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Describing a time series parsimoniously is the first step to study the underlying dynamics. For a
time-discrete system, a generating partition provides a compact description such that a time series
and a symbolic sequence are one-to-one. But, for a time-continuous system, such a compact
description does not have a solid basis. Here, we propose to describe a time-continuous time series
using a local cross section and the times when the orbit crosses the local cross section. We show
that if such a series of crossing times and some past observations are given, we can predict the
system’s dynamics with fine accuracy. This reconstructability neither depends strongly on the size
nor the placement of the local cross section if we have a sufficiently long database. We demonstrate
the proposed method using the Lorenz model as well as the actual measurement of wind speed.
Published by AIP Publishing. https://doi.org/10.1063/1.5016219

Current developments of measurement techniques and
hardware enable us to record time-continuous data with
very high sampling rates for long times. To understand
such data intuitively, we need to describe the data parsi-
moniously so that such description can reproduce the
original time series. Thus, here we propose to represent
such time-continuous data only by the series of times
when the orbit passes a local cross section. We show that
a time series together with some measurements of the
past dynamics of the system is sufficient information to
predict the future dynamics of the system. There are two
applications: an immediate application is to save, or send,
time-continuous data using small memory or low channel
capacities and therefore make big data more manage-
able; a more abstract application is to approximate
details in a time series when only few observations are
possible, based on detailed measurements taken during
different times.

Recent advances in measurement technology enable us
to record data of time-continuous systems with very high
sampling rates. While these advances are welcome, there are
several problems in accessing, analysing, and even storing
such datasets. These problems are nowadays summarised
under the umbrella of big data and arise in diverse areas
ranging from bioinformatics to systems’ health engineer-
ing.1,2 Here, we are presenting a method based on the recur-
rence of dynamical systems to categorise and rank such
datasets. Ranking the recurrence times of our current state
against the recurrence times of the big dataset allows us to
predict the future dynamics of the system.

Our research is motivated by recent achievements in the
time series analysis of non-uniformly sampled data.3–9 We
assume, we have a time-continuous dynamical system, that
we are able to measure for a certain amount of time. This

observational series of the high dimensional state space is
our database. After recording the full dynamics in the phase
space for our database, we no longer measure the full
dynamics but record the crossing times. These crossing times
are the times when the trajectory of the system passes
through a local cross section on the attractor of the dynami-
cal system. This dataset is our non-uniform sampled dataset,
which we use to estimate the current state of the system.
This estimation is done by finding similarities between the
current crossing time sequence and the crossing times calcu-
lated from the database of the full dynamics.

To detect the similarity, we facilitate the Victor and
Purpura distance.10 The information contained in such cross-
ing times has been studied since Poincar!e11 and is the foun-
dation of recurrence-based time series analysis.12 The Victor
and Purpura distance10 offers a natural metric to rank and
detect similarities between consecutive time windows of the
crossing times.5–10,13 Using cross prediction,14 we exploit
these similarities to estimate the current state and predict the
future system’s dynamics.

Our paper is organised as follows: After giving a short
summary of our method, we first give details on the informa-
tion contained in the crossing time series and introduce the
Victor and Purpora distance. Then, we introduce the cross
prediction method and illustrate our method using the low-
dimensional Lorenz system.15 In addition, we apply our
method to predict the actual wind speed data.

Predicting the dynamics of the system will be done by
facilitating the information in the database. This record of
the past dynamics is used in two ways: first, to compare the
crossing time series of the database with our current crossing
time series; second, we predict the future dynamics by
approximating the future state of the system from the past
dynamics in the database. The length of the database is criti-
cal and determines the quality of our prediction. The record-
ing time has to be chosen long enough to allow first a good
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state estimation and then a realistic approximation of the
future dynamics. Since our state estimation as well as the
cross prediction rely on similarity between past and future
dynamics, the longer the record the more reliable the predic-
tion becomes. One of the main results of this paper is that
even for realistic short recording times, our method results in
quite reliable predictions.

Formally, we assume a dynamical system ft: M ! M,
where M is an m-dimensional manifold and ft is the diffeo-
morphism representing how a point y in M moves to a point
ft(y) in M after some time t. Our database contains the full
dynamics of y(t) for t¼ [0, Dt, 2Dt,…, L], where L denotes
the recording time and Dt is the sampling time. If the full
dynamics cannot be directly measured, one has to reconstruct
the dynamics using delay embedding.16,17 We will discuss
this further, when we introduce our environmental example
of predicting wind speeds.

From t> L, we do not have access to the full dynamics
anymore, but measure the times {ti} the trajectory y(t)
crosses a local section R " M, e.g., y(ti) 2 R. We choose R
to be perpendicular to the flow at a point of the trajectory
and the size of R is given by its radius r [cf. Fig. 1(a)]. (In
practice, we choose a point in the time series and calculate
the direction the point is moving. This direction gives the
normal vector for our local cross section R.) A lot is known
about such crossing time series. For example, it can be
shown that a d-dimensional vector Ii¼ (tiþ1 – ti, tiþ2 – tiþ1,…,
tiþd – tiþd–1) provides a one-to-one embedding of the dynam-
ics under mild conditions relating to periodic points in the
phase space18–20 as long as d> 2 m. We exploit this result
but instead of measuring dþ 1 consecutive crossings, our

measuring time w is chosen so that our crossing time series
always satisfies the inequality d> 2 m

max
i
ftiþ2mþ1 $ tig < w: (1)

We therefore record the crossing time series of our system
for w time units. To determine w, we use the time series y(t)
in the database and measure the crossing time series {ti}DB.
This set of times {ti}DB is going to be used to determine w.
Therefore, w is the maximum time span needed in the
recorded history (the database) to satisfy the condition
d> 2m. Note that, especially if the recording time L is short,
choices of w, as the upper bound of Eq. (1), should be taken
conservatively. As we will see, in practice, one can even use
a small value for w, e.g., an upper bound for only a section i
of the time series, and still get a good prediction. We discuss
the techniques used to improve the prediction of such
choices of w later.

Given the current crossing time series {ti}, we use the
Victor and Purpura distance metric10 to find similar sequen-
ces of length w in {ti}DB. The closest sequences in {ti}DB

provide the base for our state estimation and the prediction
of the dynamics for t> L. To apply the Victor and Pupura
distance, we represent the crossing time series {ti} and
{ti}DB as their corresponding spike trains. The value of such
spike trains is 0 everywhere and is equal to 1 only when the
trajectory y(t) 2 R [cf. Fig. 1(b)]. The Victor and Purpura
metric determines the minimum cost to convert one spike
train into another. This metric has been used extensively in
the context of neuroscience, e.g., Ref. 5, where the spike
trains naturally arise as the output of idealised neurons.

Let the current spike train be U ¼ funjn ¼ 1; 2;…;Ng
and let V ¼ fvhjh ¼ 1; 2;…;Hg represent one of the possi-
ble spike trains of the database. un denotes the time for the
nth event within U and vh is the time for the hth event within
V. Thus, given two initial conditions xu; xv 2 X % M at the
beginnings of the two windows, we have funðxuÞ; fvhðxvÞ 2 R
for each n and h. When we apply the shift of events, we pair
up one event un from U with another vh from V. Therefore,
each un and vh may not belong to more than one pair. In addi-
tion, we define C as the set of such pairs taken from U and V.
With this, we can define the Victor Purpura distance as

dðU;VÞ ¼ min
C

X

ðun;vhÞ2C

kjun $ vhjþ NþH$ 2jCj
! "

: (2)

This edit distance d satisfies the necessary three conditions
for a metric: (i) non-negative or, zero if two time windows
are identical, (ii) symmetric, and (iii) the triangle inequality.

Intuitively, the metric can be understood by taking into
account the possible edits that can transform U into V: either
we can align event un and vh or we have to delete/create
events in the spike trains. Both these edits appear in the RHS
of (2). The cost of aligning the two events is proportional to
the time difference between the two events, e.g., kjun $ vhj
controls the cost. Since the cost of creating and deleting the
events is chosen to be equal to 1, d depends on the difference
between the total number of events—given by NþH—and
twice the number of possible pairs –2jCj. This Victor

FIG. 1. A schematic overview of our prediction method. (a) Local section R
with radius r, oriented perpendicular to the flow; (b) spike train having a
non-zero amplitude every time the trajectory passes through R; (c) x-compo-
nent of the Lorenz system (blue) and ~x our prediction (green). The blue part
of the trajectory represents the database used for the cross prediction.
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Purpura distance has been used to evaluate synchronization
among neurons.21,22 Further details and a thorough mathe-
matical description of the Victor Purpura distance can be
found in the literature.8,23,24

Comparing the current crossing time sequence in this
way with all the crossing time sequences in the database, we
identify the 10 sequences that are closest in terms of their
distance d. The average of their end points is going to be the
state estimate at the current time. For extremely long data-
base recording times and very high data precision one might
use just the end point of the sequence with minimal d as the
current state estimate. Under realistic conditions, however,
using the average and standard deviation of about 10 sequen-
ces with similar recurrence properties—in the Victor
Purpura distance sense—improves the stability of the predic-
tion and helps us to evaluate its reliability. One can under-
stand the Victor-Purpura distance for a spike train as being
similar to the Euclidean distance for usual vector spaces.

Using cross prediction has the advantage that we do not
require access to the equations governing the dynamics of
y(t). Instead, the prediction of the future dynamics is pro-
vided as the average of the recorded evolution of the 10
states defining our state estimate. We define t0 as the current
point in time and use h¼ 1, 2,…, 10 as the index of the 10
states. Consequently, t0,h denotes the end points of the 10
most similar sequences in the database. Then, the estimation
of the current state is

~yðt0jt0Þ ¼
1

10

X10

h¼1

yðt0;hÞ: (3)

Similarly, the prediction of ~y for nDt time steps in the
future is

~yðt0 þ nDtjt0Þ ¼
1

10

X10

h¼1

yðt0;h þ nDtÞ; (4)

and its corresponding prediction uncertainty can be mea-
sured by the variations of the 10 sequences

r~yðt0 þ nDtjt0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10

X10

h¼1

ðyðt0;h þ nDtÞ $ ~yðt0 þ nDtjt0ÞÞ2
vuut :

We use the uncertainty of our prediction to accept or reject
the prediction of t0þ nDt. The main issue we will have is
that the ensemble of the 10 sequences with the lowest d
might lose coherence, because they might be close in the
Victor-Purpura sense, but not all of them have to be close to
the system’s state on R. When this happens the uncertainty
of the prediction grows: r~yðt0 þ nDtjt0Þ > r~yðt0 þ nDtjt0

þnDtÞ. In such a case, we would reject the prediction and
instead let ~yðt0 þ nDtjt0 þ nDtÞ be our prediction and replace
t0 by t0þ nDt to reinitialise for further prediction.

Especially when L is short, it can be necessary to work
with a small value of w. For such w the inequality (1) will
not be satisfied for all times, but only for some part of the
time series in the database. To still achieve a good state

estimation, we consider that just before or after the current
time window, there is or is not a spike. For our current spike
train, we therefore have the option that a spike does (not)
appear just before (after) the beginning (end) of the window.
We combine these 4 options with the corresponding 4
options of our database {ti}DB and determine the d of the 16
possibilities. As we see later, including these 16 possibilities
in our d minimisation greatly improves the accuracy of the
prediction.

Such a prediction can be seen as the orange line in Fig.
1(c). Clearly visible are the time periods during which we
rejected the prediction (see the instances of constant ampli-
tude). These coincide with periods of low or no recurrence
that are large gaps in the train sequence in panel (b). For
practical applications, we would use a larger value of w to
eliminate these areas of prediction rejection. To qualitatively
assess the prediction, we evaluate the cross-correlation coef-
ficient Rðy; ~yÞ between the prediction and the true dynamics
of the system. For each t0, we are going to predict the
dynamics using Eq. (4) and evaluate Rðy; ~yÞ.

As a first application of this method, we apply our algo-
rithm to the Lorenz 1963 system,15 using the standard
parameters r¼ 28, q¼ 10, and b¼ 8/3. We are going to sys-
tematically vary the radius r of the local section R and the
database recording time L. These parameter changes directly
impact the upper bound w of Eq. (1). We calculated statistics
Cv and Lv from these spike trains based on Ref. 25, which
evaluate the global and local variabilities for spike trains for
judging whether the spike trains follow a Poisson process or
not. If a spike train follows a Poisson process, its Cv and Lv
fluctuate around 1.25 We found that Cv and Lv were
0.8603 6 0.1904 and 0.6276 6 0.1790, respectively, over 10
samples. While the estimate for Cv was not significantly dif-
ferent from 1, that for Lv was significantly different from 1
(P( 0.019), meaning that the spike trains are likely to be dif-
ferent from a Poisson process, or a standard point process.25

In Fig. 2, we see two outputs of our algorithm in com-
parison with the true x-component of the Lorenz system.
Since it is hard to visualise the state estimates together with
their predictions, we instead only show the state estimates
together with the prediction up to the next estimate. As a
reinitialisation time we used Dt¼ 0.2 in both experiments.
Since this value is very small, the prediction is seldom
rejected, and the data shown highlights the accuracy of our
state estimate more than the quality of our prediction. The
main difference between the two datasets shown in panel (a)
and (b) is the recording time L and the radius r of the local
section R. We use r¼ 10 in panel (a) and r¼ 3 in (b).
Consequently, the recurrence rate with which the trajectory
returns to R is much higher in (a) than in (b) as we can see
from the spike trains below the trajectory. Given the high
recurrence rate we need a short recording time L¼ 150 for
r¼ 10, while for r¼ 3 we need longer recording times
(L¼ 4950). Similarly, the recurrence rate helps us to choose
the upper bound w of Eq. (1): (a) w¼ 2 and (b) w¼ 10. The
comparison of the true and predicted dynamics clearly shows
that our algorithm can be optimised to work for both choices
of r and approximates the dynamics of the system well.
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The large deviations of ~x in Fig. 2(a) around t¼ 12 and
22 are caused by our choice of w¼ 2 and a very short record-
ing time L¼ 150. Given w¼ 2, it is not always possible to
satisfy the condition (1). For that reason, our prediction
diverges from the true dynamics. In addition, the short
recording of the past dynamics in combination with the
cross-prediction technique does not allow us to get the
amplitude of some of the oscillations right, e.g., 25< t< 30.
As we can see for L¼ 4950 and w¼ 10, these problems dis-
appear, and we get better estimates and predictions [Fig.
2(b)]. While the recurrence rate is lower, we have more
knowledge about the past dynamics and the higher value of
w makes it easier to satisfy the condition (1).

We want to understand the influence of L and r on our
prediction algorithm in more detail. For this we determine
the correlation between the original x(t) time series of
Lorenz with predictions of the next 50 time units, while
varying L or r. Moreover, we use these experiments to dem-
onstrate that the location of the local section R is of minor
importance for the predictions. For each of our experiments,
we therefore use 10 random positions for R and report in
Fig. 3 the median value as well as the 50% confidence inter-
val. In Fig. 3(a), we fixed w¼ 2, L¼ 150 and vary the size of
the partition, while in (b) we chose w¼ 10, r¼ 3 and vary L.

A sufficiently large size of R enables us to cross-predict
the original time series almost perfectly [Fig. 3(a)], because
for large r we have a high recurrence rate and the condition
of Eq. (1) is likely to be met. When we reduce the size of the
local cross section, the correlation coefficient between the
original time series and the cross-predicted time series
decreases. The lower recurrence rate makes it impossible to
satisfy the condition Eq. (1), namely d> 2m, for all times,
leading to the worse prediction. But, even in such a case, a
sufficiently large recording time L as well as a larger w leads
to a high correlation coefficient [Fig. 3(b)]. Thus, we expect
for a database of a sufficiently long recording time, which

we can still reconstruct the original time series faithfully.
Moreover, the medians and 50% confidence intervals in
Figs. 3(a) and 3(b) show that the positions of the local cross
sections are of less importance for our prediction algorithm.
For example, when we prepared the local cross section at
x¼ 0 with _x > 0, we still can reconstruct some meaningful
signal as shown in Fig. 4.

To further understand these results in Figs. 2 and 3 and
gain some insight about the importance of the different
measurements (recorded history in the database and crossing
times), we analysed the predictability of flows from crossing

FIG. 2. Comparison between the predicted ~x (dashed line) and the original x
(solid line) time series of the Lorenz system: (a) recording time of the data-
base L¼ 150, radius of local section r¼ 10, upper bound of Eq. (1) w¼ 2
and Dt¼ 0.2; (b) L¼ 4950, r¼ 3, w¼ 10 and Dt¼ 0.2; at the bottom of both
panels the corresponding spike trains are shown and ~xðt0Þ is given by Eqs.
(3) and (4).

FIG. 3. The cross-correlation coefficient Rðx; ~xÞ between the prediction and
the true dynamics in dependence of the size of the partition and recording
length. Cross-correlation was calculated for a prediction of 50 time units.
Shown is the median correlation for 10 randomly placed Rs as well as the
50% confidence interval. (a) fixed upper bound w¼ 2 and L¼ 150 while
varying the size of the portion and (b) w¼ 10 and a fixed radius r¼ 3 of the
partition while varying the recording length L. N.B. that we tend to have
positive correlation coefficients because we predicted the values generated
from the true dynamics based on spike trains.

FIG. 4. A spike train generated by the local cross section at x¼ 0 and
dx/dt> 0, and the reconstruction of the original signal. The original signal is
shown in the blue solid line and its reconstruction, the red dashed line. Here
we used L¼ 19950, Dt¼ 0.2 and w¼ 30. At the bottom we show the spike
train for the local cross section. The correlation coefficient between the orig-
inal and reconstructed signals is 0.3926. (Because we have a fewer events,
we needed the larger L and w to have the better results.)
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times as an information-theoretic problem. Our analysis
shows that when a local cross section becomes small, and
therefore generated less frequent events, the time resolution
of our data becomes the dominating factor. For our analysis,
we partition our spike train time series into a bins of equal
size. Let b be the number of events within the spike train.
Moreover, each bin can only contain one spike. Then, the
number of signals N we can send by a spike train is

N ¼ a
b

$ %
¼ a!

b!ða$ bÞ!
: (5)

Assuming that all signals are equally likely, we can calculate
the amount of information in the series as26

log2N ¼ log2

a!

b!ða$ bÞ!
: (6)

Applying Stirling’s approximation, we get

log2N ( a $ b
a

log2

b
a
$ a$ b

a
log2

a$ b
a

! "

¼ b log2

a
b
þ ða$ bÞ log2

a
a$ b

) b log2

a
b
: (7)

Given that a* b, we can assume that a and b are related
by a¼b2c. Therefore, the RHS of the equation can be writ-
ten as

b log2

a
b
¼ b log22c ¼ bc: (8)

Since b gives the total number of spikes in the sequence, and
we only allow one spike per partition, the maximum b is
directly related to the time resolution of the sequence.
Therefore, we conclude that the time resolution given by b is
directly proportional to the total amount of information con-
tained in the time series. This has two consequences. For the
real world data, the time resolution of the data is of upmost
importance. Using our algorithm in the real world applica-
tions would require instruments with high precision, but at
least it is only the time precision and not also the amplitude
precision on top. The second consequence of Eq. (8) relates
to the efficiency of our method. Once the database is
recorded, the data required to predict the future dynamics
has a very small footprint. For example, the original dataset
shown in Fig. 2(b) has 40 000 bytes and its crossing time
series {ti}DB has 152 6 40 bytes without compression in disk
space (We used here the MATLAB command “whos” to
evaluate the disk space we need for storing these variables.).
The spike train recorded to estimate the state and conse-
quently predict the dynamics was 0.38 6 0.10% of its origi-
nal size. Having such a small memory demand makes this
method attractive for the real world applications.

As one example for a real world application, we are use
our algorithm to predict wind speed.27 The original measure-
ments were observed for 24 h from around 2 pm on 1
September 2005 at about 1 m above the ground level at the

Institute of Industrial Science, the University of Tokyo,
Tokyo, Japan using an ultrasonic anemometer. The original
measurements were made with 50 Hz, but we first sub-sample
the time series using every tenth point. This sub-sampling
allows us to use a longer L, and therefore the database con-
tains more of the long term changes in the dynamics. Since
we do not have access to the full state space of this environ-
mental system, we have to reconstruct the attractor of the
dynamics by using delay embedding.16,17 Given that the sys-
tem seems to have the features of high-dimensional dynam-
ics,28 we have to use a high dimensional embedding. But the
total recording time of the wind speeds is 10 000 s, and conse-
quently we cannot use a very high embedding dimension,
without making the recurrence rate too low for our prediction
algorithm. In addition, we only use the first 9000 s as our
database and use the remainder for comparison with our pre-
diction. As a compromise and after several tests, we decided
to use a 10 dimensional embedding space. We find that our
algorithm succeeded in capturing the large scale features
of the dynamics, i.e., the prolonged changes of the wind
velocity, is similar in the experimental data and the prediction
(Fig. 5). On the other hand, our predictions fail to reproduce
the finer details of the system’s dynamics. We conjecture that
a higher embedding dimension together with a longer time
series would be able to overcome these limitations. Another
way to improve the performance of the method could be to
use marked spike trains, by assigning some additional value
to each event. Several distances have been proposed for such
marked point processes,23,29–31 which might increase the pre-
diction performance for such high dimensional dynamics.

Applying the method of Ref. 32 to the aforementioned
wind data shows the value greater than 99% point of 2.36,
meaning that the wind data should be regarded as non-
stationary. The applicability of our method for non-stationary
data should be evaluated more closely in future research,
although our results in Fig. 5 seem to show some promise in
this line of research.

Our numerical results and to some extent the results on
wind speeds show that a local cross section R has the
generic property to reconstruct the underlying dynamics of
a flow almost perfectly. This is similar to the generating
partitions, which have been extensively studied in
maps.33–38 It is a non-trivial task to find a generating parti-
tion in maps. Our results show that in flows this is much

FIG. 5. Example of the wind speed time series (solid line) together with our
prediction (dash-dotted line). The parameters of our algorithms are the size
of the time window w¼ 200 s, recording time L¼ 9000 s, Dt¼ 4 s and the
size of the local section R¼ 5 m/s. Our algorithm predicts the following
1000 s.
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easier and the position of R does not matter much for the
prediction quality (cf. Fig. 3).

While there are many studies that try to predict the next
crossing time based on previous crossings (for example, Ref.
18), the method presented here is different. Instead of just
focussing on the next crossing, we are able to estimate the
complete future dynamics using cross prediction. If we
regard the observations at a local cross section as a coinci-
dence detector,39,40 our results could explain how we can
share the same experience even if we perceive a phenome-
non in different ways, or in our case by different local cross
sections. Hence, our results might also have some implica-
tions in the field of theoretical neuroscience.

We presented a method for the state estimation and pre-
diction of flows, given a database of the past dynamics and a
crossing time series. Identifying the current state is done by
ranking the crossing time sequences of the database accord-
ing to their distance from the current crossing time series.
We showed that our method requires little memory to store
and send time series information via a spike train if the data-
base is shared between the sender and the receiver. Our
method does not require us to store and send an entire time
series under this assumption. Instead, we simply record or
send the times when a trajectory passes the local cross sec-
tion. This advantage can be important for sensor networks,41

where each device has to store and communicate lots of
environmental information under severe energy constraints.
Similarly, our method may be used to reconstruct the miss-
ing data within observations, such as gaps in, e.g., satellite
images partly covered by clouds,42 historical series of sun-
spot numbers,43 or historical phenological data such as the
start of the cherry blossom in Japan.44
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