
Understanding the Interrelationship Between
Commodity and Stock Indices Daily Movement
Using ACE and Recurrence Analysis

Kousik Guhathakurta, Norbert Marwan, Basabi Bhattacharya
and A. Roy Chowdhury

Abstract The relationship between the temporal evolution of the commodity market
and the stock market has long term implications for policy makers, and particularly
in the case of emerging markets, the economy as a whole. We analyze the complex
dynamics of the daily variation of two indices of stock and commodity exchange
respectively of India. To understand whether there is any difference between emerg-
ing markets and developed markets in terms of a dynamic correlation between the
two market indices, we also examine the complex dynamics of stock and commod-
ity indices of the US market. We compare the daily variation of the commodity
and stock prices in the two countries separately. For this purpose we have consid-
ered commodity India along with Dow Jones Industrial Average (DJIA) and Dow
Jones-AIG Commodity (DJ-AIGCI) indices for stock and commodities, USA, from
June 2005 to August 2008. To analyse the dynamics of the time variation of the
indices we use a set of analytical methods based on recurrence plots. Our stud-
ies show that the dynamics of the Indian stock and commodity exchanges have a
lagged correlation while those of US market have a lead correlation and a weaker
correlation.
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1 Introduction

The relationship between the temporal evolution of the commodity market and the
stock market is of utmost importance for investors and other market participants. It
has long term implications for policy makers, and particularly in the case of emerg-
ing markets, the economy as a whole. The history of commodity markets dates back
much more than that of the stock market. Traditionally, commodity markets had been
primarily consumption markets with some investment opportunities as opposed to
the stock market which is an investment market only. The commodity as an option of
financial investment and an alternative to traditional assets, had always been attrac-
tive because of its ability to add to diversification benefits. However, the majority
of investments in commodity markets took place in over the counter markets as
opposed to the exchange traded stock markets. The dynamics of the two markets
were, therefore, governed by different characteristics. This fact coupled with the
lack of consistent and reliable data from the over-the-counter markets has made
reliable studies of the interrelationship between the dynamics of the two markets
difficult, especially in emerging markets like India where exchange based spot and
derivatives trading of commodities is relatively new. But with the evolution of the
exchange based trading of commodity spot and derivatives markets it is now possible
to study and capture the complex dynamics of both stock and commodity markets
and compare their interrelationship. In a recent work by Reddy and Sebastin, the
dynamics of information transfer among the commodity spot, commodity deriva-
tives, and stock markets in India are studied, using the information theoretic concept
of entropy, which captures complex relationships as well [1].

In spite of having a long history of derivatives trading in commodity markets, the
history of exchange traded commodity futures trading in India is rather short. The first
commodity trading exchange of India Multi-commodity exchange (MCX) started
operating from November 2003. However, since then there has been a phenomenal
growth in volume and turnover in this exchange. From a mere 9 million Indian rupees
in 2004 the trading volume has increased to over 1 billion Indian rupees in 2013. By
2008 it had already grown by up to 438 million Indian rupees. This growth is not
unique to the commodity sector; stock market volume has also continued its growth
during the same period. The market capitalisation of the National stock exchange
grew from 8.63 trillion to 21.23 trillion Indian rupees between 2003 and 2008. This
concurrent growth is of importance from the investment portfolio perspective as the
inclusion of commodities adds depth and diversification to the portfolio.

The importance of this study, therefore, lies in investigating the utility of the
commodity as a diversification tool. Under normal circumstances, we would expect
the correlation between the stock and commodity markets to be low. Only then
can commodities be used as an avenue for diversification. But in India, we may
expect a different scenario. If we look at traditional investment practices in India,
people tend to invest a constant proportion of their portfolios in gold. Thus, when
investment goes up, both commodity prices and stock prices will rise, due to the
increased complementary demand for these assets. Recently, with the introduction
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of commodity futures, oil has also taken an important position in the Indian portfolio
(incidentally, in 2007, 28 % of the trading volume of commodity futures in MCX
was contributed by gold, while 56 % was contributed by crude oil). We would thus
expect a different relationship to exist between the stock and commodity markets in
India when compared to some other developed economy like that of the USA.

The complex dynamics of two investment markets is best understood by analyzing
a time series representing the price movement of the respective markets using tools of
nonlinear dynamics. Keeping this in mind we analyze the movement of the daily close
value of two indices of stock and commodity exchange, respectively, of India. To
understand whether there is any difference between emerging markets and developed
markets in terms of the dynamic correlation between the two market indices, we
compare it with the US market. We use a set of methods based on maximal correlation
[2] and recurrence plots [3, 4].

A simple cross-correlation study based on Pearson correlation measures could
indicate a degree of correlation between the time series under study. To start with,
we will compute the Pearson correlation for both US and Indian markets. Despite
the true nature of the dynamics, this linear approach might yield some initial inter-
esting results in a first order approximation. However, in order to get deeper insights
we have to consider potential nonlinear properties, because there is ample empirical
evidence against the assumption of simple linear dynamics in economics. Theoreti-
cally, there is no reason to believe that economic systems must be intrinsically linear
(cp. [5–7]). Empirically, a great number of studies show that financial time series
exhibit nonlinear dependencies (cp. [8–16]). Hence, “A natural frontier for financial
econometrics is the modelling of nonlinear phenomena” [6]. Testing for nonlinearity
has become popular in the financial econometrics literature in recent years, though
the focus is on financial markets of developed countries. In principle, testing for
nonlinearity can be viewed as a general test of model adequacy for linear models
[17] and it has been argued that if the underlying generating process for a time series
is nonlinear in nature, then it would be inappropriate to employ linear methods. For
instance, most of the widely applied statistical tests like the unit root or stationary
tests, the Granger causality test, and the cointegration test are all built on the basis
of a linear autoregressive model. [18, 19], among others, illustrated that the adop-
tion of linear stationarity tests are inappropriate in detecting mean reversion if the
true data generating process is in fact a stationary nonlinear process. On the other
hand, the Monte Carlo simulation evidence in [20] indicated that the standard linear
cointegration framework presents a mis-specification problem when the true nature
of the adjustment process is nonlinear and the speed of adjustment varies with the
magnitude of the disequilibrium. Thus, if the underlying process of a time series is
indeed nonlinear in nature, we would have to resort to empirical methods the like
non-parametric cointegration test due to [20], nonlinear stationarity tests [19, 21,
22], and nonlinear causality tests [23].

This requires the application of alternative methods over and above simple Pearson
correlation measure to understand the degree of nonlinear correlation between the
time series. We used the alternating conditional expectation algorithm (ACE) to
test the correlation between the time series [24]. The ACE algorithm showed that
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the functional form of the data sets under examination are clearly nonlinear. This
encouraged us to use nonlinear methods to study the interrelationship between the
time series. This also motivated us to go for a study of the entire time evolution
of the time series to understand whether they co-evolve or not, by using the cross
recurrence plot and recurrence quantification analysis [3, 4], which has already been
successfully applied to financial and economic data [16, 25, 26]. Recent extensions
in recurrence network analysis allow us to estimate topological dimensions from
time series like the transitivity dimensions [27]. Motivated by this, we construct the
transitivity dimensions of the two markets and see whether topological measures
reinforce our findings in recurrence analysis.

The structure of the paper is as follows. In Sect. 2, we briefly describe the source
and nature of the data. In Sect. 3 we discuss all the tests performed, giving the
background theory of our analysis before commenting upon the results. In Sect. 4 we
perform the comparative analysis of the results of our tests. Finally we summarise
our conclusions in Sect. 5.

2 Data

Our analysis is based on daily time series of the S and P CNX NIFTY (NIFTY)
and MCX-COMDEX (commodity) index of India as well as Dow Jones Industrial
Average (DJIA) stock index and Dow Jones-AIG Commodity Index (DJ-AIGCI) of
USA (Fig. 1). From the respective exchange web sites (www.nseindia.com, www.
mcxindia.com, www.djaverages.com, www.nasdaq.com/symbol/ucd) historical data
respectively for NIFTY, NCX, DJIA and DJ-AIGCI have been collected for the period
from June 2005 to August 2008 (both months inclusive). Considering this time period,
the sub-prime period is not completely excluded from the analysis. The initial few
months when the first shock affected the market are still included, but the long
period of global recession after this initial period are not. The idea was to capture
the beginning of the stock market crash and see whether the commodity market
was reacting in a correlated manner. Our purpose was to understand whether there is
anything endogenously different in the two markets. The S and P CNX Nifty is a well-
diversified 50 stock index (traded in the National Stock Exchange, India) accounting
for 25 sectors of the Indian economy. MCX-COMDEX is a composite futures index
comprising of commodity futures of diversified sectors traded in MCX India. MCX-
COMDEX is based on futures prices of 15 different commodities, comprising of
three sub-indices which represent the major sector groupings in commodity trading:
metals, energy, and agricultural products. DJIA is a composite index computed from
stock prices of 30 largest and most widely held public companies in the USA. DJ-
AIGCI is a composite index composed of future contracts on 19 physical commodities
traded on US exchanges.

For our analysis, we have used the z-score of the original index time series, i.e.,
we have normalized all time series to have a mean of zero and standard deviation of
one (no log change or change data used).

www.nseindia.com
www.mcxindia.com
www.mcxindia.com
www.djaverages.com
www.nasdaq.com/symbol/ucd
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Fig. 1 Normalized values of daily close of NIFTY and MCX-COMDEX (top), as well as of daily
close of DJIA and DJ-AIGCI (bottom)

3 Background of Examinations

3.1 Alternating Conditional Expectation (ACE) Algorithm and
Maximum Correlation Function (MCF)

The ACE algorithm [24] estimates the transformations Φ(x) and �(y) giving rise to
the maximal multiple correlation of a response y and a set of predictor variables x:

MC = 〈Φ(x)�(y)〉
√〈Φ2(x)〉〈�2(y)〉

!= max . (1)

These real-valued measurable mean-zero functions �(y) and Φ(x) (with
!= max

meaning that the correlation is maximal for the found �(y) and Φ(x)) are then called
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optimal transformations, and MC is called maximal correlation. A study of these
transformations can give the insight into the relationships between these variables.

To calculate the optimal transformations, we have used an adaptive partitioning
algorithm as described in [2]. The ACE and MCF functions of the CRP toolbox [28]
use this algorithm except for two differences:

1. The output is not normalized with respect to the mean values of the optimal
transformations, so the mean values may not necessarily be zero.

2. The data are rank ordered before the calculation of the optimal transformations.
This leads to a simpler computation of conditional expectation values.

The algorithm (but not the particular subroutine of estimating the conditional
expectation values) is described in [2, 29, 30].

Although this algorithm is meant for exploring whether there is a relationship
between response and predictor variables, we have used the stock and commodity
index data as if a predictive relationship exists between them, and then found whether
in such a case the programme detects a correlation or not.

3.2 Recurrence Analysis

Natural processes can have a distinct recurrent behavior (e.g., Milankovich cycles, El
Niño phenomenon, extreme flooding events, epileptic seizures). Recurrence of states
xi ∈ R

m (with m the dimension of the phase space), in the meaning that states are
arbitrary close after some time, is a fundamental property of deterministic dynamical
systems.

Eckmann et al. have introduced a tool which visualizes the recurrence of states xi

in phase space [3]: the recurrence plot. A recurrence plot (RP) is a visualisation of
state- space dynamics that shows all those times at which a state of the dynamical
system recurs:

Ri,j = �(ε− ‖ xi − xj ‖), xi ∈ R
m, i, j = 1, . . . , N, (2)

where R is the recurrence matrix, N is the number of considered states xi, ε is a
threshold distance, ‖ · ‖ a norm, and �(·) the Heaviside function. A recurrence
of a state at time i at a different time j is, thus, marked within a two-dimensional
squared matrix with ones and zeros. Both axes of the recurrence matrix are time axes.
This representation is called recurrence plot (RP). RPs has shown to be useful for
analysing short and non-stationary data [4].

In our study we apply the RP in order to reveal the characteristics of the dynamics
of the economic time series under investigation. For an economic time series, the
patterns over time tell us whether the series is disrupted, non-stationary or nonlinear
in nature. By comparing RPs of two economic time series we can visually infer
whether the dynamical systems governing the time series are similar, or not.



Understanding the Interrelationship Between Commodity and Stock Indices. . . 217

3.2.1 Embedding Parameters

If only one observable is available, the phase space can be reconstructed using time-
delay embedding [4]. Thus, we need to choose an appropriate value for the time
delay d and the embedding dimension m. Several methods have been developed to
best estimate m and d. Frequently used methods are the Average Mutual Information
Function (AMI) for the time delay [31] and the False Nearest Neighbors (FNN)
method for the embedding dimension [32]. As for the embedding delay, we chose
such a value where the mutual information has its first minimum or changes its
scaling behavior, and for the embedding dimension, we use such a value for m where
the number of false nearest neighbours in the phase space vanishes.

3.2.2 Structures in Recurrence Plots

The initial purpose of RPs was the visual inspection of recurrences of phase space
trajectories. The view on RPs gives hints about the time evolution of these trajectories.
RPs exhibit characteristic large scale typology and small scale patterns (texture). The
typology offers a global impression which can be characterized as homogeneous,
periodic, drift, and disrupted [4]. Small scale structures are single dots, diagonal lines
as well as vertical and horizontal lines (the combination of vertical and horizontal
lines obviously forms rectangular clusters of recurrence points). For a recurrence
analysis, the diagonal and vertical line structures are important.

A diagonal line Ri+k,j+k = 1 (for k = 1, . . . , l, where l is the length of the diagonal
line) occurs when a segment of the trajectory runs parallel to another segment, i.e.,
the trajectory visits the same region of the phase space at different times. The length
of this diagonal line is determined by the duration of such similar local evolution of
the trajectory segments and can give an idea about its divergence behavior, i.e., the
faster the trajectory segments diverge, the shorter are the diagonal lines.

A vertical (horizontal) line Ri,j+k = 1(for k = 1, . . . , v, where v is the length of
the vertical line) marks a time length in which a state does not change or changes very
slowly. It seems, that the state is trapped for some time. This is a typical behavior of
laminar states (intermittency).

These small scale structures are the base of a quantitative analysis of the RPs.
Though the visual interpretation of RPs requires some experience, their quantifi-

cation offers a more objective way for the investigation of the considered system.
A detailed discussion on the application and interpretation of RPs and the various
structures in a RP can be found in [4].

3.2.3 Cross Recurrence Plot

The cross recurrence plot (CRP) is a bivariate extension of the RP and was introduced
to analyze the similarity and synchronization of the states of two different dynamical
systems [33]. Suppose we have two dynamical systems, each one represented by the
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trajectories xi and yi in a d-dimensional phase space. Analogously to the RP, Eq. (2),
the corresponding cross recurrence matrix is defined by

CRx,y
i,j (ε) = �(ε − ‖xi − yi‖), i = 1, . . . , N, j = 1, . . . , M (3)

where the length of the trajectories of xi and yi are not required to be equal, and hence
the matrix CR is not necessarily square. Note that both systems are represented in
the same phase space, because a CRP looks for those times when a state of the
first system recurs to one of the other system. If the embedding parameters are
estimated from both time series, but are not equal, the higher embedding should be
chosen. However, the data under consideration should be from a comparable process
(physically the same). Here, we consider the different markets as physically very
similar. Moreover, we do not compare a specific variable (like trading volume of a
specific good) from these markets but a generalized index value. This additionally
supports our consideration of using physically similar variables in our application.
For a detailed discussion on RPs and CRPs we refer to [4, 33].

The CRP of two identical trajectories coincides with the RP of one of the tra-
jectories and contains the main diagonal or line of identity (LOI). However, if the
trajectories are not equal or their evolution happens on different time scales, the LOI
will be somewhat displaced, disrupted or bowed and is called line of synchronisation
(LOS).

For our analysis, we use the CRPs to visually inspect the interrelationship between
the two economic time series under investigation. By looking at the pattern, i.e.,
the LOS, we can infer whether the two systems are completely uncorrelated or a
relationship exists between them with some lead or lag. If the LOS is shifted to
the right then we can conclude that there is a delayed relationship between the two
time series. The other possible bivariate extension of RPs, the joint recurrence plot,
is not applicable here because it tests for simultaneous recurrences, but we are also
interested in changes of time scales. The potential of recurrence plot based approaches
for analyzing financial and economics data was shown in [16, 25, 26].

3.3 Quantification of Recurrence Plots

A quantification of recurrence plots (Recurrence Quantification Analysis, RQA) was
developed in order to distinguish between different appearances of RPs [34, 35].
Measures which base on diagonal structures are able to find chaos-order transitions,
whereas measures based on vertical (horizontal) structures are able to find chaos-
chaos transitions (laminar phases) [4].

Using the histogram of diagonal line lengths (see Sect. 3.2.2), we define the frac-
tion of recurrence points forming diagonal lines as a measure called determinism
DET ,

http://dx.doi.org/10.1007/978-3-319-09531-8_3
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DET =
∑N

l=lmin
l P(l)

∑N
l=1 l P(l)

, (4)

where P(l) is the histogram of the diagonal lines of exactly length l, and lmin is a
minimal length a diagonal structure should have to be counted as a line. Processes with
uncorrelated or weakly correlated, stochastic or irregular chaotic behaviour cause
none or very short diagonals, hence, small DET . In contrast, regular deterministic
processes lead to longer diagonals and less isolated recurrence points, resulting in
higher values of DET . This measure can also be interpreted as characterizing the
predictability of the system.

The average diagonal line length

L =
∑N

l=lmin
l P(l)

∑N
l=lmin

P(l)
(5)

gives the average time that two segments of the trajectory are close to each other,
and can be interpreted as the mean prediction time.

Analogously to the definition of the determinism in Eq. (4), we can use the his-
togram of the vertical lines of exactly length v, and define the fraction of recurrence
points forming vertical structures in the RP as the laminarity LAM

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

. (6)

The computation of LAM is realized for those v that exceed a minimum length vmin

in order to decrease the influence of the tangential motion (time-continuous systems
that are discretized with sufficiently high sampling rate and an appropriately large
threshold ε result in a large amount of recurrences coming from succeeding states
xi, xi+1, xi+2, . . .). LAM represents the occurrence of laminar states in the system
without describing the length of these laminar phases. In particular, LAM decreases
if the RP consists of more isolated recurrence points than vertical structures.

The average length of vertical structures is given by

TT =
∑N

v=vmin
vP(v)

∑N
v=vmin

P(v)
, (7)

and is called trapping time. As in the case of LAM, the computation of TT requires
the consideration of a minimal length vmin as well. The trapping time estimates the
mean time that the system will abide at a specific state, i.e., how long the state will
be trapped.

Both LAM and TT have been proven to be useful for describing the dynamics
of discrete systems and studying chaos-chaos transitions. RQA consists of further
measures which are not used in this study. RQA as the whole is a very powerful
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technique for quantifying differences in the dynamics of complex systems and has
meanwhile found numerous applications, e.g., in astrophysics, biology, engineering,
geo- and life sciences, or protein research [35].

Recent developments combined recurrence analysis with the complex network
approach [36, 37]. By considering the recurrence plot R as the adjacency matrix of
a network A = R − 1, several measures from complex networks statistics can be
applied and used as alternative measures of complexity characterizing the geometrical
properties of the phase space trajectory. For example, the transitivity coefficient,

T =
∑N

i,j,k=1 Aj,kAi,jAi,k
∑N

i,j,k=1 Ai,jAi,k(1 − δj,k)
, (8)

measuring the fraction of closed triangles in the network, is a good measure to
distinguish regular from irregular dynamics [38]. Based on geometric considerations,
T can be used to construct a dimensionality measure, the transitivity dimension,

DT = log T

log(3/4)
, (9)

providing a theoretically understandable measure for complexity, as more com-
plex/irregular behaviour belongs to higher dimensional dynamics than periodic/
regular behavior [39].

RQA measures can be computed in moving windows along the main diagonal
(sub-RPs). This allows us to study their time dependence and can be used for the
detection of transitions. Yet, one key question in empirical research concerns the
confidence bounds of the calculated RQA measures. Schinkel et al. have suggested a
bootstrap method to estimate the confidence of the RQA measures [40]. This method
is based on the bootstrapping of line structures from the RP (or the sub-RP), allowing
to estimate an empirical test distribution of all of the used RQA measures. We have
used 95 % confidence level for the statistical evaluation of these measures.

The measures DET , LAM, L, and TT are not used as absolute indices of the
dynamic state (i.e., chaotic, random, laminar, etc.). Instead we will consider their
relative movement over time when comparing the two systems,i.e., the stock market
index and commodity market index. By comparing their movement, we try to detect
whether they move concurrently or absolutely independent of each other.

All analysis was performed by using the Cross Recurrence Plot Toolbox, Version
5.15 (R28.4) 21-Jul-2009 (http://tocsy.pik-potsdam.de).

4 Results

First, we compute the Pearson correlation for the two markets separately. We find
that the correlation between DJIA and DJ-AIGCI indices were much lower (0.23)
as compared to that between NIFTY and MCX (0.62). Next we proceed with the

http://tocsy.pik-potsdam.de
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nonlinear analysis in order to get further details of the nature of correlation. We have
calculated the MCF for a maximal lag of 20 days (the length of the boxcar window
was 11). For the calculation of the CRPs, the important parameters are embedding
dimension and time delay. If the embedding parameters are estimated from both time
series, but are not equal, the higher embedding was chosen [4]. Using the methods
mentioned in Sect. 3.2.1, we got the same parameters for both Indian data sets, i.e.,
we found an embedding dimension of 5 and a time delay of 4. For the US data set
we used the same embedding parameters because those were the higher embedding
parameters amongst the two time series, viz., the DJIA time series. We used the CRP
and maximum norm method for finding out the neighbours of the plot. For the RQA
we used the same embedding parameters and a threshold parameter of 0.1, kept the
bootstrapping sample size at 500, used a 95 % level of confidence. The used window
size was 100 days and step size was 10 days.

4.1 ACE and Maximum Correlation Function

A close look at the ACE and MCF results of Nifty and MCX time series (Fig. 2),
and those of DJ-AIGCI and DJI, respectively (Fig. 3), reveals a clear difference
in the two markets. The optimal transformations for Nifty and MCX time series
are a monotonous function, with a linear part for low values (Fig. 2). In contrast,
the optimal transformations for DJ-AIGCI and DJI reveal a non-monotonous and
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Fig. 2 Optimal transformations for NIFTY and MCX-COMDEX (top). Maximal correlation func-
tion for NIFTY and MCX-COMDEX (bottom) with rather constant value of 0.99, indicating a high
level of nonlinear correlation

http://dx.doi.org/10.1007/978-3-319-09531-8_3
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Fig. 3 Optimal transformations for DJIA and DJ-AIGCI (top). Maximal correlation function for
DJIA and DJ-AIGCI (bottom) with rather constant value of 0.73, indicating a rather law correlation
in the US markets (“low” from the view point of the maximal correlation)

strongly nonlinear function (Fig. 3). For a lag of seven days, we found a maximum
correlation of 0.98 for Nifty and MCX-COMDEX, while for the DJIA and DJ-AIGCI
the maximum correlation is only 0.70, at a lead of eight days. These results suggest
a simpler relationship between the commodity exchange index and stock exchange
index of India, which is also confirmed by its strong correlation, whereas the US
market is much more complex and unpredictable, i.e., much weaker correlation in
the US market (as the maximum correlation is significant only for very high values,
i.e., larger than 0.95). This points towards a greater interrelation within the Indian
markets. In India the lagged relationship suggests the commodity market follows the
stock market. Since the maximum correlation in the US is not significant we are not
too concerned about the nature of such correlation, i.e., lead or lag.

Next we look for a lagged maximal correlation (MCF). We have found a maximum
in the MCF at lag 7 for the stock and commodity market in India (Fig. 3). This suggests
a delayed relationship between the markets. The low (non-significant) values of MCF
for the US market do not allow a conclusion about delayed relationships (Fig. 4).

We now proceed with the recurrence analysis of the data set to capture the relative
changes of the dynamics of the respective indices as also to find out the interrela-
tionship between the indices.
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4.2 Cross Recurrence Plot

The CRP of NIFTY and MCX-COMDEX reveal a pattern which suggests a rela-
tionship between these two indices for India (Fig. 4). The pattern indicates partly a
co-evolution of the two time series, as indicated by the connected structure of low
values in the CRP, which we consider to be the LOS. The shifting of the LOS is an
indication of a lagged relationship. The LOS is changing with time, suggesting that
the relationship between the stock and commodity markets is not constant. The CRP
contains two disruptions at May 2006 and January 2008 which correspond to stock
market crashes.

In contrast, the CRP of the DJIA and DJ-AIGCI does not show a well connected
structure of low distance values, which could be interpreted as a LOS (Fig. 5). Only
between March 2007 and January 2008, some lagged relationship seems to be appar-
ent. This suggests a weaker relationship between the NIFTY and MCX-COMDEX
what is in line with the correlation results.
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Fig. 5 Cross Recurrence Plot of time series representing daily close values of the stock market
index DJIA and commodity market index DJ-AIGCI in the USA

4.3 Recurrence Quantification Analysis

Next we compare the time variation of the RQA measures in order to check for
similar dynamics. The variations of the DET , L, LAM, and TT values of the index
data reveal changes between different dynamics, e.g., from more predictable to less
predictable (DET). Such dynamical changes in the NIFTY data are well concurrent
to that of the MCX-COMDEX data but with a small lag (Fig. 6). The values, though
not identical in absolute terms, are increasing and decreasing in a similar fashion,
except during March 2008, where the two time series appear to be out of sync. This
means that the respective change of states of the two systems, i.e., the corresponding
markets’ dynamics, is closely related to each other. If one looks carefully at the
DET values, one will notice that the DET values for both NIFTY and MCX are
almost concurrent during July 2005 to October 2006, and also June 2007 onwards.
We also find similar regime specific behaviour in other RQA variables as well. The
concurrence departs in 2006 after a crash in the stock markets and again reappears
when the market rebounds. We can infer that the stock market crash affects the
two markets differently, with the commodity market recovering faster than the stock
market, therefore leading to the departure of the concurrence.

The values of DET , L, LAM, and TT of the DJ-AIGCI and DJI data reveal a much
less synchronised variation of the dynamical properties than in the Indian markets
(Fig. 7). There are more epochs when the two values are out of sync or even negatively
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Fig. 6 DET , L, LAM, and TT
values with 95 % confidence
limits for time series
representing daily close
values of the stock market
index CNX-NIFTY and
commodity market index
MCX-COMDEX in India.
The values reveal changes
between different dynamics
like degree of predictability.
We can see how the two
indices are concurrently
changing in their dynamics
except for March 2008
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Fig. 7 DET , L, LAM, and TT
values with 95 % confidence
limits for time series
representing daily close
values of the stock market
index DJIA and commodity
market index DJ-AIGCI in
USA. The values show that
the US indices are
significantly different in their
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Fig. 8 Transitivity Dimensions of the commodity and stock market indices

correlated. This suggests a weaker link between the dynamics of the two markets
and a significant difference in the predictability of the stock and commodity markets.
Pearson correlation between the RQA values of NIFTY and MCX ranges between
0.25 and 0.55, while for DJIA and DJ-AIDCI we find correlation between 0.05
and 0.1 only. These findings corroborate our conclusions on the closer interrelation
between the Indian exchanges than the US exchanges.

We conclude our analysis by comparing the transitivity dimension of the chaotic
dynamics of the two markets. We find two epochs of higher transitivity dimension
of the daily close of MCX, one between June 2005 and November 2006 and another
after July 2008, with a decrease between November 2006 and July 2008, coinciding
with a similar evolution of the close values of NIFTY, the stock market index of
India (Fig. 8). The evolution of the transitivity dimensions of daily close of DJIA,
the US stock market index, and of DJAIGCI, the US commodity market index, are
not as similar as for the Indian counterpart, although we find a decrease between
October 2006 and January 2008. In comparison to the Indian markets, the higher
values of transitivity dimension in the US indices indicate a more complex/ irregular
dynamics.
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5 Conclusions

In the research presented, we have compared the variability of stock and commodity
markets in India and US and found clear differences between the Indian and the US
market behavior. We have used a nonlinear approach to measure correlation based
on the alternating conditional expectation (ACE) algorithm and maximum correla-
tion function (MCF). We found that the correlation between the Indian Markets is
much stronger than in the US. While the maximal correlation between the stock and
commodity markets in India is quite high, the correlation between the US stock and
commodity markets is low and negligible. The relationship for the Indian markets
is lagged by seven days. Furthermore, we have applied the recurrence plot analysis
to look at different aspects of the dynamics. Based on cross recurrence plots, we
found distortions in the link between the stock and commodity markets during stock
market crashes and when the relationship between the stock and commodity markets
is changing or diverging (in terms of lags). The recurrence quantification analysis
(RQA) suggested a concurrence between the Indian stock and commodity markets
in terms of coinciding predictability while these markets in the US were mostly out
of sync. These findings are supported by transitivity dimension which reflects the
changes between regular and complex market behavior, which coincides in the Indian
markets, but is more divergent in the US markets.

From these findings we can infer that the Indian and the US markets behave dif-
ferently. In India both markets are probably linked by external factors, like global
market behavior, which influences the economic state of India in all sectors, i.e., in
stock exchange and commodity markets in a similar way. There is a long tradition in
India of investing in metals, particularly gold, in the form of ornaments and jewellry.
Such dependance on commodities as a constant source of hedging has created an
investment psychology that could have driven the Indian investors to invest a fixed
proportion of their wealth always in commodity futures. This has resulted in concur-
rent investments in stock and commodity leading to stronger correlation. One reason
for the lagged relationship could be that after every initial boom in the stock market,
investors start piling up a portion of their wealth in commodity and vice versa. In
India, since people have routes to diversify in commodity markets through informal
channels like ornaments and utensils, they may treat the commodity futures exchange
as an alternative to the informal market. That is why they seem to invest in both stock
and exchange traded commodities concurrently.

Globally two commodities, namely oil and gold, play important roles in portfolio
management. In the case of gold we already see that the Indian market has reasons to
behave differently than US market. We can also find from investment trends that oil
also, rather than the entire commodity futures, has a similar place in the investment
portfolios of India, which means that whenever investment goes up, it goes up almost
simultaneously both in stock and commodity markets. Finally, it may be inferred that
exchange traded commodities may not be a useful diversification avenue for investors
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in India as yet. However, the exchange traded commodity market is relatively new
in India. The dynamics will probably undergo a change with time as the market in
India further develops.
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