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The lack of long enough data sets is a major problem in the study of many real world systems. As
it has been recently shown �C. Komalapriya, M. Thiel, M. C. Romano, N. Marwan, U. Schwarz,
and J. Kurths, Phys. Rev. E 78, 066217 �2008��, this problem can be overcome in the case of
ergodic systems if an ensemble of short trajectories is available, from which dynamically recon-
structed trajectories can be generated. However, this method has some disadvantages which hinder
its applicability, such as the need for estimation of optimal parameters. Here, we propose a sub-
stantially improved algorithm that overcomes the problems encountered by the former one, allow-
ing its automatic application. Furthermore, we show that the new algorithm not only reproduces the
short term but also the long term dynamics of the system under study, in contrast to the former
algorithm. To exemplify the potential of the new algorithm, we apply it to experimental data from
electrochemical oscillators and also to analyze the well-known problem of transient chaotic
trajectories. © 2010 American Institute of Physics. �doi:10.1063/1.3279680�

Many data sets that are measured in laboratories or that
are observed by monitoring natural systems are either
short or contain gaps. In such cases, deciphering the
characteristics of the underlying system by conventional
time series analysis techniques might not be possible, as
many of these techniques require temporally continuous
long data sets. An algorithm, based on the concept of
recurrence, has been proposed to overcome the problem
of short data sets or missing values. The original method
generates long artificial phase space trajectories—called
dynamically reconstructed trajectories (DRTs)—from a
collection of short data sets that have been observed at
different instances of time. In this paper, we present a
substantially improved algorithm that operates with a
single parameter. The new algorithm not only performs
better than the former one, but also reproduces the short
and the long term dynamics of the underlying system
closely. Furthermore, we demonstrate how to automate
the algorithm. The applicability of the proposed auto-
mated algorithm is validated with experimental chemical
oscillator data. Moreover, we apply it to numerically
characterize the properties of chaotic saddles by generat-
ing an artificial long trajectory (LT) from an ensemble of
transient chaotic trajectories.

I. INTRODUCTION

Many natural systems are difficult to monitor in a con-
tinuous way. Here restrictions mainly arise due to existing
physical or experimental limitations, technical or data stor-
age problems, and the cost factor.1,2 On the other hand, there
are systems which exhibit interesting behavior for a very
brief period of time. A good example of the latter case is
transient chaos, where the trajectories starting from different
initial conditions stay in the vicinity of a nonattracting cha-
otic saddle for a short time, before escaping to a final
attractor.3–7 Nevertheless, it is often possible to observe an
ensemble of short trajectories by starting the experiments or
the simulations at different, usually random, initial condi-
tions or by recording observations discontinuously. However,
many conventional time series analysis techniques are not
suitable for these cases as they usually work only if long and
continuous sets of data are available.

We have recently shown8 that it is in fact possible to
circumvent this problem by utilizing the basic concepts of
chaos, Poincaré recurrences, and ergodic theory.9–11 The key
idea is to piece together the short trajectories of the ensemble
in a dynamically appropriate way to overcome the disconti-
nuities or the gaps present in the data. The process results in
a LT, which by construction replicates the dynamics of the
underlying system, and is hence called DRT. Any time series
analysis method can then be applied to this synthetic
long continuous trajectory in order to extract the requireda�Electronic mail: komala@agnld.uni-potsdam.de.
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information about the underlying system. This solves a
highly relevant problem in data analysis.

In order to apply the algorithm proposed in Ref. 8, we
have to find optimal values for two parameters �threshold �
and jumping probability p�, so that the dynamics of the un-
derlying systems is correctly reproduced. This can be a rather
tedious and computationally expensive task. In this paper, we
present an optimized algorithm that overcomes this problem.
The new approach has only one parameter and as a result, the
computational effort is significantly reduced. This allows us,
moreover, to automate the algorithm, making it even more
useful for the analysis of real world data. Furthermore, we
show that the long term dynamics is considerably better re-
produced than with the former algorithm.

The organization of this paper is as follows. In Sec. II we
present the improved algorithm that generates the long dy-
namical replicants. In Sec. III we list the measures that are
used to assess the quality of the generated DRTs. In Sec. IV
we perform sensitivity studies with respect to the original
and the new algorithms depending on �i� the single algorith-
mic parameter, �ii� the characteristics of the given ensemble
of short trajectories, and �iii� observational noise. We then
show how to completely automate the algorithm in Sec. V.
The validity of the new algorithm is demonstrated by apply-
ing it to experimental data, as well as to a problem of tran-
sient chaos in Secs. VI and VII, respectively. The results are
summarized in Sec. VIII.

II. DYNAMICS AND DISCONTINUITIES—DRT
ALGORITHM

Assume that we have an ensemble of M d-dimensional
short trajectories from an ergodic system, each of length N,
i.e., x̃�i

j �Rd, where i=1, . . . ,N and j=1, . . . ,M. If the number
of short trajectories M is large enough, then the ensemble as
a whole will embody, although discontinuously, the complete
attracting set of the underlying system. From this ensemble,
it is possible to compute reasonable estimates of fractal mea-
sures, such as the correlation dimension.12–14 However, an
accurate estimation of dynamically invariant measures such
as Lyapunov exponents, entropies,10,14 or other recently pro-
posed measures of complexity15 is in general not possible
with this temporally discontinuous data.

Therefore, we introduced an algorithm to reconstruct a
long synthetic trajectory, called DRT, from a given ensemble
of short trajectories.8 A DRT imitates the dynamical proper-
ties of a LT of the underlying system and thus it can be used
to estimate dynamical measures of an underlying system.
The main idea of this algorithm is based on the fundamental
recurrence property of the ergodic systems. Recurring states
are used to bridge the gaps between different sections to
generate a long synthetic trajectory. The algorithm builds a
DRT by jumping with probability p from a point within a
short trajectory to the future of one of its neighbors in the
phase space, which is present within the same or in a differ-
ent short trajectory.

The proposed algorithm, thus, requires two parameters
to generate a DRT: �i� a threshold � that determines the re-
curring system states and �ii� a parameter p, called jumping
probability, which triggers the algorithm to jump at appropri-

ate points. Generally, � should be small enough to avoid
large errors due to the jumps and large enough to avoid re-
cursive use of certain segments of short trajectories. The pa-
rameter p should be, on the one hand, small enough to avoid
frequent jumps and utilize as much information as possible
from a single short trajectory and, on the other hand, large
enough to prevent redundant use of certain parts of short
trajectories. To determine the optimal values of � and p, it is
necessary to study the errors intrinsic to DRTs depending on
both � and p. However, this is a tedious task when the data
set under investigation is rather large or when one has many
ensembles of short data sets from different systems for com-
parative studies.

Therefore, it is desirable to reduce the number of algo-
rithmic parameters. In order to do this, we modify the pa-
rameter p from being a constant throughout the short trajec-
tory to a function p�i�, where i denotes the position within a
short trajectory, i.e., i=1, . . . ,N. The function p�i� is called
jumping probability function �JPF�. The JPF p�i� is chosen to
increase monotonously between 0 and 1 within a short seg-
ment, i.e., limi→1 p�i�=0 and limi→N p�i�=1. This reduces
the errors in the generated DRTs that arise due to too fre-
quent jumps. In other words, rather than jumping from every
point of a single short trajectory with the same probability p,
the algorithm is made to jump with a low probability at the
beginning of the short trajectory, and with a higher probabil-
ity toward the end of the short trajectory. Numerical studies
conducted for three JPFs, namely, e−�N−i�, e−�N − i�2/N, and
N−�N−i�/N, show that the exponential function of the type

p�i� = e−�N − i�2/N, i = 1, . . . ,N �1�

is a good choice for the reconstruction process. In compari-
son to others, the above JPF �Eq. �1�� performed better in
terms of certain characteristic measures �to be described in
Sec. III� and, hence, we will illustrate the results of the new
algorithm by using this p�i�.

For a given ensemble of short trajectories, x̃�i
j with

i=1, . . . ,N and j=1, . . . ,M, the new algorithm to generate a
DRT consists of the following steps �Fig. 1�.

�1� Concatenate the ensemble of short trajectories x̃�i
j with

i=1, . . . ,N and j=1, . . . ,M to generate x�k, where
k=1, . . . ,L and L=N�M.

FIG. 1. The DRT algorithm: x50
1 , x50

2 , and x50
3 represent the x-component of

three short trajectories of length N=50 that are assembled and concatenated
one after another. In this example, the point y1 is the randomly chosen first
point of the DRT belonging to the x1. Since limi→1 p�i��0 and
limi→N p�i�→1, the algorithm stays in the same short trajectory until x48

1 ,
before making a jump to the future of one of the nearest neighbors of x48

1 .
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�2� Determine the set of all neighbors of every point of x�k

for a given threshold �, i.e., compute the set of neigh-
bors �x�q�B�x�k��, where B�x�k� is the neighborhood of x�k.

�3� The first point y�1 of the DRT is chosen randomly from
the ensemble, i.e., y�1=x�l with 1� l�L.

�4� The next point of the DRT is either x�l+1 with probability
1− p�l� or the future x�q+1 of a randomly chosen neighbor
of x�l with probability p�l�.

�5� The last step is repeated until we get a DRT of a desired
length LD.

If at some point of the DRT generation process, the al-
gorithm reaches the end point of a short trajectory that does
not have any neighbors, then the DRT generation process is
restarted. However, if the number T of trials necessary to
generate a DRT of the desired length exceeds a critical value,
say T=20 000, then the process is aborted assuming that the
chosen threshold � is not appropriate to generate a DRT from
the given set of short trajectories.

Note that the new algorithm has just one parameter.
Thus, with the modified algorithm it is enough to investigate
only the effect of � on the quality of the DRTs. This is one of
the crucial advantages of the new algorithm over the former
one. In Sec. IV we show that the new algorithm not only
generates better DRTs, but is also successful in generating
synthetic LTs for a wide range of thresholds. Additionally,
we demonstrate that the new algorithm is more robust to
noise compared with the formerly published one. Results of
the numerical studies, which have been carried out with re-
spect to the algorithmic parameter � and the experimentally
set values of the ensemble, namely, M and N, clearly illus-
trate these facts �Sec. IV�.

Automatizing the process of the DRT generation is now
a rather straightforward procedure. Automatization can be
achieved by systematically varying the threshold � within a
certain range. A further better procedure to automate the al-
gorithm is to generate DRTs by first defining the neighbor-
hood of every phase space point in terms of a normalized
measure called recurrence rate �RR� �see Sec. V and also
Ref. 15�, and then systematically varying it between 0 and 1.
Like this, we reduce the arbitrariness in defining the thresh-
old range. Before presenting the results of the numerical
analysis in Sec. IV, we first enlist and describe the measures
that we use in our subsequent studies to assess the quality of
the DRTs and the performance of the algorithm.

III. CHARACTERIZING MEASURES

The quality of the DRTs is analyzed in terms of their
dynamical properties, first by using some model systems.
The generated DRTs are compared with LTs of the underly-
ing system, obtained by integrating or iterating the system
equations. The linear and the nonlinear measures that are
used to compare the quality of the DRTs with that of the LTs
are �i� the autocorrelation function c�,

14 �ii� the mutual infor-
mation function I�,

16 �iii� the mean diagonal line length of

the recurrence plot �RP� D̄,15 and �iv� the Rényi entropy of
second order K2.12,17 The autocorrelation function c� reflects
the linear correlations of a signal at lag �. Its nonlinear gen-
eralization is the time delayed mutual information I�. The

mean diagonal line length D̄ is a complexity measure esti-
mated from the RP �Ref. 15� of a given signal; it measures
the deterministic nature of the underlying system. Unlike
these measures, K2 is a dynamically invariant measure. It is a
lower bound of the sum of all positive Lyapunov exponents,
and hence it quantifies the predictability of a given system.

The quality tests are performed by first generating 100
realizations of DRTs �each of length LD� from an ensemble
of M short trajectories, each of length N. The above mea-
sures are then computed for each of these 100 DRTs and are
compared with that of 100 realizations of the LTs �which are
also of length LD� from the same underlying system. In the
case of c� and I�, we estimate the mean relative error as
follows:

Rc/I =
1

�max
�
�=1

�=�max 	�� − ���	
���

, �2�

where �� represents the mean of the absolute value of the
autocorrelation/mutual information function at lag � for the
ensemble of DRTs and ��� that for the LTs. In the case of the

mean diagonal line D̄ of the RP and the Rényi entropy K2,
we compute the relative error as follows:

RD̄/K2
=

	� − ��	
��

. �3�

Here, � and �� represent the mean value of D̄ /K2 estimated
from the ensemble of DRTs and LTs, respectively.

There are two fundamental factors that might cause de-
viations between the dynamics of the DRTs and the LTs: �i�
the error due to jumping, in other words, the impact of �, and
�ii� the redundancy problem that arises due to the repeated
use of certain parts of short trajectories. To properly quantify
the deviations in the dynamics of the DRTs originating from
�ii�, we define a new measure called redundancy factor �rF�.
Let ỹ� j � �y� i 	 i=1, . . . ,LD� be the subset of redundantly used
�used more than once� points of a DRT with j=1, . . . ,LD� and
LD� �LD. Then rF is defined as follows:

rF =
� j=1

LD� ��ỹ� j�
LD�

, �4�

where ��ỹ� j� denotes the total number of times the point ỹ� j

has been used in the reconstructed DRT. When the DRT has
no redundantly used points, then ��ỹ� j�=0∀ j, and hence
rF=0. On the other hand, if the DRT is generated by repeat-
edly using a few phase space points, then rF→LD /2. The
mean redundancy factor 
rF� estimated from an ensemble of
DRTs generated for a particular threshold will serve as a
coarse estimator of the redundancy in the generated realiza-
tions of DRTs.

The DRT algorithm relies on the chance that a point with
at least few neighbors will be chosen as a jumping point. The
successful reconstruction of a DRT will also depend upon the
probability that the neighbors of the chosen jumping point
have a suitable future to jump to. These issues become criti-
cal when we are dealing with a smaller ensemble of short
trajectories or when using smaller thresholds. Thus, often for
smaller ensembles and for certain �usually smaller� thresh-
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olds �, the algorithm either fails to generate the desired 100
realizations of DRTs or it generates DRTs with higher values
of redundancy �i.e., a crucial short trajectory is missing, and
hence the algorithm tends to repetitively use certain available
information�.

The latter problem can be rather easily identified with
the help of the redundancy measure 
rF�. In order to take the
former effect into account, we introduce another measure
called the DRT generation factor gF. It is defined as the total
number of DRTs generated from a given ensemble of short
trajectories at a particular threshold �. If � is chosen appro-
priately for the given ensemble, then gF=100. Otherwise, the
generation of DRTs is not always successful and we obtain
gF�100. Thus, the DRT generation factor gF establishes the
performance of the algorithm for a given threshold.

IV. SENSITIVITY STUDIES

Based on the measures established in Sec. III, we now
evaluate the performance of the former and the improved
algorithm. Note that the previous algorithm corresponds to
the following JPF:

p�i� = �p if 1 � i � N − 1

1 if i = N .

 �5�

In contrast to Eq. �1�, the jumping probability in Eq. �5� is set
to be a constant for all but the last point of the short segment.
In Secs. IV A–IV C, we show the results of the former algo-
rithm with p=0.05, since this value has been shown to gen-
erate rather good quality DRTs.8 It is worth mentioning that
we have also compared the original algorithm with the new
one for other values of p. However, since the outcome of the
comparison was qualitatively the same, only the results for
p=0.05 are presented in this paper.

The sensitivity studies are performed by considering the
chaotic Rössler oscillator18

ẋ = − y − z, ẏ = x + 0.2y, ż = 0.2 + �x − 5.7�z , �6�

and systematically varying the threshold �, the length N, and
the number M of short trajectories. We also investigate the
robustness of the two algorithms with respect to noise. We
carried out similar investigations by using some other proto-

typical dynamical systems like the Hénon map19 the Rössler
oscillator in the nonphase coherent chaotic funnel regime,20

or the Lorenz oscillator.21 In spite of the substantial topologi-
cal differences of the attractors of these systems,22 the results
obtained from the sensitivity studies are qualitatively the
same.

A. Sensitivity studies with respect to ε, N, and M

Integrating the Rössler system �Eq. �6�� with an integra-
tion step of 0.01 and a sampling rate of 20, we produce three
ensembles of short trajectories: �i� N=50 and M =200,
�ii� N=50 and M =1000, and �iii� N=10 and M =1000. While
the first ensemble is used to investigate the influence of the
threshold �, the second and the third ensembles are utilized
to study the influence of the number M and the length N of
the short trajectories. We generate ensembles of DRTs �each
of length LD=5000�, corresponding to the original and the
improved algorithm, from all the three ensembles for a range
of different thresholds �0.01���3.0�.

In all three cases, the new algorithm generates 100 real-
izations of the DRTs ahead of the original algorithm �see
Fig. 2�. This indicates that the new algorithm has a better
jumping criterion when compared with the original one, and
hence promotes the reconstruction process at smaller values
of the threshold. Note that when the number of short trajec-
tories of the ensemble is rather small, the new algorithm
generates 100 realizations of DRTs for much smaller values
of the threshold in comparison to the former one. As we will
see later in Sec. IV B, this helps substantially to reproduce
the long term dynamics of the system. The new algorithm
will therefore be of great use for practical applications, since
obtaining a sufficient number of short trajectories from ex-
periments is not always possible.

The mean redundancy factor 
rF� calculated for both al-
gorithms is shown in Figs. 3�a1�–�c1�. The values of 
rF� are
generally higher at smaller thresholds for both algorithms
because for very small values of the threshold � the number
of neighbors to which the algorithm can jump is very low. As
a result, the algorithm tends to use certain parts of the short
trajectories recursively for the reconstruction process. The
mean redundancy factor 
rF� also depends on the ensemble

FIG. 2. The DRT generation factor gF in dependence on the threshold �, corresponding to ensembles �a1� N=50, M =200; �a2� N=50, M =1000; and �c1�
N=10, M =1000. The black lines �with plus signs� and the gray lines �with cross signs� correspond to the DRTs that are obtained using the modified algorithm
and the formerly published algorithm, respectively. The minimum thresholds ��� from which the former algorithm generates the desired 100 realizations of
DRTs �i.e., gF=100� are: 0.220 �a1�, 0.090 �b1�, and 0.370 �c1�, respectively. The same values for the new algorithm are as follows: 0.160 �a1�, 0.070 �b1�,
and 0.350 �c1�.
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size L. The larger the ensemble, the larger is the number of
neighbors for a fixed �, and hence the smaller is the mean
redundancy factor �compare Fig. 3�b1� with Figs. 3�a1� and
�c1��.

If the length N of the short trajectories is large, then the
mean redundancy factor of the trajectories generated with the
new algorithm is higher compared with the former one �Figs.
3�a1� and �b1��. This is because in contrast to the original
algorithm, the modified algorithm is designed to jump to-
ward the end of a short trajectory, which in turn causes the
algorithm to redundantly use certain short trajectories for re-
construction. If N is small, both algorithms are forced to
jump often, and as a result, both algorithms spend less time
on a single short trajectory �Fig. 3�c1��. Hence, when N is
small, the estimates of 
rF� are rather similar. However, ac-
cording to the nonlinear measures, e.g., mutual information
I�, the opposite is true. Numerical studies show that in gen-
eral, higher values of redundancy are correlated with smaller
errors in the nonlinear measures like I� �Figs. 3�a2�–�c2��.
This is because with the modified algorithm, the average
time spent in a single short trajectory is higher than with the
original algorithm. To conclude, we can say that the perfor-
mance of the algorithms in terms of redundancy factor and
error measures depends upon the short trajectory length N.

From the results of relative error in I� �Figs. 3�a2�–�c2��
we can also conclude that �i� regardless of the algorithm
used, the general tendency is that the error measure RI in-
creases with � due to the larger jumps made by the algorithm
for higher values of � �this trend is also observed for the
error measures Rc and RD̄�; �ii� there exists, however, an
intermediate range of � for which the error RI in the mutual
information is minimal. This is because the DRTs generated
for very low values of � deviate from their original LTs due
to the effect of redundancy �see Figs. 3�a1�–�c1��. Thus, in
terms of I�, both algorithms tend to generate better DRTs for
intermediate values of �.

B. Reproduction of short and long term dynamics

In Sec. IV A, we have discussed the performance of the
DRT algorithm in terms of the measure I�. However, for
rigorous theoretical applications, invariant measures, such as
Lyapunov exponents or entropies, are usually preferred. Es-
timation of these measures requires an extensive amount of
continuous data sets which are often not available. In order
to critically compare the performance of the original and new
algorithm, we now analyze the dynamically invariant
measure—Rényi entropy of second order K2. Here we inves-
tigate how well the DRTs generated by both algorithms re-
produce the short and the long term dynamics of the Rössler
oscillator by estimating two different K2 values, K2

1 and K2
2,

respectively.17,23

We consider DRTs generated using both the improved
and the previously published algorithms from an ensemble of
short trajectories with N=50 and M =200. Figure 4 shows
the error estimates in the short �RK2

1� and the long �RK2
2� term

dynamics of the two algorithms and for various values of �
�Eq. �3��. For both K2

1 and K2
2, the modified algorithm per-

forms better than the former algorithm for almost all values
of the threshold �. Moreover, similar to the error in the mu-
tual information function �Fig. 3�a2��, the error in the short
term dynamics has a minimum in both algorithms at a
threshold of about �=0.25 �Fig. 4�a��. Again, the cause for
the occurrence of this minimum is the redundant use of cer-
tain parts of short trajectories for very low values of �. In
contrast, the error in the long term dynamics of the DRTs
increases monotonously with the threshold � �Fig. 4�b��, in-
dicating that moderately higher values of redundancy do not
affect the reproduction of the long term dynamics.

C. Robustness with respect to noise

In this section we investigate the influence of observa-
tional noise on the DRT algorithm, since data contamination
by noise is inevitable in most real world systems. We expect
that noise will have an effect on the process of reconstruction
of DRTs, as noise may considerably change the neighbor-
hood of a phase space point.24 Hence, we analyze the robust-
ness of the algorithm by applying it to ensembles of noisy
short trajectories.

In order to demonstrate the performance of the original
and the new algorithm in the presence of noise, we consider
an ensemble of short trajectories from the Rössler oscillator

FIG. 3. The DRT generation factor gF and the error in the mutual informa-
tion function �RI� in dependence of the threshold �. The plots correspond to
the DRTs generated from ensembles �a1, a2� N=50; M =200, �b1, b2� N
=50; M =1000, and �c1, c2� N=10; M =1000, respectively. The black and
the gray lines represent the DRTs obtained using the new algorithm and the
former algorithm, respectively.

FIG. 4. Error in the �a� short and the �b� long time scale dynamics of the
Rössler oscillator in dependence of the threshold � and with respect to the
modified �black line� and the original algorithm �gray line�.
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�Eq. �6�� with N=50 and M =1000. Gaussian white noise
with standard deviation Snoise=�Sj is added to each of the
three components of the Rössler short trajectories. Here, Sj is
the standard deviation of the jth component of the concat-
enated trajectory and � is the noise level. Ensembles of
DRTs, each of length LD=5000, were generated from this
noise corrupted ensemble by using both algorithms for a
range of thresholds �0.06���1.0�. The measures described
in Sec. III were estimated from the ensembles of DRTs. Note
that the relative errors were computed by comparing the
DRTs with an ensemble of noisy LTs of the Rössler oscillator
�i.e., LTs contaminated with the same level of noise ��. The
above steps were repeated for different noise levels by vary-
ing � between 0.01 and 1.0.

Figure 5 shows the estimates of RI with respect to the
original �Fig. 5�b�� and the improved �Fig. 5�a�� algorithms
in the � versus � parameter space. The white regions of the
plots correspond to the parameter values for which the algo-
rithm did not manage to generate any DRTs, i.e., where
gF=0. Generally, as the level of noise in the signal increases,
the range of the thresholds for which the algorithm can gen-
erate DRTs decreases. As we can see from Fig. 5, the white
region is significantly smaller for the modified algorithm
when compared with the formerly published one, indicating
that the new algorithm performs better in the presence of
noise.

To summarize this section, we can state that with the
proposed changes, we achieve a modest improvement in the
performance of the algorithm in terms of the relative error
measures �e.g., with respect to Rc, RI, RD̄, RK2

1, and RK2
2�. The

improved algorithm, however, promotes generation of DRTs
at smaller thresholds than the original algorithm, especially
when the number of short trajectories constituting the en-
semble is rather low. Although the DRTs generated with the
improved algorithm have in general a higher redundancy

when compared with the original algorithm, their dynamics
are closer to the original LTs. Furthermore, analysis with
respect to noise suggests that the modified algorithm per-
forms substantially better. Taking also into consideration that
by means of the improved algorithm we can also reduce the
number of parameters to just one, we can state that the modi-
fied algorithm is superior to the former one.

In the next step, we utilize a method that is widely used
in the field of synchronization analysis15 to automate the pro-
cess of DRT generation and thereby simplify its application.

V. AUTOMATION OF THE ALGORITHM BY USING
FIXED AMOUNT OF NEAREST NEIGHBORS

In the improved algorithm, the only parameter that has to
be determined is the threshold �. Practically it is necessary to
vary � in a certain range and study then its influence on a

dynamical measure, such as the mean diagonal line D̄, in
order to determine an optimal value of � for the reconstruc-
tion. The interval of � over which the study can be conducted
might obviously differ from one system to another due to the
different phase space diameter of the attractor under investi-
gation. Therefore, the range of thresholds that need to be
analyzed is usually estimated by some “rules of thumb”
given in the literature.15,25

This arbitrariness in determining the threshold range can
be avoided by fixing the number of nearest neighbors in the
second step of the modified algorithm �see Sec. II�, rather
than by fixing the threshold �. By fixing the number of near-
est neighbors of each state space point to be Lr, we fix the
RR of every single point, and hence that of the whole en-
semble as RR=Lr /L.15 Since the RR is a normalized measure
that varies from 0 to 1, the algorithm can be automated to
generate DRTs by varying the RR in a certain range that is
the same for all systems. For example, for an ensemble of
size L=50 000, we suggest to use a range of about 0.0001–
0.03. In this case, RR=0.0001 would mean that the number
of nearest neighbors is fixed to 5 and RR=0.03 will corre-
spond to fixing the number of nearest neighbors as 1500. As
we can anticipate, choosing a further lower value of RR
�RR�0.0001� will cause higher redundancy in the resulting
DRTs or failure of the algorithm to generate a DRT. On the
other hand, opting for a higher value of RR �RR	0.03� will
increase the error due to bigger jumps. Thus, one should
choose a suitable range of RR depending on the size of the
ensemble.

The phase space projection of a DRT obtained from an
ensemble of short trajectories of the Rössler oscillator with
N=50 and M =1000 using the new algorithm for RR=0.001
is shown in Fig. 6�a�. As we can see, the phase portrait of the
DRT clearly resembles that of an original LT of the Rössler
oscillator. Figure 6�b� shows the variations in the relative
error measures depending on RR. As expected, the relative
error measures computed with respect to the autocorrelation
function, mutual information, and mean diagonal line of the
RP increase rapidly for RR	0.006. Such a response of the
relative error measures is similar to and is also about the
same order of magnitude as that observed when � is in-
creased �Figs. 3�a2�, �b2�, and �c2��.
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FIG. 5. �Color� Estimates of the error RI in the mutual information function
calculated with respect to the JPFs �a� modified algorithm and �b� original
algorithm in the �−� parameter space. The blue regions of the plots repre-
sent the parameter values that correspond to the lower error and the yellow
regions to that having higher error in RI. The white regions of the plots
correspond to the parameter values for which gF=0.
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These results show that fixing the number of nearest
neighbors, rather than �, does not worsen the results. Thus,
they clearly justify the use of RR for generating DRTs in-
stead of �, and thereby allow the automation of the algo-
rithm. The proposed automation process will strongly facili-
tate the application of the new improved algorithm to
experimental data.

VI. APPLICATION TO ELECTROCHEMICAL DATA

In this section we test the performance of the improved
algorithm reproducing both the short and the long time scale
dynamics by applying it to univariate experimental data from
electrochemical oscillators. The data were obtained by mea-
suring the current from an electrode that is immersed in sul-
furic acid. This system, measured with a sampling rate of
200 Hz, has been shown to display chaotic dynamics.26–28

The phase portrait of the long time series �Fig. 7�a�� is ob-
tained by using Taken’s time delay embedding.29 The embed-
ding dimension estimated using the false nearest neighbor
method is 4, and the embedding delay used for the recon-
struction estimated from the autocorrelation function is

26.8,14 The estimates of K2 corresponding to the short and
long term dynamics of the attractor are K2

1=1.9092
0.020
and K2

2=0.2972
0.016.
Next we apply the new algorithm to an ensemble con-

sisting of M =329 short trajectories, each of length 200 �cor-
responding to a duration of 1 s�. Each of the short trajectories
is then embedded with dimension 4 and delay 26 �corre-
sponding to a duration of 0.13 s�. As discussed in Ref. 8, in
order to determine the embedding parameters from the en-
semble of short trajectories, one can concatenate the short
trajectories and estimate both the embedding dimension and
the delay from the long concatenated time series. This ap-
proach is valid if the length of the short time series is larger
than the correlation time of the underlying system. Applying
the new algorithm, a DRT of length 10 000 is generated us-
ing a fixed RR=0.0001. The phase space of the DRT clearly
resembles that of the original LT as well as the estimates of
the autocorrelation function and mutual information func-
tions �Figs. 7�b�–7�d��. Since a mere eyeball comparison of
the phase portraits might sometimes be deceiving and does
not really give evidence that the algorithm indeed recon-
structs the dynamical replicant, we further proceed to calcu-
late the entropy estimates from the generated DRT. The esti-
mates of K2

1 and K2
2 computed from the DRTs are

1.8724
0.025 and 0.4216
0.023, respectively. Both these
values are rather close to the ones obtained using the LTs. It
is worth noting that the estimates of K2

1 and K2
2 obtained with

the original algorithm were 1.6188
0.071 and
0.5416
0.137, respectively, showing a higher discrepancy
with respect to the values obtained for the LTs.

These results clearly show the potentials of the improved
algorithm in reproducing the dynamics of an underlying sys-
tem, when we have a sufficient amount of information avail-
able although discontinuously. However, note that sometimes
short trajectories that are obtained experimentally might not
be sufficient enough to generate DRTs that reflect the under-
lying system’s dynamics, e.g., if the length of the short tra-
jectories is smaller than the correlation time of the original
trajectory. This issue needs to be resolved in the future.

VII. APPLICATION TO TRANSIENT CHAOS

Now we exemplify the applicability of our algorithm to
a classical problem of transient chaos. Transient chaotic dy-
namical systems have trajectories that exhibit chaotic behav-
ior for a rather brief period of time before settling onto a final
state. The primary reason for the occurrence of such a phe-
nomenon is the existence of chaotic saddles in phase space,
which have a fractal structure along their stable and unstable
manifolds. Chaotic saddles, which typically arise during cri-
sis, attract the trajectories starting at nearby initial condi-
tions, causing them to exhibit chaotic behavior before escap-
ing through the unstable direction to some other attractor.4–7

Transient chaos has been found to occur in a wide range of
low- and high-dimensional dynamical systems, playing a key
role in numerous physical phenomena, such as chaotic scat-
tering and particle transport in hydrodynamical flows.30–33

Furthermore, chaotic transients are also observed in various
experimental systems such as chemical oscillators, electric
power systems, and ecological systems.34

FIG. 6. �a� Phase space projection of a DRT constructed using the new
algorithm from an ensemble of short trajectories �N=50, M =1000� of the
Rössler oscillator for RR=0.001. �b� Error in autocorrelation �solid line�,
mutual information �dashed line�, and mean diagonal line of RP �dot-dashed
line� in dependence of RR.

FIG. 7. Phase portraits of the original long time series �a� of the chemical
oscillator and that of the �b� DRTs generated using the new algorithm for a
RR of 0.0001. The �c� autocorrelation and the �d� mutual information func-
tion of the original long time series �solid line� and that of the DRTs �dashed
line�.
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The extensive occurrence of transient chaos has kindled
the investigation of the properties of chaotic saddles by ei-
ther generating long numerical trajectories on the chaotic
saddles35–38 or by direct investigation of an ensemble of
short transient trajectories.13,39 While the latter methods
might not give all the necessary details about the saddle,
many of the former methods require an explicit knowledge
about the system equations to generate LTs. Jánosi et al.,36

however, adopted a purely numerical approach to the prob-
lem, analogous to ours. However, their procedure involves
loss of valuable data to reconstruct a LT.

We now apply our algorithm to an ensemble of short
transient chaotic trajectories obtained from a quadratic map
to reconstruct a LT on the chaotic saddle.

The quadratic map5,6

xn+1 = 1 − axn
2 �7�

is one of the simplest cases where transient chaos has been
observed.6 For a=1.7548, the trajectories starting from ran-
dom initial conditions behave chaotically for a short time
interval, before settling into a period-3 orbit �Fig. 8�a��. Note
that for a given system and random initial conditions the
duration of transients is exponentially distributed.6 Since, in
general, it is possible to apply our algorithm to an ensemble
of short trajectories which do not have the same length, we
now generate a DRT from the ensemble of transients, whose
lengths are exponentially distributed.

First, an ensemble of short transients was obtained by
iterating the map starting at random initial conditions that
were uniformly distributed in the interval 0� 	x0	�1.0. The
iterations were stopped when the phase space trajectories
reached the three period cycle, and the first 15 and the last 75
points of transients were omitted from this analysis. The en-
semble consisted of M =360 transients, each of whose length
was greater than 2. The average length of the short trajecto-
ries in the ensemble was 31.98. The semiattractor corre-
sponding to such an ensemble is shown in Fig. 8�b�.

Applying the modified DRT algorithm, a DRT of length
5000 was generated for RR=0.0002. The phase space pro-
jection of this DRT is shown in Fig. 8�c�. As we see, the
phase portrait of the DRT closely resembles the one of the
logistic map. Moreover, the estimated autocorrelation func-
tion and the mutual information function reproduce the ones
of the chaotic logistic map �Figs. 8�d� and 8�e��. Further-
more, the value of the Rényi entropy K2 calculated from the
DRTs is 0.472
0.004, which is very close to the estimated
value of the Lyapunov exponent of the semiattractor,
�=0.489
0.0003,6 validating the obtained result.

VIII. CONCLUSION

In this paper we have addressed one crucial problem of
the analysis of real world data, namely, the lack of long
enough data sets. Insufficient amount of continuous data of-
ten hinders the application of many time series analysis tech-
niques. Here we have presented a substantially improved
version of an earlier proposed algorithm to generate DRTs
that imitate the underlying system dynamics. The modified
algorithm has only one parameter, allowing its complete au-
tomation and reducing the computation time needed for its
application. We have extensively compared the improved al-
gorithm with the original one and have shown that the new
algorithm performs better when compared with the formerly
published approach with respect to linear and nonlinear mea-
sures that characterize the dynamics of the underlying sys-
tem. Furthermore, the improved algorithm reproduces both
the short term and the long term dynamics of the system
under investigation better than the original algorithm.

We have shown the applicability of the improved DRT
algorithm to experimental data from chemical oscillators and
to the problem of transient chaotic trajectories, thereby ex-
emplifying the potential of our algorithm.
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