parame-
ter) setting, which will be further studied in Sec. III.

In this regard, it is confirmed that the expectation value
of the distance distribution takes higher values with increas-
ing m. The probability to find small distances, therefore,
decreases. In the case of the L∞ norm [Figs. 1(b), 1(d),
and 1(f)], this growth is bounded and we can identify a conver-
gence of the distribution, in some cases, eventually towards
the aforementioned reversed Weibull distribution. In turn, for
the L2 norm [Figs. 1(a), 1(c), and 1(e)], the convergence
towards a normal distribution is discernible. Considering the
Lorenz-63 time series [Figs. 1(e) and 1(f)], the empirical
expectations are approximately met by the observations, even
though the distribution of L∞ distances exhibits a slightly
more complex (i.e., less symmetric) shape than for the two
noise series. Specifically, for the L2 norm, the resulting dis-
tance distribution is left-skewed with a pronounced lower
tail [see Fig. 1(e)], whereas for the L∞ norm, we observe a
disturbed Weibull-like shape. Notably, the i.i.d. assumption
is violated when dealing with such a deterministic dynami-
cal system. For a more detailed characterization of the shape
of the empirically observed pairwise distance distributions
shown in Fig. 1, see Appendix B.

In general, we emphasize that it is not straightforward
to analytically describe the shape of the distance distribu-
tion of an embedded time series stemming from an arbitrary
dynamical system with potentially nontrivial serial correla-
tions. Regarding our overarching question how we could
automatically choose a recurrence threshold such that the
resulting recurrence characteristics are as independent as pos-
sible of the embedding dimension and chosen norm, we need
to consider both

• the general increase of distances together with their succes-
sive concentration and

• the varying shape of the distribution of distances

with increasing embedding dimension. The first aspect could
be accounted for by relating the threshold selection to the
spatial extent of the state space object (attractor), similar to,
for instance, the one suggested by Abarbanel24 in the con-
text of the false nearest neighbor algorithm. However, our
findings suggest that accounting for the second point is key
to an appropriate recurrence threshold selection method that
relieves the effects of the embedding dimension on the recur-
rence properties as much as possible. As a simple possible
solution, we recommend to use a numerical estimate of a cer-
tain (sufficiently low) percentile of the distance distribution
as threshold.12–14,17 This approach considers both the above
mentioned effects and leads to a constant global recurrence
rate (which equals the chosen percentile). As a result, the
recurrence properties become much less dependent on the
embedding dimension and chosen norm than when using other
methods, as we will exemplify in Sec. III.

We emphasize that in addition, by conserving the recur-
rence rate, possible dependences of RQA characteristics on
the density of recurrences for different m are omitted, and cor-
responding residual changes of these measures upon varying
m could rather point to either insufficiently low embedding
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dimension (missing essential factors contributing to the sys-
tem’s dynamics, in a similar spirit as, e.g., for the false nearest
neighbor method) or spurious recurrence structures arising
from overembedding.25 These ideas should be further studied
in future work.

III. NUMERICAL EXAMPLE

In this section, we will demonstrate the effect of the vary-
ing shape of the distance distribution with increasing embed-
ding dimension on different threshold selection approaches
working with a globally fixed value of ε. In order to mimic
a practically relevant test case of a non-stationary low-
dimensional dynamical system, where we should use some
higher embedding dimension (following Hegger et al.21)
instead of a more moderate choice, we consider the classical
Lorenz-63 system26

ẋ = σ(y − x),

ẏ = x(r − z) − y,

ż = xy − βz.

(11)

Depending on the parameters σ , β, and r, the system exhibits
either regular or chaotic dynamics. Here, we consider a tran-
sitory setting, where the parameter r gradually increases from
180 to 210 while keeping β = 8/3 and σ = 10 fixed. In this
case, the system undergoes a transition from a chaotic regime
into a regular (limit cycle) phase as r rises before it exhibits
again a chaotic behavior. Note again that instead of studying
the stationary Lorenz-63 system for different values of r, we
intentionally employ a gradual parameter change leading to a
non-stationary system which calls for a systematic overem-
bedding when performing nonlinear time series analysis.21

Specifically, we implement a linear variation of r as

r(tis) = 180 + 2.5 × 10−2tis. (12)

For numerically solving this system of equations, we use a
fourth-order Runge-Kutta integrator with an integration step
of tis = 0.001 and a total of 1 300 000 iterations. Therefore,
we simulate the system’s evolution over 1300 time units (t.u.).
By using a sampling interval of δt = 0.2 t.u., we obtain 6500
samples forming our time series for the three components x, y,
and z. We remove the first 500 points (=̂100 t.u.) that could be
affected by transient dynamics and retain the remaining 6000
points (=̂1200 t.u.) of the y component for further analysis.

We integrate the Lorenz-63 equations, Eq. (11), with
the linear parameter change, Eq. (12), 1000 times with ran-
domly chosen initial conditions, embed the y component time
series using a delay τ = 4, consistent with the first local min-
imum of the mutual information,22 and assess the resulting
RPs. For each of these 1000 RPs, we use a running window
along their main diagonal with a window size of w = 400
and mutual shift of ws = 40 data points, i.e., 90% overlap
between consecutive windows, to quantitatively study the
time-dependence of the resulting recurrence characteristics.
We repeat this procedure for embedding dimensions ranging
from m = 3 to m = 10 and for four different threshold selec-
tion methods: (i) a fixed percentile of the distance distribution
(as recommended by our theoretical considerations in Sec. II)

as well as some fixed percentage of the (ii) maximum, (iii)
mean, and (iv) median pairwise distances between all state
vectors in the reconstructed state space, respectively.

Since we are aiming to study the change of recurrence
properties associated with a transition between chaotic and
periodic dynamics and vice versa, we choose the recurrence
time entropy (RTE). Here, instead of using the diagonal or
vertical “black” (recurrence) lines in the RP as in most “con-
ventional” RQA measures, we use “white” (non-recurrence)
vertical lines with lengths tw, as they correspond to recurrence
times. In general, such recurrence times can be estimated
directly from the RP in different ways,27 among which the ver-
tical non-recurrence lines offer a particularly simple estimator.
The normalized entropy of the distribution of recurrence
times, referred to as the recurrence period density entropy28

and originally introduced without any direct link to RPs, is
given as

RTE = − 1

ln Tmax

Tmax∑
tw=1

p(tw) ln p(tw) ∈ [0, 1], (13)

with p(tw) being the probability of a recurrence time tw and
Tmax the largest recurrence time. Using RPs, it is possible to
estimate p(tw) from the histogram of recurrence times, h(tw),
as p(tw) = h(tw)∑

tw h(tw)
, i.e., as the probability to find a white ver-

tical line of exactly length tw in the RP. It can be shown that
RTE is closely linked to the Kolmogorov-Sinai (KS) entropy
of the system under study.29

We choose the actual recurrence threshold for each
threshold selection method (i)–(iv) such that a global recur-
rence rate of RR ≈ 4% is achieved in all four cases for m = 3.
Therefore, for each embedding dimension, we obtain a dis-
tribution of 1000 RTE time series and show the mean (blue
lines in Fig. 2) together with the two-sided 90% confidence
interval ([5%, 95%], gray shaded areas). In order to put these
time dependent RTE estimates of the non-stationary Lorenz-
63 system into a context, we consider a reference reflecting
the time-dependent RTE values directly computed from the
true three-dimensional state vectors without embedding, using
otherwise the same analysis strategy (window size and over-
lap) as for the embedding scenario. Thus, for each point in
time, we obtain 1000 reference measurements and consider
the mean (red line) and the two-sided 90% confidence interval
(red shaded area in Fig. 2).

The robustness of the observed time-dependence of RTE
with respect to the chosen embedding dimension when using a
fixed percentile of the distance distribution (i.e., a fixed recur-
rence rate) is shown in Fig. 2(a) (here we used the L2 norm,
but the results are similar when using the L∞ norm). For any
embedding dimension larger than m = 4, the variations of the
RTE estimates originating from the embedding procedures
match the red reference time series within its uncertainties for
times t � 200. For adequately revealing the chaotic regime
in the first part until t ≈ 160, an embedding dimension larger
than m = 7 seems to be inevitable, whereas results from any
embedding dimension coincide with the reference estimate
within its uncertainties at the limit cycle regime (1000 ≤ t ≤
1080). In case of not using the recommended threshold selec-
tion method, this robustness is clearly lost [Figs. 2(b)–2(d)],
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and only the limit cycle regime (plus some shorter sections
before) is properly revealed by the estimates obtained in the
reconstructed state space.

Considering the results of Sec. II, the reason for the fail-
ure of the methods based on individual location parameters
(maximum, mean, median) of the pairwise distance distribu-
tion between state vectors for higher embedding dimensions
is the change in the shape of that distribution beyond its
characteristic location and range parameters. Appendix C
demonstrates this effect on the RPs in more detail. Hence,
we argue that selecting the recurrence threshold at some per-
centile of the distance distribution is to be preferred if we
aim to obtain stable results for a broad range of embedding
dimensions, which is the case if we wish to automatically
choose fixed recurrence thresholds for the analysis of arbitrary
complex systems.

We note that the presented example has focused on a
recurrence characteristic that is particularly well suited for
detecting transitions between chaotic and periodic dynam-
ics and is linked to a dynamical invariant. Other recurrence
characteristics, like classical RQA measures or recurrence
network characteristics, have been found to exhibit less stable
variations with changing embedding dimension (not shown)
and are, therefore, not further discussed here. Clarifying the
reasons for the different behaviors of different recurrence
characteristics will be an important subject of future work.

IV. CONCLUSIONS

We have discussed the changing shape of the distribu-
tion of pairwise distances between state vectors obtained by
time delay embedding with increasing embedding dimension
and its implications for different methods for selecting tem-
porally fixed recurrence thresholds. While specific values of
the recurrence threshold should always be chosen based upon
a multitude of criteria ranging from time series length to
different topological and/or geometric characteristics of the
associated trajectory, we have provided both empirical argu-
ments and numerical indications that selecting the recurrence
threshold at a prescribed percentile of the distance distribu-
tion (i.e., conserving the global recurrence rate) results in
quantitative recurrence characteristics that are more stable
under changes of the embedding dimension than when using
alternative approaches. In the latter context, we have demon-
strated that measures from RQA and related frameworks may
exhibit a crucial dependence on the embedding dimension
when selecting the recurrence threshold according to a cer-
tain percentage of the mean or maximum state space diameter,
as sometimes suggested in other works.7,10 This also indi-
cates that some alternative approaches, such as normalizing
the time series and applying a uniform threshold independent
of the embedding dimension and the considered norm,15 are
not likely to perform well for any kind of data, when neglect-
ing the effect on the distance distribution with increasing
embedding dimension.

At the conceptual level, our general discussion of the
changing shape of distance distributions with embedding
dimension has led to some interesting follow-up questions

associated with the convergence properties of these distribu-
tions at high embedding dimensions, which should be further
addressed in future studies. Notably, the relationship between
the distribution of L∞ distances and extreme value statis-
tics clearly deserves further investigations to fully understand
the emerging shape of the distributions as the embedding
dimension becomes large. As a cautionary note, we emphasize
that the considerations presented in this work relate exclu-
sively to the concept of time delay embedding as the most
widely applied embedding technique, but not necessarily to
methodological alternatives like derivative embedding,30 for
which the metric properties of different components of the
embedding vector cannot be easily related to each other.

Taken together, the results presented in this work are
important for automatizing the problem of data-adaptive
recurrence threshold selection, which is key for further widen-
ing the scope of applications of recurrence plots, recur-
rence quantification analysis, and related techniques across
scientific disciplines. Especially in the context of long
time series originating from non-stationary systems, which
frequently appear in many fields of science, a generally
applicable approach is crucial for obtaining reliable and easily
interpretable results.
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APPENDIX A: INFLUENCE OF EMBEDDING
DIMENSION ON THE VARIATIONS IN THE MAXIMUM
AND MEAN PAIRWISE DISTANCES

As discussed in Sec. II, we show some numerical results
illustrating the general behavior of mean and maximum L∞
and L2 distances for different types of systems in Figs. 3 and 4,
respectively. For a theoretical explanation of the observed
changes with increasing embedding dimension, see Sec. II.

APPENDIX B: EMPIRICAL SHAPE PARAMETERS OF
THE DISTANCE DISTRIBUTIONS FOR DIFFERENT
SYSTEMS

In order to further characterize the shape of the empiri-
cally observed pairwise distance distributions shown in Fig. 1
in more detail, we consider two standard characteristics from
descriptive statistics. On the one hand, the skewness

ŝ =
1

Nd

∑Nd
i=1(di − d̄)3

[√
1

Nd

∑Nd
i=1(di − d̄)2

]3 , (B1)
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FIG. 3. Mean d(∞)
mean and maximum d(∞)

max L∞ distances between all pairs of
state vectors as a function of the embedding dimension m for different types
of time series: polychromatic harmonic oscillation with periods 3, 50, and
500; auto-regressive processes of first and second order with parameters
ϕ1 = 0.5, ϕ2 = 0.3; random numbers of standard Gaussian (zero mean and
unit variance) and uniform (unit variance) distributions, and y component of
the Lorenz-63 system [Eq. (11), see Sec. III] with control parameters σ = 10,
β = 8/3, and r linearly increasing from 180 (chaotic regime) to 210 (periodic
regime) as a function of the embedding dimension m.

of the distribution measures its asymmetry around the sample
mean distance d̄ . On the other hand, we study the associated
Shannon entropy

ĥ = −
Nb∑
j=1

pj
log(pj)

log(Nb)
, (B2)

providing an integral measure of the heterogeneity of the dis-
tribution of d . Here, j enumerates the bins of a histogram
of the values of d with Nb bins and relative frequencies
pj, and Nd is the number of pairwise distances in the sam-
ple [i.e., the number of independent entries of the distance
matrix d, Nd = Neff(Neff − 1)/2]. The bin width has been
selected by first computing the optimum value according to

FIG. 4. Same as in Fig. 3 for L2 distances.

the Freedman-Diaconis rule31 for each embedding dimen-
sion m and then averaging over all corresponding values
and taking the resulting mean to keep Nb fixed for each
considered setting. Specifically, for the time series drawn
from the Gaussian and uniform distributions, Nb,L2 = 355 and
Nb,L∞ = 286, while for the Lorenz system, Nb,L2 = 701 and
Nb,L∞ = 771.

According to the corresponding normalization, ĥ assumes
its maximum of one in case of a uniform distribution [since
then, pj = 1/Nb, ∀ j = 1, . . . , Nb, i.e., for each (binned) dis-
tance within [dmin, dmax]]. In turn, the more heterogeneous
(e.g., spiky or generally asymmetric) the distribution of dis-
tances gets, the lower the ĥ.

Figure 5 shows the resulting behavior of both character-
istics for the L2 [panels (a),(c),(e)] and L∞ [panels (b),(d),(f)]
distances obtained from uniform and Gaussian distributed
noise as well as for the non-stationary Lorenz-63 system
[Eq. (11), see Sec. III] in dependence on the embedding
dimension. The results complement the qualitative description
based on a visual inspection of Fig. 1 as given in Sec. II. In the
case of the L2 norm and time series drawn from uniform and
Gaussian distributions [Figs. 5(a) and 5(c)], we observe the
skewness converging towards zero (symmetric Gaussian dis-
tribution) and the entropy reflecting this convergence towards
a normal distribution by a downward trend until the skew-
ness approaches zero as m further increases. Although the
theoretically predicted Gaussian shape for high m is visually
apparent in case of the time series from the Lorenz-63 system
[see Fig. 1(e)], the skewness takes clearly non-zero negative
values while the entropy constantly decreases with increas-
ing m, indicating an asymmetric shape [Fig. 5(e)]. In case of
the L∞ norm, the considered maximum embedding dimension
appears unsuitable for observing convergence of both shape
parameters.

APPENDIX C: RPS AND RQA FOR ONE REALIZATION
OF THE NON-STATIONARY LORENZ SYSTEM

For further illustrating the RPs resulting from the time-
dependent Lorenz-63 system discussed in Sec. III, we show
here the results for just one example trajectory corresponding
to a set of randomly chosen initial conditions x(0) = 0.9649,
y(0) = 0.1576, and z(0) = 0.9706. As before, we embed the
y component time series and study the RP for each previously
discussed threshold selection method. Then, we use a run-
ning window over each (global) RP with a window size of
w = 400 and mutual shift of ws = 40 data points, i.e., 90%
overlap between consecutive windows.

The RPs and the associated time-dependent recur-
rence characteristic RTE [Eq. (13)] for a “normal” three-
dimensional embedding with time delay τ = 4, consistent
with the first local minimum of the mutual information,22

are shown in Fig. 6, using the Euclidean norm. We compare
the results for four different threshold selection methods but
similar effective threshold values (corresponding to a global
recurrence rate of RR ≈ 4%), which are thus expected to
give comparable results. The left panel corresponds to the
recommended method of taking a certain percentile of the
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FIG. 5. Skewness (red) and Shannon entropy (blue) of the L2 [(a),(c),(e)] and L∞ [(b),(d),(f)] distances of N = 1500 independent random numbers with uniform
[(a),(b)] and Gaussian [(c),(d)] distribution and [(e),(f)] the y component of the Lorenz-63 system [Eq. (11), N = 6000, see Sec. III] with control parameters
σ = 10, β = 8/3, and r linearly increasing from 180 (chaotic regime) to 210 (periodic regime) as a function of the embedding dimension m. For the two noise
series, box plots show the variability estimated from 1000 independent realizations for each data set, using a random number generator. In the case of the Lorenz-
63 system, the variability is estimated from 10 independent realizations of the non-stationary Lorenz-63 equations with randomly chosen initial conditions.

distance distribution, while the other three panels are based
on thresholds selected according to some percentage of the
maximum, mean, and median distance of state vectors on
the attractor in the reconstructed state space. Comparing the

different panels, as expected, there are hardly any marked
differences in the RPs or the temporal changes of RTE. The
transition from a chaotic regime into a periodic one is well
reflected by a constantly decreasing RTE, which takes its



085720-10 Kraemer et al. Chaos 28, 085720 (2018)

FIG. 6. RPs, according to time series (blue), time-dependence of the control parameter r (red), and recurrence characteristic RTE (green) based on the y
component of the non-stationary Lorenz-63 system (see text for details) using the L2 norm. Shown are the results for low-dimensional embedding (m = 3) and
for four different methods to select the recurrence threshold according to a certain percentile of the distance distribution and some percentage of the maximum,
mean, or median distances of state vectors on the reconstructed attractor (from left to right). The actual threshold values (4th percentile, 8%, 24%, and 24%,
respectively) have again been chosen such that the global recurrence rate for each method in this embedding scenario is ≈ 4%.

minimum for the limit cycle behavior between t1 ≈ 1000 and
t2 ≈ 1080.

However, by choosing a higher-dimensional embedding
(e.g., m = 10) motivated by the non-stationarity of the system,
the RP becomes almost completely white if the recurrence
threshold is chosen based upon the same percentages of the
maximum, mean, or median state space distances as used

before (Fig. 7). In this case, the RTE is still able to detect
the transitory limit cycle regime, but one loses information
about the chaotic regime before. In contrast, we retain the
same density of recurrences and, hence, resolution of the RP
as for m = 3 when fixing the threshold according to the whole
distance distribution (left panel in Fig. 7). Here, the overall
behavior of RTE from the lower-dimensional (m = 3) case

FIG. 7. Same as in Fig. 6, but for ten-dimensional embedding. In comparison to Fig. 6, three of the four methods lead to a marked drop in the global recurrence
rate and a resulting change in the RTE values. Only for a recurrence threshold corresponding to the same percentile of the distance distribution, the results are
qualitatively stable over the full considered time evolution.
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is qualitatively retained, although the periodic regime is less
well expressed than in the former case.
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