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Abstract – Characterizing the mechanism of drop formation at the interface of horizontal oil-
water stratified flows is a fundamental problem eliciting a great deal of attention from different
disciplines. We experimentally and theoretically investigate the formation and transition of hor-
izontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure
multivariate signals from two different stratified flow patterns. Using the Adaptive Optimal Kernel
Time-Frequency Representation (AOK TFR) we first characterize the flow behavior from an en-
ergy and frequency point of view. Then, we infer multivariate recurrence networks from the
experimental data and investigate the cross-transitivity for each constructed network. We find
that the cross-transitivity allows quantitatively uncovering the flow behavior when the stratified
flow evolves from a stable state to an unstable one and recovers deeper insights into the mecha-
nism governing the formation of droplets at the interface of stratified flows, a task that existing
methods based on AOK TFR fail to work. These findings present a first step towards an im-
proved understanding of the dynamic mechanism leading to the transition of horizontal oil-water
stratified flows from a complex-network perspective.

Copyright c© EPLA, 2013

Introduction. – Horizontal oil-water two-phase flow is
frequently encountered in many industrial processes and
the interest in them has greatly increased recently mainly
due to the petroleum industry [1,2]. When oil and water
flow in a horizontal or slightly inclined pipe, there ex-
ist particular flow conditions for which the two immisci-
ble phases are separated from each other by a continuous
smooth or wavy interface. For a fixed water flow rate,
when the oil flow rate is low, the interface is smooth or
may be rippled by very small capillary waves, i.e., strati-
fied (ST) flow pattern occurs. With an increase of the oil
flow rate, interfacial waves gradually appear. When the oil
flow rate is high, droplets can be formed from the interfa-
cial waves, i.e., an onset of a stratified flow with mixing at
the interface (ST&MI) pattern is formed. Note that the
horizontal oil-water dispersed flow patterns, including a
dispersion of oil in water and water flow pattern and a dis-
persion of water in oil and oil in water flow pattern, evolve

from the ST&MI flow pattern. The investigation on the
dynamic transitions from a ST flow pattern to a ST&MI
flow pattern can yield deeper insights into the mechanism
governing the formation of droplets, which is very crucial
for understanding the formation and transition of horizon-
tal oil-water dispersed flow patterns. Therefore, the study
of ST flow and ST&MI flow is of paramount importance.
Distinct horizontal oil-water flow patterns have been ob-
served [3,4] and the characterization of oil-water flows has
attracted much attention from physical and chemical re-
search fields. Numerical simulations [5], wavelet multireso-
lution technique [2] and theoretical models [6,7] have been
employed to study experimental horizontal oil-water two-
phase flows. But compared to the study of gas-liquid flows,
works particularly dedicated to the investigation of hori-
zontal stratified flows are quite limited. In addition, the
mechanism of drop formation at the interface of horizon-
tal oil-water stratified flows is still elusive. Therefore, it
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becomes quite important and necessary to develop a new
and effective tool to quantitatively uncover the mecha-
nisms leading to the formation and transition of horizontal
oil-water stratified flows from experimental measurements.

Complex-network theory has provided an increasingly
challenging framework for the study of complex systems
from different research fields [8–15]. Charting the inter-
actions between system components, abstracted as nodes
and edges, has allowed us to represent a complex system
as a complex network and then assess the system in terms
of network theory. Recently, complex-network methods
applied to time series analysis have proven great potential
for characterizing important properties of complex dynam-
ical systems [16–30]. In particular, the recurrence network
technique [25–30] has established itself as a powerful tool
for quantitatively and geometrically characterizing com-
plex dynamical systems and time series. We recently have
used recurrence networks to successfully identify five dif-
ferent horizontal oil-water flow patterns [31].

In this letter, we aim to experimentally and theoretically
study the mechanisms leading to the formation and tran-
sition of horizontal oil-water stratified flows. We design
a new multi-sector conductance sensor and systematically
carry out horizontal oil-water two-phase flow experiments
for measuring multivariate signals from ST flow pattern
and ST&MI flow pattern. Utilizing the Adaptive Opti-
mal Kernel Time-Frequency Representation (AOK TFR),
we first investigate the flow behaviors from different lo-
cal measured signals. We find that the local flow behav-
iors of ST flow patterns and ST&MI flow patterns are
distinct in the sense that their energy and frequency dis-
tributions are different, but the energy and frequency dis-
tributions are not very sensitive to the transitions of flow
conditions and hence the AOK TFR method does not al-
low uncovering the mechanism governing the formation of
drops at the interface of stratified flows. In this regard,
we resort to the multivariate recurrence network to investi-
gate the horizontal oil-water stratified flows. We find that
the inferred multivariate recurrence networks exhibit the
topological structure of “network of networks”, which can
be quantitatively assessed by the cross-transitivity. Our
results suggest that the cross-transitivity allows quanti-
tatively uncovering the flow behavior when the stratified
flow evolves from a stable state to an unstable state and
can yield deeper insights into the mechanism governing
the formation of drops at the interface of stratified flows,
a task that existing methods based on AOK TFR fail to
work.

Experiments and data acquisition. – We carry
out a horizontal oil-water two-phase flow experiment in
a 20-mm-inner-diameter pipe in a multiphase flow loop
at Tianjin University. The main sensor is our newly de-
signed four-sector conductance sensor (fig. 1(a)), which
enables to measure the local flow behavior of horizontal
oil-water flows. It consists of eight alloy titanium concave
electrodes axially separated and flush mounted on the in-

(a) (b)

Fig. 1: (Color online) (a) The four-sector conductance sensor:
ET, ER, EB, EL are the exciting electrodes, and MT, MR, MB,
ML are the measuring electrodes, respectively, θ is the exciting
and measuring electrode angle, H is the electrode height, R
is the inner pipe radius, and D the distance between the ex-
citing and the measuring electrode; (b) experimental flow loop
facility.

(a) (b)

Fig. 2: Horizontal oil-water stratified flow patterns. (a) ST
flow; (b) ST&MI flow.

side wall of the flowing pipe. Figure 1(b) shows our experi-
mental flow loop facility. The experimental media are tap
water and No.15 industry white oil. In the experiment,
when the water and oil flow rates reach a pre-defined ra-
tio, a certain flow condition is obtained and conductance
fluctuating signals are then acquired from the four-sector
conductance sensor. The oil and water superficial veloc-
ities are both in the range of 0.1–3m/s. The sampling
frequency is 4000Hz and the measuring time for one mea-
surement is 30 s. In the experiment, when the oil and
water flow rates are low, the flow pattern is ST. With an
increase of the flow rates, interfacial waves between oil
phase and water phase gradually appear and are initially
long. With a further increase of the flow rates, these waves
will become disturbed. Along the interfacial waves, one or
more droplets of one phase will appear in the other con-
tinuous phase, i.e., the oil-water flows evolve from a ST
flow to a ST&MI flow (fig. 2). The flow signals from the
four-sector conductance sensor corresponding to ST and
ST&MI flow patterns are shown in fig. 3.

Time-frequency representation of oil-water
stratified flows. – Adaptive optimal kernel time-
frequency representation (AOK TFR), which has been
widely applied to analyze non-stationary signals, performs
a mapping from the time domain to the time-frequency
domain. More details about the AOK TFR method
are given in ref. [32]. In fig. 4 and fig. 5 we show the
AOK TFR results of the horizontal oil-water ST flow
pattern and the ST&MI flow pattern, respectively, where
the spectra represent the power spectral density of the
original signals. For the ST flow, the upper part of the
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Fig. 3: The signals from the four-sector conductance sensor
for two different horizontal oil-water stratified flow patterns:
(a) ST flow; (b) ST&MI flow, where Uso and Usw represent
the oil superficial velocity and the water superficial velocity,
respectively.

horizontal pipe is the continuous oil phase and the bottom
part the continuous water phase. The ST flow pattern
can be characterized by a smooth oil-water interface with
no droplets and only small waves (fig. 2(a)). As can be
seen in fig. 4(a), the frequency of the continuous oil phase
in the upper part of the pipe is in the range of 0–60Hz,
but its energy is very low. In the bottom part, due to
effects of turbulence, the frequency of the continuous
water phase is in the range of 0–40Hz and its energy
becomes higher compared to that of the continuous oil
phase (fig. 4(c)). The AOK TFR results of MB and
MD signals are very similar (fig. 4(b) and (d)), and the
frequencies are both in the range of 0–30Hz and the
energies are higher than in the continuous oil phase but
lower than in the continuous water phase, reflecting the
flow behavior of interfacial waves. With an increase of
the flow rate, the turbulence energy increases, resulting in
the appearance of few oil and water droplets around the
interface and then a ST&MI flow pattern occurs. Similar
to the ST flow pattern, the AOK TFR of the upper
part of the ST&MI flow pattern still reflects the flow
behavior of the continuous oil phase, exhibiting features
in wide frequency and low energy (fig. 5(a)). Different
to the ST flow pattern, the frequency and energy of the
right and left part ST&MI flow pattern become obviously
larger than that of the ST flow pattern (fig. 5(b), (d) and

Fig. 4: (Color online) AOK TFR for a typical horizontal oil-
water ST flow pattern (Usw = 0.1105m/s, Uso = 0.1326m/s).
(a) MA signals; (b) MB signals; (c) MC signals; (d) MD signals.

Fig. 5: (Color online) AOK TFR for a typical horizontal
oil-water ST&MI flow pattern (Usw = 0.3684 m/s, Uso =
0.1326m/s). (a) MA signals; (b) MB signals; (c) MC signals;
(d) MD signals.

fig. 4(b), (d)), reflecting the increase in the amplitudes of
the interfacial waves and also the movements of droplets
along the interfacial waves. In addition, from fig. 5(c)
and fig. 4(c) we can see that the energy of the bottom
part of ST&MI flow also increases compared to ST flow,
indicating the increase of the turbulence energy induced
by increasing water flow rate.

From the analysis above, we can see that the local
flow behaviors of typical ST flow pattern and ST&MI
flow pattern are distinct in the sense that their energy
and frequency distributions are different. But it should
be pointed out that the energy and frequency distribu-
tions actually are not very sensitive to the transitions of
flow conditions. For example, when we fix the water flow
rate at 0.1326m/s, and increase the oil flow rate from
0.1105m/s to 0.1474m/s we see the formation and tran-
sition of a ST flow pattern, and then proceed to increase
the oil flow rate from 0.1474m/s to 0.2210m/s we ob-
serve the formation and transition of ST&MI flow pattern.
We find that the distributions of AOK TFR present very
similar distributions in the transition from ST to ST&MI
flow pattern, e.g., when the water flow rate increases from
0.1474m/s to 0.2210m/s, which cannot be used to uncover
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details of the transitions of stratified flow patterns. In this
regard, the AOK TFR method does not allow uncovering
the mechanism governing the formation of drops at the
interface of stratified flows. It is thus necessary to de-
velop a more efficient approach to uncover the mechanism
leading to the formation of ST and ST&MI flow patterns.
Therefore, in the next section we will resort to the multi-
variate recurrence networks and demonstrate its power in
characterizing horizontal oil-water stratified flows.

Multivariate recurrence network analysis of
stratified flows. – Multivariate time series (e.g., our
experimental signals MA, MB, MC and MD) can be em-
bedded into the same phase space by using a suitable m-
dimensional embedding with a proper time delay τ . Given
a certain threshold ε and a certain distance norm ‖ · ‖,
we can then get recurrence relationships between any two
space vectors in this phase space. In particular, for vectors
that come from the same time series (such as MA),

−−→
MA(t) = (MA(t),MA(t+ τ), . . . ,MA(t+ (m− 1)τ)), (1)

t = 1, 2, . . . , N +m− 1,

we get the auto-recurrence matrix RA as follows:

RA
ij = Θ(εA− ‖ −−→

MA(i)−−−→
MA(j) ‖), (2)

and as for vectors from different time series (such as MA

and MB), we get the cross-recurrence matrix RAB
cross(i, j)

as
CRAB

ij = Θ(εAB− ‖ −−→
MA(i)−−−→

MB(j) ‖), (3)

where Θ(·) is the Heaviside function Θ(x) = {1 | x > 0; 0 |
x ≤ 0}. The embedding dimension m and delay time τ
should be properly selected to reconstruct phase space and
we use the FNN [33] method and the C-C [34] method to
determine m and τ , respectively. Combining the cross-
and auto-recurrence matrix, we obtain a multivariate re-
currence matrix IR

IR =

⎛
⎜⎜⎝

RA CRAB CRAC CRAD

CRBA RB CRBC CRBD

CRCA CRCB RC CRCD

CRDA CRDB CRDC RD

⎞
⎟⎟⎠ . (4)

In order to consider the IR as a network of networks,
the cross-recurrences should be lower than the auto-
recurrences

1

N(N − 1)

∑
i�=j

RA
ij >

1

NANB

∑
i,j

CRAB
ij (5)

According to ref. [29], we fix the auto- and cross recurrence
rate at 0.03 and 0.02, respectively. Note that, the recur-
rence rate reflects the edge density of a recurrence net-
work. For a time series, there exists a one-to-one mapping
between the recurrence rate and the recurrence threshold,
and one recurrence rate exclusively corresponds to one re-
currence threshold. For different time series, the same

recurrence rate can generate different recurrence thresh-
olds. In particular, we determine the thresholds for auto-
(cross-) recurrence networks in terms of the same fixed
auto- (cross-) recurrence rate, and the recurrence thresh-
olds for different auto- (cross-) recurrence networks are
different. Therefore, the thresholds in the multivariate re-
currence matrix IR can be different. Consequently, we
obtain a multivariate recurrence network by interpreting
the multivariate recurrence matrix as a network adjacent
matrix. More details about the recurrence network and
recurrence analysis are in refs. [26,35].
Four signals measured from one flow condition are

mapped into a multivariate recurrence network. For each
generated multivariate recurrence network, there exist
four subnetworks, denoted as subnetwork A, B, C, D, re-
sulting from the four different sector signals MA, MB, MC

and MD, respectively. In order to characterize the local
and cross property between subnetworks, we use the re-
cently proposed cross-transitivity [29]. A cross-transitivity
for subnetwork A to B can be defined as follows:

TAB =

∑
v∈A;p,q∈BCRAB

vp CRAB
vq RB

pq∑
v∈A;p,q∈BCRAB

vp CRAB
vq

(6)

Actually, TAB, as an analog to the canonical network tran-
sitivity [8], counts the number of “cross-triangles” over
the number of “cross-triples”. It is important to indicate
that the cross-transitivity is not invariant under the per-
mutation A ↔ B, i.e., TAB �= TBA. Note that for two
subnetworks A and B constructed from two coupled dy-
namic systems, if the coupling direction is A → B and

the coupling is large enough, we can find a state
−→
B (k)

in B, which is cross-recurrent to both
−→
A (i) and

−→
A (j), due

to the coupling’s diffusive nature and thus the tendency
to “drag” the trajectory of B towards A. The resulting
“cross-triangle” adds to the value of TBA according to
the definition of cross-transitivity. Therefore, we see that
TBA > TAB in case of a unidirectional coupling A → B
and vice versa for the opposite coupling direction. We
calculate the cross-transitivity between all pairs of sub-
networks for each constructed network to investigate the
flow behavior leading to the formation and transition of
horizontal oil-water stratified flows. The number of data
points for each signal entered the analysis is 120000. Note
that, for each flow condition, we divide the four signals
MA, MB, MC, MD, into six parts with equal length, i.e.,
MA(i), MB(i), MC(i), MD(i), i = 1, 2, 3, . . . , 6. Then we
construct the network and calculate the cross-transitivity
for each part, and finally we obtain the ensemble mean
and standard deviation of the cross-transitivity for the six
parts. We show the cross-transitivity of all pairs of sub-
networks for a multivariate recurrence network generated
from the ST flow pattern (fig. 6(a)), and the ST&MI flow
pattern (fig. 6(b)). We calculate the ensemble means and
standard deviations (error bars) of the cross-transitivity
for all flow conditions in the transitions from ST flow to
ST&MI flow and present the results in fig. 7. For the ST
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Fig. 6: (Color online) Cross-transitivity of all pairs of sub-
networks for a multivariate recurrence network generated from
(a) ST flow pattern (Uso = 0.1945m/s, Usw = 0.1105m/s)
and (b) ST&MI flow pattern (Uso = 0.1945m/s, Usw =
0.2216m/s), where A, B, C, D represent different subnetworks.

flow pattern m = 3, τ = 18; for the ST&MI flow pattern
m = 3, τ = 24. As can be seen, the cross-transitivity is
very sensitive to the transitions of flow conditions. Note
that subnetwork A and C reflect the flow behavior of the
upper and bottom part of the stratified flow, respectively,
and subnetwork B and D reflect the flow behavior of the
middle right and left part of the stratified flow, respec-
tively. Since at the transition from ST flow to ST&MI flow
interfacial waves occur at the middle part of the stratified
flow, the cross-transitivity associated with subnetwork B
and D can be targetedly used to uncover the mechanism
governing the formation and transition of ST and ST&MI
flow pattern. Specifically, the values of TAB, TAD, TCB,
TCD, TBC , TDC , TBA, TDA for different stratified flow
patterns are located in distinct regions, and when a transi-
tion from ST flow to ST&MI flow occurs, a sudden change
of cross-transitivity will appear (fig. 7), which allows quan-
titatively distinguishing ST flow from ST&MI flow.
We now demonstrate how to investigate the mechanism

leading to the formation of droplets at the oil-water inter-
face in the transition from ST flow to ST&MI flow in terms
of the network measure from multivariate recurrence net-
works. For a fixed oil flow rate, when the water flow rate
is low, e.g., Usw = 0.1105m/s, the ST flow is in a stable
state and there are no interfacial waves or there only ex-
ist interfacial waves of small amplitudes at the oil-water
interface. With an increase of the water flow rate, e.g.,
Usw = 0.1474m/s, the amplitudes of the interfacial waves
gradually increase and the turbulence of water phase also
increases, but the interfacial waves are still stable and the
wave amplitudes are not large enough to form droplets
under this flow condition. Correspondingly, for ST flow
pattern, as the water flow rate increases from 0.1105m/s
to 0.1474m/s, the TBC and TDC gradually decrease, indi-
cating the increase of the amplitudes of the stable interfa-
cial waves (fig. 7). Note that the drag force resulting from
the difference between the oil flow rate and the water flow
rate will lead to an increase of the wave amplitudes and the
deformation of interfacial waves, but the gravity and sur-
face tension force tends to preserve the original interfacial
wave shape. With a further increase of the water flow rate,

Fig. 7: (Color online) Cross-transitivity for the transitions from
ST flow to ST&MI flow, where some error bars are smaller than
the size of the symbols.

e.g., Usw = 0.2210m/s, the water phase moves at a higher
flow rate than the oil phase and begins to undercut the
oil layer until the breakage of droplets becomes possible,
i.e., the onset of ST&MI flow pattern. It should be noted
that the formation of droplets at the oil-water interface
becomes possible only if the drag force exceeds the retain-
ing force of surface tension. As can be seen in fig. 7(a),
when the water flow rate is low and the interfacial waves
are stable, the TAB, TAD, TCB, TCD gradually decrease
with the increase of the water flow rate. When the water
flow rate reaches to Usw = 0.2210m/s, a sudden change of
cross-transitivity TAB, TAD, TCB, TCD occurs and then
TAB, TAD, TCB, TCD will increase with an increasing
water flow rate. This sudden change of cross-transitivity
indicates that the interfacial waves have evolved from a
stable state to an unstable state and the drag force has ex-
ceeded the surface tension and, consequently, droplets are
formed from the unstable oil-water interface. In addition,
as shown in fig. 7(b), the cross-transitivity TBC and TDC

for the stable stratified flow (ST flow) are usually large,
while for the unstable stratified flow (ST&MI flow) they
are small, and the decrease of TBC and TDC suggests that
the amplitudes of the interfacial waves gradually increase.
When the water flow rate increases from 0.1474m/s to
0.2210m/s, TBC decreases from 0.65 to 0.54 and TDC de-
creases from 0.64 to 0.59, indicating that the amplitudes of
the interfacial waves have reached a critical value for the
formation of droplets. These interesting results suggest
that the cross-transitivity, which is very sensitive to the
amplitude of interfacial waves, can faithfully characterize
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the flow behavior when the stratified flow evolves from a
ST stable state to a ST&MI unstable state and can yield
deeper insights into the mechanism governing the forma-
tion of drops at the interface of stratified flows, a task that
existing methods based on AOK TFR fail to work.

Conclusions. – The problem of characterizing the for-
mation and transition of horizontal oil-water stratified
flows based on experimental measurements has been a
challenge in the study of multiphase flow. We design a
new multi-sector conductance sensor for measuring multi-
variate signals from ST flow and ST&MI flow. We exploit
the framework of multivariate recurrence network to con-
struct network from multivariate signals for different flow
conditions and arrive at a result of “network of networks”,
which can be assessed by the network measures cross-
transitivity. Our results suggest that the cross-transitivity
can faithfully indicate the formation of droplets at the
interface induced when the drag forces become greater
than the surface tension force, and further allow quantita-
tively characterizing the flow behavior associated with the
formation and transition of horizontal oil-water stratified
flows, a task that existing methods based on AOK TFR
fail to work. Due to the effectiveness and generality of the
method, we expect it to be useful for broader applications
in science and engineering.
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