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Recurrence analysis of slow–fast systems
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ABSTRACT

Many complex systems exhibit periodic oscillations comprising slow–fast timescales. In such slow–fast systems, the slow and fast timescales
compete to determine the dynamics. In this study, we perform a recurrence analysis on simulated signals from paradigmatic model systems as
well as signals obtained from experiments, each of which exhibit slow–fast oscillations. We find that slow–fast systems exhibit characteristic
patterns along the diagonal lines in the corresponding recurrence plot (RP). We discern that the hairpin trajectories in the phase space lead to
the formation of line segments perpendicular to the diagonal line in the RP for a periodic signal. Next, we compute the recurrence networks
(RNs) of these slow–fast systems and uncover that they contain additional features such as clustering and protrusions on top of the closed-ring
structure. We show that slow–fast systems and single timescale systems can be distinguished by computing the distance between consecutive
state points on the phase space trajectory and the degree of the nodes in the RNs. Such a recurrence analysis substantially strengthens our
understanding of slow–fast systems, which do not have any accepted functional forms.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144630

Slow–fast oscillations are observed in numerous applications
ranging from neuroscience and earth sciences to engineering. In
this study, we perform a recurrence analysis of prototypical sig-
nals derived from well-established models, namely, the Van der
Pol model, a modified form of the Izhikevich model, and the
Hodgkin–Huxley model. First, we show a potential pitfall of phase
space reconstruction, as the number of slow–fast regions could be
exaggerated when the phase space is reconstructed by time delay
embedding. We observe that the recurrence network, which repre-
sents the high-dimensional phase space of the underlying system,
is clustered in certain regions and also exhibits protrusions, in
addition to the closed-loop structure typically seen for periodic
signals. We argue that these clustering and protrusions effects
in the recurrence network arise due to the presence of slow and
fast timescales in the system. Additionally, we can detect such
features in micro-patterns along the diagonal lines of the corre-
sponding recurrence plot. Finally, we observe similar features on
the recurrence plots and recurrence networks of time series of sig-
nals acquired from experiments performed on a sub-scale liquid
rocket combustor and a model gas turbine combustor during the
state of thermoacoustic instability.

I. INTRODUCTION

The rhythmic beating of the heart,1 periodic firing of neurons,2

spontaneous oscillations of chemical reactions,3 dangerous self-
excited oscillations in suspension bridges,4 glacial oscillations,5 and
high amplitude oscillations in aircraft engines and rocket engines6

are some examples of the various periodic phenomena we come
across in our lives. Most of these phenomena exhibit oscillations
at a preferred timescale known as the time period of the oscil-
lation. However, many periodic phenomena are inherently made
up of more than one timescale in an oscillation.7 Such periodic
phenomena are popularly classified as slow–fast oscillations.7 Such
systems are found across a wide range of applications ranging from
medicine,8 economics,9 physical sciences,10 and earth sciences11 to
engineering.12–14

For example, let us consider the electrocardiogram (ECG)
signal, wherein the electrical activity in the heart is recorded using
a set of electrodes. A typical cycle of an ECG signal is defined by
different processes such as atrial depolarization, ventricular depo-
larization, and ventricular repolarization.15 Each of these processes
(designated as P waves, QRS complexes, and T waves in one cycle of
the ECG signal) have an intrinsic timescale. A characteristic feature
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of slow–fast systems is that their periodic waveforms are radically
different from those of harmonic oscillators. For the most sim-
ple case of a slow–fast system containing two timescales, a slow
growth/decay is accompanied by a fast decay/growth. As a result,
a slow–fast system could spend more time in the growth or decay
phase. To present an example in electrical engineering, the charge
and discharge of a capacitor16 are characterized by a slow and fast
timescale, respectively. In a similar manner, the periodic stick-slip
motion of a bowed violin string exhibits more than one timescale.17

In the nonlinear dynamics literature, the term slow–fast sys-
tems have also been used to describe multiple timescales that cause
periodic amplitude modulations, bursting oscillations, and mixed-
mode oscillations.19 Hence, we illustrate the slow–fast systems that
we discuss in this study along with other slow–fast systems in
Fig. 1. Bursting oscillations [Fig. 1(a)] are characterized by epochs
of large amplitude periodic oscillations followed by quiescence.20

Mixed-mode oscillations are another class of periodic oscillations
that exhibit amplitude switching between two or more amplitude
states in the signal. In periodically modulated waves [Fig. 1(b)], the
amplitude envelope of the signal oscillates at a slow timescale over
a fast oscillating signal. In these types of slow–fast systems, the slow
timescale corresponds to the modulation of the envelope of the sig-
nal, while the fast timescale pertains to the high frequency oscillation
in the signal.

However, unlike all these types of periodic oscillations, the
slow–fast systems described in this study contain all the slow and fast
timescales within one period of oscillation [Fig. 1(c)]. Such slow–fast
systems have been long studied under the guise of relaxation oscilla-
tors. These oscillators are a class of limit cycle oscillators, which are
characterized by a non-sinusoidal periodic waveform.21 Relaxation
oscillations have been modeled using several models such as the Van
der Pol oscillator,21 Fitz-Hugh-Nagumo oscillator,22 and LEGION.23

Traditionally, slow–fast systems with a pre-established set of
governing equations have been solved using conventional methods

from the linear theory. A classical technique is to reduce the set
of governing equations to the weak or the strong nonlinear limit,24

whenever the two timescales are widely separated. Then, the system
of equations is solved to obtain the resultant amplitudes and phases
of the signal. Apart from this method, various other techniques such
as the perturbation theory, the method of multiple timescales, and
the method of averaging exist.25 However, experimental and other
real-world signals rarely have any well-defined functional forms,
which can be solved using these methods. Moreover, the timescales
in practical systems are seldom widely separated. All these obstacles
render the analysis of such signals intractable. At this juncture, the
framework of dynamical systems and complex systems theory offers
a promising way to understand and characterize the dynamics of
complex systems in man-made systems as well as those in nature.26,27

In this study, we first characterize the dynamics of prototyp-
ical slow–fast signals obtained from well-established models, i.e.,
the Van der Pol (VDP) model, a modified form of the Izhikevich
model, and the Hodgkin–Huxley model. We use nonlinear time
series methods based on the recurrence analysis of the phase space
trajectory such as the recurrence plot (RP)28 and the recurrence net-
work (RN)29 to distinguish the properties of these signals. Following
the same methodology, we analyze two high-dimensional slow–fast
signals of thermoacoustic oscillations from experiments—the time
series of unsteady heat release rate signals from a model gas turbine
combustor30 and the acoustic pressure signal obtained from a model
liquid rocket combustor.31

The rest of the paper is outlined as follows. The methodology
used in this study is briefly described in Sec. II. Here, we concisely
detail the RP and RN construction techniques adopted in this study.
Next, in Sec. III, we begin by analyzing low-dimensional systems
and comparing with a single timescale signal (sine wave). Later,
we extend the analysis for probing slow–fast dynamics in a high-
dimensional model and real-world signals. We demonstrate the
robustness of the obtained RNs for different embedding dimensions.

FIG. 1. The slow and fast timescales during (a) periodic bursting in the Izhikevich neuronal model18 and (b) the amplitude modulated sine wave. (c) The slow and fast regions
within a cycle of oscillation in the Van der Pol oscillator. We study slow–fast signals akin to (c) in this study.
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We briefly discuss the quantitative features of the VDP model and
the modified Izhikevich model. In the supplementary material, we
describe the quantitative features of the other slow–fast signals used
in this study. Finally, we summarize the key findings in Sec. IV.

II. METHODOLOGY

The dynamics of nonlinear systems can be understood from
the evolution of their phase space trajectories.32 Each state point
on the phase space trajectory is described as a unique combina-
tion of system variables. However, in a physical system, it is almost
impossible to acquire all the pertinent system variables required for
the construction of the phase space. To circumvent this problem,
we can reconstruct the phase space by time delay embedding.32 In
this method, the phase space is realized by plotting the time series
against its delayed versions in an appropriate dimensional space.
The optimum time delay and the embedding dimension need to be
selected prior to phase space reconstruction. The time delay (τ ) is
selected such that the delayed vectors are independent of each other.
We estimate τ using the autocorrelation function25 (ACF) and use
the modified false nearest neighbor method, developed by Cao,33 to
obtain the optimum embedding dimension (d).

Using this method of phase space reconstruction, we can visu-
ally unravel the dynamics of nonlinear systems from its phase space
attractor only in low dimensions (d ≤ 3). However, a vast number
of real-world signals tend to have higher dimensions (d > 3). As a
result, the fundamental property of recurrence of a phase space tra-
jectory is exploited to understand the underlying hidden features of
high-dimensional nonlinear systems.28,34

A. Recurrence plots

Recurrence of state points in the phase space is a fundamental
property of deterministic signals. Recurrence plots (RP), introduced
by Eckmann et al.,34 allow us to identify the time instants at which
the trajectory of a system roughly revisits the same region in a
d-dimensional phase space.

For a trajectory x⃗(t) made of n time instances, the pairwise
distances between state points in the phase space can be contained
in a distance matrix (Dij), as formulated by

Dij =
∥

∥x⃗i − x⃗j

∥

∥ , i, j = 1, 2, . . . , n. (1)

Here,
∥

∥x⃗i − x⃗j

∥

∥ is the Euclidean distance between the two state
points, i and j, on the phase space trajectory. Next, the distance
matrix is binarized by defining a threshold (ϵ) to obtain the recur-
rence matrix35 (Rij),

Rij = #(ϵ − Dij), (2)

where # is the Heaviside step function and ϵ is the threshold defin-
ing the neighborhood around the state point. Whenever the phase
space trajectory recurs within the region defined by the ϵ—size
ball, we mark 1 in the recurrence matrix. Non-recurring points are
marked by zeros in the recurrence matrix. In our RP, values of
one and zero are designated as black and white points, respectively.
Thus, the RP is a two-dimensional arrangement of black and white
points that exhibits different patterns characterizing underlying
dynamics of the signal. For a periodic signal of constant amplitude,

we obtain uninterrupted diagonal lines in the RP. Patterns in RPs
have garnered the attention of physicists in many instances.36 How-
ever, understanding such patterns in the RPs of slow–fast systems
have not yet been probed, to the best of our knowledge.

One of the methods to select a recurrence threshold (ϵ) is to
fix the recurrence rate28,37 (RR). RR is defined as RR = 1

n2

∑n
i,j=1 Rij.

It estimates the percentage of recurring points in a RP. We observe
that a value lower than the optimum RR fails to completely capture
the periodicity in the signal and is reflected as broken diagonal lines
in the RP. In this study, an optimum value of RR is selected after
careful consideration for each slow–fast systems.

B. Recurrence networks

Recurrence networks38 are a class of networks through which
high-dimensional systems can be understood. A recurrence network
(RN) comprises time instants as nodes, and their links are based on
recurrences of state points in the phase space. Similar to the RPs,
we can create a ϵ—recurrence network,29,38,39 where ϵ is the opti-
mal recurrence threshold. A value higher than the optimum value
results in superfluous connections in the RN, distorting the network
topology, whereas a lower ϵ would not capture the recurrence of tra-
jectories in the phase space, leading to an underdeveloped network
topology. The topology of the RN has been found to preserve the
phase space of the high-dimensional nonlinear system.40

To construct a RN, we require an adjacency matrix A to be
computed from the recurrence matrix R for an ϵ-threshold,

Aij = Rij − δij, (3)

where δ is the identity matrix of the same size as R and is used
to remove self-connections. If the distance between the state space
points is within the ϵ-threshold, then, Aij = 1, and the correspond-
ing two nodes are connected. Otherwise, the two nodes remain
disconnected, and Aij = 0. Once the adjacency matrix is constructed
for all pairs of nodes, several network measures can be computed
from the RN, quantifying the geometrical structure of the phase
space attractor.39,41 Using the network properties obtained from the
RN, a number of studies have used RN to study the dynamical
features of diverse systems.40,42–44

We visualize the RN using the open-source network analysis
platform, Gephi.45 The geometric feature of RN is attributed by a
force directed algorithm known as “Force Atlas” in Gephi, where the
connected nodes are attracted to each other, while the disconnected
nodes are repelled from each other. An appropriate RN visualiza-
tion is achieved when the forces are balanced, leading to a static
RN. Each node in the RN is color-coded based on degree, a net-
work property.46 The degree of a node i (Ki) refers to the number
of connections node i has to all other nodes in the network and is
calculated as

Ki =

n
∑

j=1

Aij. (4)

III. RESULTS AND DISCUSSIONS

We progressively investigate the recurrence properties of
slow–fast systems from low-dimensional systems to high-dimen-
sional systems. As case studies for low-dimensional systems, we
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consider the Van der Pol (VDP) oscillator and the modified
signal derived out of Izhikevich’s spiking neuron model.18 We con-
sider the Hodgkin–Huxley model2,47 as a case for studying high-
dimensional prototypical slow–fast signals. We, then, analyze the
time series of heat release rate oscillations obtained from experi-
ments in a laboratory-scale gas turbine-type turbulent combustor30

and the acoustic pressure signal from a laboratory-scale model
multi-element liquid rocket combustor,31 during the state of ther-
moacoustic instability, to understand the recurrence dynamics of
slow–fast signals in higher dimensional physical systems.

A. Recurrence analysis of low-dimensional
prototypical signals

Prior to understanding slow–fast systems, we analyze a har-
monic signal, namely, a sine wave of unit amplitude and a time
period of 2π [see Fig. 2(a)], which is definitely a single timescale
system. The phase space of the sine wave is a circular loop structure
[Fig. 2(b)], wherein the phase space trajectory evolves at a uni-
form speed. Here, the uniform speed of the phase space trajectory
is attributed to successive state points on the trajectory separated
by equal distances in the phase space. In the corresponding RP
[Fig. 2(c)], we observe only equally spaced, non-interrupted diag-
onal lines with spacing equal to the time period of the oscillation.
The corresponding RN topology of the sine wave [Fig. 2(d)] shows a
circular loop filled up with same degree nodes.

Now, we start analyzing slow–fast systems where we first con-
sider the VDP system,21 which is perhaps the most studied slow–fast
system. Its governing equations are

ẋ = µ
(

y + x −
x3

3

)

,

ẏ = −
1

µ
x,

(5)

where µ is referred to as the nonlinearity parameter to obtain relax-
ation type oscillations. We fix µ = 2 for the current analysis. The
time series of variables, x(t) and y(t) of Eq. (5), are plotted in

Fig. 3(a). The corresponding phase portrait exhibits a closed-loop,
confirming the periodicity of the time series [Fig. 3(b)]. However,
unlike the phase space of the harmonic signal [Fig. 2(b)], we observe
that the phase space trajectory evolves at different speeds, giving rise
to the slow and fast timescales. The separation between successive
state points on the phase space trajectory during the fast epoch is
large as compared to that of the slow epoch. As a result, the fast
epoch can be visually discriminated from the slow epoch in the phase
space. For the VDP system, we observe two epochs of slow oscilla-
tions (marked as S) and two epochs of fast oscillations (marked as
F) within a cycle in the original phase space (i.e., a plot between the
variables x and y of the system).

In Fig. 3(c), we show the time series of the variable x(t) and
its delayed copy x(t + τ ). Here, the delay τ is obtained by the first
zero crossing in the autocorrelation function (ACF). Unlike the orig-
inal phase space [Fig. 3(b)], in the reconstructed phase space of x
[see Fig. 3(d)], we obtain four epochs of slow and fast oscillations
(marked as S and F, respectively) within a cycle of oscillation. This
exercise shows that systems containing slow–fast timescales need
to be interpreted carefully based on the technique of phase space
reconstruction, since the number of slow–fast regions could be exag-
gerated with respect to that present in the original phase space. We
remark that the reconstructed phase space trajectory of y(t) evolves
at a single timescale (not shown here for brevity) and hence does not
exhibit any slow–fast features. Hence, we must be wary of slow–fast
oscillations in practical scenarios going unnoticed when we are not
tracking the appropriate system parameter.

Furthermore, we plot the RP and the corresponding RN for
the VDP system from the original phase space and from the recon-
structed phase space [see Fig. 4]. The recurrence matrix is con-
structed by fixing RR = 0.05. For both RPs [shown in Figs. 4(a) and
4(c), respectively], at a first glance, we observe only diagonal lines,
indicating periodic behavior of the system. However, in the corre-
sponding zoomed view of the RP in Figs. 4(a) and 4(c), we identify
the presence of momentary thick regions along the diagonal lines
of a RP. We attribute these thick regions to slow epochs and the
thin regions to the fast epochs in the evolution of the phase space

FIG. 2. (a) The time series of a sine
wave of unit amplitude and the time period
2π , sampled at 100 Hz. (b) The cor-
responding reconstructed phase space
calculated for τ = 157 time steps and
d = 2, (c) RP along with a zoomed view,
and (d) RN.
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trajectory. We refer to the presence of such distinct black patterns
on the diagonal lines in a RP of the periodic signal as micro-patterns
of RP. Thus, with the analysis of such micro-patterns, we can distin-
guish the time instances corresponding to slow regions from the fast
regions in the phase space.

The reason behind the occurrence of such a micro-pattern in
the RP can be understood from the evolution of the phase space tra-
jectory at slow and fast timescales. When the phase space trajectory
evolves at a slower rate in the phase space, it spends relatively more
time within an ϵ-threshold as compared to the phase space trajectory
for the fast motion. This leads to the thickening of the diagonal lines
in the RP. A similar argument can be given to explain the thinning of
the diagonal lines whenever the phase space trajectory exhibits fast
motion.

Recently, Kraemer and Marwan48 reported a tangential motion
of phase space trajectories leading to uneven thickening along diag-
onal lines. They identified the temporal correlations (i.e., preceding
and succeeding state points fall within the recurrence threshold) in
the data, the presence of noise, and the usage of insufficient embed-
ding dimension as reasons for this effect. Here, we observe thicken-
ing of diagonal lines in the RP for the slow epochs in the phase space
of the prototypical slow–fast signal (with no noise) embedded using
an optimum embedding dimension. As a result, we can attribute the
thickening of diagonal lines with the temporal correlations in the
slow epoch in the phase space of the slow–fast system.

We observe that the network topologies of both the original
and the reconstructed VDP system are similar to the corresponding

phase space observed in Figs. 3(b) and 3(d). Thenceforth, the nodes
represented in the RNs are color-coded based on the increasing
order of their respective degrees. In the corresponding RNs [see
Figs. 4(b) and 4(d), respectively], we identify distinct regions that
exhibit spatial clustering of high degree (red) nodes among the
almost uniform distribution of the low degree (blue) nodes. The spa-
tial clusters of high degree nodes within a cycle represent the region
in which the trajectory moves slowly in the phase space, result-
ing in a higher number of connections in the RN. There are two
such regions in the RN constructed from the original phase space
[see Fig. 4(b)] and four slow regions in the RN from the recon-
structed phase space [Fig. 4(d)], exactly matching their number in
the respective phase spaces shown in Figs. 3(b) and 3(d).

Next, we consider another slow–fast signal [see Fig. 5(a)]
obtained by modifying the time series of the variable x from the
Izhikevich’s spiking neuron model.18 First, we solve for the variable x
in the set of Eq. (6). The dimensionless parameters a = 0.1, b = 0.2,
c = −60, d = 8, and I = 110 are used to obtain spiking behavior in
x(t),

ẋ = 0.04x2 + 5x + 140 − y + I,

ẏ = a(bx − y).
(6)

The parameters a, b, c, and d retain the same meaning as described
originally in Izhikevich.18 Then, the resulting time series is modified
so that enough number of points are present both during the growth
and decay phase of the oscillations, to get a connected RN (refer to
Sec. S-A in the supplementary material).

FIG. 3. (a) The time series of x and y of the VDP system forµ = 2. (b) The original phase space between x and y. (c) The time series of x and its delayed copy, x(t + τ ). (d)
The reconstructed phase space of x using Takens’ delay embedding theorem with τ = 39 time steps and d = 2. The slow and fast motions in the phase space are marked
by S and F, respectively.
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FIG. 4. (a) RP along with its zoomed view and (b) the corresponding RN constructed using the original variables x and y of the VDP oscillator [Eq. (5)], shown in Figs. 3(c) and
3(d). The same plots are shown for the phase space reconstructed using time delay embedding for the variable, x(t). The nodes in RN are color-coded based on their degree.
A recurrence threshold of RR = 0.05, d = 2, and τ = 39 time steps is used. We observe that the number of slow–fast regions in the phase space could be exaggerated
by time delay embedding.

We observe that one oscillation in this signal is almost sym-
metric about the growth and the decay phase [Fig. 5(a)]. The three-
dimensional phase space by using τ = 102 time steps (obtained
from ACF) for this signal is visualized in Fig. 5(b). We find that the
three-dimensional phase space attractor is stretched along the three
axes, while maintaining a closed-loop structure in the evolution of
the phase space trajectory for one cycle of oscillation.

We observe that the RP exhibits continuous equi-spaced diag-
onal lines, signifying the periodic dynamics of the signal [Fig. 5(c)].
Superimposed on this RP, the micro-patterns exhibit intricate fea-
tures unique to this slow–fast system. Similar to the VDP system,
the thickened portions of the diagonal line [see Fig. 5(c)] corre-
spond to the slow motions in the phase space. A perpendicular
line segment occurs amidst two thickened regions along the diag-
onal line in the RP, whenever the phase space trajectories traversing
in opposite directions are spaced within the ϵ-threshold. This is
also confirmed by the fast motions of the phase space trajectory at
the extremities (or corners) of the phase space in Fig. 5(b), where
the phase space trajectory reverses its direction abruptly, akin to a
hairpin turn in a mountainous road. Thenceforth, we shall refer to
such abrupt reversal in the trajectory, leading to the formation of
line segments perpendicular to the main diagonal line as the hair-
pin trajectory. It is important to emphasize that there is no such
occurrence of two neighboring phase space trajectories traversing
in opposite directions in the VDP system [see Figs. 3(c) and 3(d)].
As a result, we do not obtain any perpendicular lines in the RP of the
VDP system.

In Fig. 5(d), the RN for this signal is plotted. Within one cycle,
the trajectory is predominantly slow with many nodes having a very

high number of connections (red and green). The fast regions in the
phase space are present in the protrusions comprising nodes with
a low degree (blue). In contrast to the RN of the VDP system, we
observe that only nodes with high and medium degrees (red and
green colors, respectively) occupy the ring-like structure. However,
the protrusions on the ring are predominantly occupied by the nodes
with a low degree (blue). This characteristic behavior must arise
out of some fundamental difference in these two slow–fast systems,
which is being reflected on their respective recurrence properties.
Also, we identify that the micro-patterns in the RP and the RN for
this prototypical signal are clearly different from the ones obtained
for the VDP system.

B. Recurrence analysis of high-dimensional
prototypical signals

We also analyze the recurrence properties of the well-known
Hodgkin–Huxley model, which exhibits slow–fast oscillations.2,47

It is represented by

V̇ =
1

Cm

[

I − gNam
3h(V − ENa) − gKn4(V − EK) − gL(V − EL)

]

,

ṁ = αm(V)(1 − m) − βm(V)m,
(7)

ṅ = αn(V)(1 − n) − βn(V)n,

ḣ = αh(V)(1 − h) − βh(V)h.

Here, V is the potential, I is the current per unit area, and gi is
the maximum value of conductance where i corresponds to either
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one of potassium (K), sodium (Na), or leak channel (L). The gat-
ing variables, α and β , control the activation and inactivation of
their respective channels. Variables m, n, and h are non-dimensional
quantities associated with the potassium channel activation, sodium
channel activation, and sodium channel inactivation, respectively.
These variables acquire values between 0 and 1. In Eq. (7),
the constant parameters used are ENa = 115 mV, EK = −12 mV, EL

= 10.6 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2, gL = 0.3 mS/cm2,
and Cm = 1 µF/cm2.

The corresponding steady state values for the gating variables,
α and β , are related to the potential V as

αh = 0.07 exp

[

−(V + 65)

20

]

, βh =

(

1 + exp

[

−(V + 35)

10

])−1

,

αm = 0.1
V + 40

1 − exp
[

−(V+40)
10

] , βm = 4 exp

[

−(V + 65)

18

]

,

(8)

αn = 0.01
V + 55

1 − exp
[

−(V+55)
10

] , βn = 0.125 exp

[

−(V + 65)

80

]

.

The set of equations is solved using Euler’s method. In Fig. 6(a),
we plot the time series of the membrane potential, V, obtained for
I = 10 nA/cm2 in Eq. (7).

We observe that V exhibits a limit cycle behavior with slow–fast
timescales. From the corresponding three-dimensional phase por-
trait in Fig. 6(b), we see that certain regions are slow (marked S),
while others are fast (marked F). The corresponding RP also exhibits

unique micro-patterns on top of the diagonal lines [see Fig. 6(c)].
The hairpin trajectory in its phase space renders a sword-like struc-
ture similar to the perpendicular lines observed in the RP of the
prototypical spiky signal [Fig. 5(c)].

The corresponding RN exhibits a protrusion made up of high
degree nodes and several clusters built of medium degree nodes on
top of a ring of low degree nodes [Fig. 6(d)]. Here, hairpins con-
sist of slow epochs. Hence, we obtain protrusions containing high
degree nodes, in stark contrast to the RN of the modified Izhikevich
model. Altogether, the RN of the Hodgkin–Huxley model contains
both features observed in Figs. 4(b) and 4(d) and Fig. 5(d).

After analyzing the phase space dynamics and recurrence prop-
erties of these three prototypical slow–fast signals along with a sine
wave, we understand that the RN for these slow–fast systems exhibits
characteristic features on top of the closed-loop structure, expected
for periodic signals. Moreover, the RP of such systems is manifested
by unique micro-patterns pertaining to slow–fast dynamics over the
diagonal lines.

C. Recurrence analysis of high-dimensional
experimental signals

In order to confirm the aforementioned observations in the
slow–fast dynamics of real-world data, we present the results of the
investigation of two different time series acquired from experiments
in a laboratory scale gas turbine-type turbulent combustor and a
model liquid rocket combustor during the state of an oscillatory

FIG. 5. (a) A prototypical periodic spiky signal is derived from a modified output of Izhikevich’s neuron spiking model [Eq. (6)]. (b) The reconstructed phase space, (c) RP
along with its zoomed view portion, and (d) RN for the signal shown in (a). The parameters fixed for plotting (b)–(d) are τ = 102 time steps, d = 6, and RR = 0.05. Here,
we observe characteristic micro-patterns on the RP and protrusions over the ring-shaped RN.
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FIG. 6. (a) Time series of membrane potential (V) obtained from the Hodgkin–Huxley model [Eq. (8)] for I = 10 nA/cm2. (b) The reconstructed phase space, (c) RP along
with its zoomed view portion, and (d) RN, for the signal shown in (a). The parameters fixed for plotting (b)–(d) are d = 7, τ = 66 time steps, and RR = 0.05. We observe a
characteristic sword-like pattern in the RP and distinct clusters and protrusion in the RN.

instability, known as thermoacoustic instability.49 Here, thermoa-
coustic instability is a dynamical regime featured by large amplitude,
self-sustained periodic oscillations in the acoustic pressure, p(t), and
the heat release rate, q̇(t), along with other dynamical variables of
the system. The occurrence of this feedback-driven phenomenon
overwhelms the thermal protection systems and compromises the
controllability and structural stability of gas turbines and rocket
engines.49,50

First, in Figs. 7(a) and 7(b), we consider the time series of
heat release rate oscillations (q̇(t)) and the corresponding recon-
structed phase space obtained during the state of thermoacoustic
instability for a gas turbine-type turbulent combustor. We observe
that the time series is spikier than a sine wave, exhibiting a clear
departure from sinusoidal signals. The spikiness in the signal30

[Fig. 7(a)] is attributed to the near instantaneous heat release rate
as a result of the impingement of the large-scale coherent vor-
tex structure carrying fuel–air mixture against the walls of the
combustor.51

In the corresponding phase space of the heat release rate (q̇)
signal in Fig. 7(b), we observe a distorted closed-loop structure,
indicative of the non-uniform evolution of the phase space trajec-
tory due to the presence of slow and fast timescales. However, such
slow and fast timescales are not too separated when compared to
the earlier phase space of prototypical signals. In the RP of this sig-
nal [see Fig. 7(c)], we see the presence of continuous diagonal lines,
indicating sustained periodicity in the oscillations. The corrugations
along the diagonal lines arise due to the presence of the slow and fast
timescales in the phase space. The RN for this signal [Fig. 7(d)] looks
similar to that of VDP as there are clusters of high degree nodes (red)

on the ring of medium degree (green) nodes. The clusters pertain to
the slow regions in the phase space.

Finally, we investigate the time series of acoustic pressure
oscillations (p′(t)) in a multi-element model liquid rocket combus-
tor during the state of thermoacoustic instability31 [Fig. 8(a)]. We
observe that a major portion of the cycle is spent in the slow relax-
ation phase with a momentary jump in the pressure due to the fast
compression phase of the signal. Physically, due to an increase in
the speed of sound during the compression phase, the compres-
sion side catches up with the expansion side of the pressure wave.
This phenomenon, known as wave steepening, results in an abrupt
increase in the amplitude of the pressure oscillations.52 Under favor-
able conditions, the steepened wave manifests as a shock wave in
the flow-field. Such wave steepened shock waves are commonly
observed in the pressure oscillations in the combustion chambers
of rockets.53,54

The reconstructed phase space of this pressure signal, shown
in Fig. 8(b), is similar to the phase portrait shown in Figs. 5(b) and
6(b), wherein the trajectory moves along the three axes to complete
one oscillation cycle. Unlike the usual closed-loop structure of the
phase space trajectory of periodic signals observed in the previous
slow–fast systems, the phase space of the pressure signal exhibits a
peculiar shape like a trefoil-knot.55 The geometrical difference of the
phase space attractor is attributed to the vast divergence in the slow
and fast timescales in the rocket system.

The RP and the RN for the pressure oscillations are plotted
in Figs. 8(c) and 8(d), respectively. The RP contains unique micro-
patterns arising due to the presence of spikes. On top of the diagonal
lines that indicate periodicity of the signal, we observe thick regions
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FIG. 7. (a) Time series of heat release rate oscillations (q̇) during thermoacoustic instability acquired from a laboratory-scale turbulent combustor. (b) The reconstructed
phase space, (c) RP along with its zoomed view portion, and (d) RN, plotted for the signal shown in (a). The parameters fixed for plotting (b)–(d) are d = 12, τ = 20 time
steps, and RR = 0.1. The RP and RN for this experimental signal resemble those of the VDP model to a great extent. More details regarding this experiment and its operating
conditions can be found in Pawar et al.30

divided by a thin region. The thick regions emerge due to the
increased trapping of the phase space trajectory in the slow epoch,
while the thin regions correspond to the fast spike in the phase space.
Due to the hairpin trajectories at the extremities in the reconstructed
phase space, the RP of this signal exhibits line segments protruding
away from each diagonal line in a periodic manner.

The RN of this signal looks similar to Fig. 5(d), based on its
topological similarity. The protrusions in the RN in Fig. 8(d) are
made up of high degree (red) nodes, unlike the RN in Fig. 5(d)
where the protrusions are made up of low degree (blue) nodes. We
believe that suitable measures derived from the RN can be used to
benchmark simulations that predict thermoacoustic instability in
combustion chambers of liquid rocket engines.

D. Effect of embedding dimension on the recurrence
network of a slow–fast system

We demonstrate the robustness of the topology of the RNs
for different embedding dimensions (d) for the modified Izhikevich
model [Fig. 9(a)] and time series of the acoustic pressure oscillations
acquired during the state of thermoacoustic instability in a liquid
rocket combustor [Fig. 9(b)]. The corresponding embedding dimen-
sions selected from the modified false nearest neighbors method for
these two cases are d = 6 and d = 10, respectively.

In general, we observe that the RNs exhibit closed-loop struc-
tures characteristic of periodic orbits for the range of d shown. For
both cases, the realized RNs for lower embedding dimensions are

distorted. With a further increase in d, the topology of RN con-
verges and remains largely the same for further increase in d. In
other words, for higher d, we find characteristic features such as the
number of protrusions and clustering of nodes to be nearly the same
with increasing d. However, the topology of RN converges at an ear-
lier d for experimental data, than that estimated by the modified false
nearest neighbors method. This observed change in the optimal d
from the RN and from the modified false nearest neighbors method
is not seen in the case of the prototypical signals. We believe that the
presence of noise in the experimental data leads to this deviation.
The ability of RN to capture the features of the high-dimensional
phase space in slow–fast systems can help us to cross-verify the opti-
mum embedding dimension. A similar variation is confirmed for all
the other slow–fast systems discussed here and the respective plots
are shown in Sec. S-B of the supplementary material.

E. Quantitative analysis of recurrence network
properties

Next, we quantitatively characterize the recurrence network
topology obtained from the reconstructed phase space to unravel the
differences between the slow–fast system and a single timescale sys-
tem such as a sine wave. The conventional approach in networks
built from time series is to compute the global network measures
such as the mean degree of a network.46

To ensure that no disparity arises due to the length of the time
series and the frequency of oscillations, we ensure that both the sine
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FIG. 8. (a) Time series of acoustic pressure oscillations (p′) during thermoacoustic instability acquired from a multi-element liquid rocket combustor. (b) The reconstructed
phase space, (c) RP along with its zoomed view portion, and (d) RN, for the signal shown in (a). The parameters fixed for plotting (b)–(d), are d = 10, τ = 21 time steps,
and RR = 0.05. The RN and RP of this signal resemble those of neuron spiking models. More details regarding this experiment and its operating conditions can be found in
Kasthuri et al.55 and Orth et al.31

FIG. 9. The RNs for various embedding dimensions (d) are plotted for (a) the modified Izhikevich model (Fig. 5) and (b) the acoustic pressure oscillations (p′) acquired from
a multi-element liquid rocket combustor (Fig. 8). We observe that the topology of the RN converges after a certain d.
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FIG. 10. Histogram of the probability distribution function of the degree of each
node for a sine wave (brown) and the VDP model (black). A bin size of 20 is used
for the representation. The time series of sine waves and the VDP model (µ = 2)
are built with a temporal step size of 0.01 s and the time period 7.63 s to ensure the
same number of points in both the signals. We observe that the degree distribution
is wider in the VDP model as opposed to that of the sine wave.

wave and the VDP signals are of the same frequency and ampli-
tude. We find that the mean degree (Kmean =

∑n
i=1 Ki/n) remains

the same for both the sine wave and the VDP model (Kmean = 152).
In Fig. 10, we plot the histogram of the probability distribution func-
tion of the Ki of each node in the RN of sine waves and the RN of the
VDP model. We observe that the distribution for the VDP model
has a broader spread compared to a unique value for the sine wave,
justifying the presence of multiple timescales in spite of its periodic
behavior of both models. This is confirmed for all the other slow–fast
systems discussed here, and the respective plots are shown in Sec.
S-C of the supplementary material.

To unravel the variation of degree of each node (Ki) in the
RN, we show the variation of Ki along with the distance (PDi)
between consecutive points (x⃗) in the reconstructed phase space
for the VDP model and sine waves in Fig. 11. Here, the nodes
are labeled according to their temporal appearance in their corre-
sponding phase spaces. PDi is calculated using the Euclidean norm
as

PDi =
∥

∥x⃗i − x⃗i+1

∥

∥ , i = 1, 2, . . . , n − 1. (9)

For every cycle of oscillation in the sine wave, we see that both
PDi [Fig. 11(b)] and Ki [Fig. 11(c)] remain invariant. However, for
every cycle of oscillation in the VDP model, we observe four oscil-
lations in both PDi and Ki, since there are four slow epochs and
four fast epochs in the phase space of the reconstructed signal of
the VDP model [see Fig. 3(d)]. Moreover, we see the simultaneous
occurrence of lower values in PDi and higher values in Ki, whenever
the phase space exhibits slow motion. During slow motion, the con-
secutive points in the phase space are located nearby, and hence, PDi

is low and Ki is high. Correspondingly, for epochs of fast motion in
the phase space, we obtain higher values in PDi and lower values in
Ki. The four oscillations within a cycle of oscillation manifest as four
clusters in the RN, as seen in Fig. 4(d).

FIG. 11. (a) Time series of the variable x of the VDP model (VDP: black curve)
for µ = 2, the time period of 7.63 s, and a temporal step size of 0.01 s. The time
series of the sine wave (brown curve) of the same time period, amplitude, and
the sampling rate is also shown. The temporal variation of (b) PDi and (c) Ki is
plotted. The shaded rectangle highlights one cycle of oscillation in (a)–(c). Note
that the nodes in a RN are representative of time instants.

In Fig. 12, we plot the variation of PDi and Ki for the time
series obtained from the modified Izhikevich (M. Iz) model and a
sine wave, both of which contain periodic oscillations with a time
period of 10.11 s sampled at a temporal step size of 0.01 s. Similarly,
we observe significant temporal variations in both PDi and Ki for
the slow–fast system, while that of the sine wave remains constant.
Also, we find higher values in Ki, whenever PDi is low and vice versa.
There are five oscillations in PDi and Ki within a cycle of oscillation
of the prototypical slow–fast signal. This manifests as five protru-
sions of low degree nodes in the RN shown in Fig. 5(d). For the other

FIG. 12. (a) Time series of x′ of the modified Izhikevich model (black curve) for
a time period of 10.11 s and a temporal step size of 0.01 s. The time series of a
sine wave (brown curve) of the same time period, amplitude, and sampling rate
is also shown. The temporal variation of (b) PDi and (c) Ki is plotted. The shaded
rectangle highlights one cycle of oscillation in (a)–(c). Note that the nodes in a RN
are representative of time instants.

Chaos 30, 063152 (2020); doi: 10.1063/1.5144630 30, 063152-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/1.5144630#suppl


Chaos ARTICLE scitation.org/journal/cha

slow–fast signals discussed in this study, we show the corresponding
plots in Sec. S-C of the supplementary material.

With the understanding gained from analyzing the various pro-
totypical and experimental systems in this study, we noticed that
the dynamics of slow–fast systems can be understood based on
their recurrence properties. From the RNs, we observed that some
slow–fast systems exhibit protrusions, while other systems display
clustering. Each slow–fast system imparts a signature micro-pattern
over the diagonal lines in their corresponding RP. It is also inter-
esting to note that even though both real-world systems discussed
here operate in a regime of thermoacoustic instability, both sys-
tems exhibit different RN topologies due to a difference in their
underlying mechanisms that generate such oscillations. Finally, we
interpret the RN topology using the temporal variation in the dis-
tance between consecutive points in the phase space and the degree
of each node in the RN of slow–fast systems.

IV. CONCLUSIONS

In this study, for the first time, recurrence properties of
slow–fast systems are studied by means of recurrence plots and
recurrence networks. A systematic approach is adopted by first
performing the analysis on prototypical signals before analyzing
high-dimensional signals obtained from experiments. We find that
slow–fast systems exhibit different recurrence properties compared
to periodic systems that operate on a single timescale. We observe
that unique features about the slow–fast system can be obtained
from the micro-patterns along the diagonal line in the RPs, unlike
mere straight lines observed in the RP for harmonic signals. Partic-
ularly, we find that hairpin trajectories in the phase space lead to
the occurrence of line segments perpendicular to the main diago-
nal line in the RP. These findings help improve the understanding
of the various patterns evident in the RP. Furthermore, we iden-
tify characteristic features in the corresponding RN topologies for
slow–fast systems. In addition to the closed-ring structure of peri-
odic signals, we also observe protrusions and clustering in the RN for
slow–fast systems. Such additional features in the RN result from the
temporal variation in the distance between consecutive points in the
phase space and the degree of nodes in the RN of slow–fast systems.
Such variations are absent in single timescale systems. We believe
that this study will have wide ranging applications to understand
the dynamics of various diverse systems across natural sciences,
medicine, econometrics, and engineering.

SUPPLEMENTARY MATERIAL

See Sec. S-A in the supplementary material for a detailed
description of the need as well as the steps involved in the modifi-
cation of the Izhikevich’s spiking model output used in this study.
In Sec. S-B, we show the effect of embedding dimensions on the
topology of the recurrence network for the Van der Pol model,
the Hodgkin–Huxley model, and the heat release rate oscillations
acquired from the gas turbine-type turbulent combustor. In Sec.
S-C, we describe the temporal variation of the distance between con-
secutive points in the phase space and their corresponding degree
in the recurrence network for the modified Izhikevich model, the
Hodgkin–Huxley model, heat release rate oscillations acquired from

the gas turbine-type turbulent combustor, and acoustic pressure
oscillations from the laboratory-scale rocket combustor.
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