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Abstract – Synchronisation between coupled oscillatory systems is a common phenomenon in
many natural as well as technical systems. Varying the coupling strength often leads to qualitative
changes in the dynamics exhibiting different types of synchronisation. Here, we study the geometric
signatures of coupling along with the onset of generalised synchronisation (GS) between two
coupled chaotic oscillators by mapping the systems’ individual as well as joint recurrences in phase
space to a complex network. For a paradigmatic continuous-time model system, we show that
the transitivity properties of the resulting joint recurrence networks display distinct variations
associated with changes in the structural similarity between different parts of the considered
trajectories. They therefore provide a useful new indicator for the emergence of GS.

This paper is dedicated to the 25th anniversary of the introduction
of recurrence plots by Eckmann et al. (EPL, 4 (1987) 973).

Copyright c© EPLA, 2013

Introduction. – In the last two decades, there has
been a rising interest in studying synchronisation of
coupled oscillatory systems [1,2]. Specifically, for chaotic
oscillators, it has been recognised that different phenom-
ena have to be distinguished: In case of complete syn-
chronisation (CS) [3] the trajectories x(t) and y(t) of the
two coupled systems become identical (y(t) = x(t)), which
is only possible for identical systems with a sufficiently
strong coupling. Generalised synchronisation (GS) [4–7]
refers to a general fixed and deterministic functional rela-
tionship between both trajectories, y(t) = f(x(t)), where
f is a diffeomorphism. GS can occur for non-identical
chaotic oscillators at moderate coupling strengths. A
closely related form is lag synchronisation (LS) [8], where
both coupled systems evolve in an identical way with a
fixed mutual time shift as y(t) = x(t − τ). Finally, phase
synchronisation (PS) [9] between non-identical systems
typically arises at lower coupling strengths and is char-
acterised by a locking between the phases of two systems,

(a)E-mail: feldhoff@pik-potsdam.de

mφy(t) = nφx(t) with m,n ∈ N, whereas the amplitudes
remain uncorrelated.

The sequence of synchronisation phenomena between
two coupled oscillators with increasing coupling strength
depends on their structural difference and specific cou-
pling configuration. Typically, the dynamics of both
systems becomes successively synchronised on more and
more characteristic time-scales as the coupling strength
increases [10,11]. This implies the emergence of PS at
relatively low coupling strengths if the characteristic oscil-
lation frequencies of both systems are sufficiently similar,
whereas LS, GS, and CS typically occur at higher coupling
strengths. However, the observed synchronisation scenario
can also be much more complex.

A mathematical description of GS has been given first
for driver-response systems. However, GS is not unique to
systems with unidirectional coupling, but can be observed
also for symmetrically coupled oscillators [12,13]. For
driver-response relationships, the driven system undergoes
systematic changes in its dynamical evolution as the
coupling strength is increased. These changes can be
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detected by a variety of methods such as the auxiliary
system method [5], numerical estimates of the conditional
Lyapunov exponent of the response system as a measure
for its asymptotic stability [6], or by quantifying the
predictability of the driven system. The latter class of
approaches includes several methods based on neighbour-
hood relationships in phase space (i.e., relying on geomet-
ric information), with the mutual false nearest-neighbour
method [4] and the synchronisation likelihood [14] as most
prominent examples. However, these methods are not
always directly transferable to the case of bidirectional
coupling configurations. Consequently, recently several
new approaches have been proposed for studying GS for
both uni- and bidirectional couplings, including methods
based on recurrence plots [15] or a generalised angle
between the trajectories of both systems [16].

Since synchronisation has distinct effects on the spatial
organisation of driven systems in phase space, geometric
methods are promising and widely applicable candidates
for detecting GS from time series data. In this work
we propose a new geometric method based on a complex
network approach. Specifically, our method is based on a
graph-theoretical interpretation of joint recurrence plots
describing the simultaneous occurrence of mutually close
pairs of state vectors in two or more coupled systems [17].
After presenting the details of our approach, we discuss the
paradigmatic example of two coupled Rössler oscillators in
different dynamical regimes in order to demonstrate the
performance of the proposed method.

Methodology. – In the last years, the well-established
framework of complex network theory [18,19] has become
the basis for novel approaches of nonlinear time series
analysis characterising complex systems [20–22] from a
unique structural perspective. As a specific class of
such time series networks, approaches characterising the
mutual proximity of state vectors in phase space have
become increasingly popular, since the resulting networks’
structures reflect non-trivial geometric properties of the
supposed (low-dimensional) attractor underlying the ob-
served dynamics. A particularly interesting method are
recurrence networks (RNs) [23–25], which encode the
mutual proximity of state vectors in phase space arising
from dynamical recurrences in the sense of Poincaré.
Specifically, defining neighbourhoods of individual states
by considering a spatial threshold distance ε around each
observed state vector offers a flexible way for capturing the
geometric backbone of the system under study. Formally,
the system’s finite-time recurrence properties infered from
a time series {xi}N

i=1 are then represented by the binary
recurrence matrix

Rij(ε) = Θ(ε − ‖xi − xj‖), (1)

where ‖ ·‖ is the maximum norm in phase space (however,
other norms could be used here as well), and Θ(·) denotes
the Heaviside function. The visualisation of (Rij) is
commonly refered to as the recurrence plot [26] and

has become an important tool for nonlinear time series
analysis in the last decades [27].

RN analysis reinterprets eq. (1) as the adjacency ma-
trix of an undirected simple graph defined as Aij(ε) =
Rij(ε) − δij (where δij is Kronecker’s delta). The re-
sulting networks’ properties can be described analyti-
cally by interpreting RNs as random spatial graphs with
the system’s invariant density uniquely determining RN
connectivity [28,29]. This solid theoretical foundation
allows using RNs for detecting dynamical changes in
non-stationary time series from mathematical models as
well as real-world applications [30–32]. One basic, yet
important characteristic of RNs is the edge density ρ(ε) =∑

i,j Aij(ε)/[N(N − 1)], which is a monotonous function
of ε [33]. In general, a suitable resolution of small-scale
network features requires the choice of a low edge density
(typically ρ � 0.05 [29,33]) with ρ > ρ(εc), where εc is the
percolation threshold of the RN [29].

The transitivity properties of RNs provide some par-
ticularly useful characteristics measuring the effective
dimensionality of the underlying dynamical system in
terms of the transitivity dimension [28]

DT (ε) =
log T (ε)
log(3/4)

(2)

based on the network transitivity [19,34]

T (ε) =

∑
i,j,k Aij(ε)Ajk(ε)Aki(ε)
∑

i,j,k Aij(ε)Aki(ε)
. (3)

This dimensionality interpretation of T is the foundation
of the approach to studying geometric signatures of syn-
chronisation to be detailed below. Other global RN char-
acteristics (e.g., average path length L or global clustering
coefficient C) have also proven their capabilities [23,25],
but shall not be further discussed here for brevity.

Motivated by the great potentials of RN analysis of
individual dynamical systems, a thorough extension to
studying the collective dynamics of two or more coupled
systems based on the concept of cross-recurrence plots [35]
has been recently proposed [36]. However, the latter
approach requires systems sharing the same phase space
(a condition which is often not met in real-world applica-
tions) and is restricted to studying weakly unidirectionally
coupled systems before the onset of GS [36]. In turn, in
order to study the geometric signatures accompanying the
onset of GS in some more detail, in this work we utilise
another multivariate generalisation of the recurrence plot
concept, joint recurrence plots [17], capturing the simulta-
neous occurrence of recurrences in two dynamical systems
(fig. 1). The underlying joint recurrence matrix

JRij(εx, εy) = Θ(εx − ‖xi − xj‖)Θ(εy − ‖yi − yj‖) (4)

is defined as the point-wise product of the individual sys-
tems’ recurrence matrices. This basic concept can be di-
rectly generalised to the study of K > 2 coupled systems.
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Fig. 1: Schematic illustration of a joint recurrence of two
dynamical systems X and Y in their respective phase spaces
PSX and PSY .

Next, as for the traditional RN we reinterpret the joint
recurrence matrix as the adjacency matrix of a so-called
joint recurrence network (JRN) by setting Aij(εx, εy) =
JRij(εx, εy) − δij . JRNs can be constructed for systems
with different phase spaces, but explicitly require simulta-
neous observations of all systems and, thus, time series of
the same length. The system-specific thresholds εk should
be chosen such that the edge densities ρk(εk) of the RNs
of the individual systems are fixed at the same value ρ to
ensure comparability between the two considered systems,
since the specific values of their RN properties typically
depend on the chosen edge density [24,28]. By varying ρ,
a reasonable JRN edge density ρJ ≤ ρ can be obtained.

The properties of JRNs can be widely interpreted in
a similar way as those of a classical RN in the higher-
dimensional phase space of the composed system, with the
exception that spatial proximity is evaluated separately in
the subspaces belonging to the individual systems. Specif-
ically, the transitivity T (εx, εy) (cf. eq. (3)) of the JRN (or,
for short, joint transitivity TJ) provides a measure for the
“joint dimensionality” of the composed dynamical system
(in a general sense). Due to the larger effective dimen-
sionality of the joint phase space, for two systems X and
Y in the absence of synchronisation we expect TX , TY �

TJ (specifically, DTJ
= log TJ/ log(3/4) ≈ DTX

+ DTY
,

cf. eq. (2)). In turn, when both systems exhibit GS,
the effective degrees of freedom of both systems become
mutually locked, resulting in TJ → TX , TY , i.e., both
systems acting collectively as one with the same effective
dimensionality as the individual systems. Consequently,
studying the transitivity ratio

QT =
TJ

(TX + TY )/2
(5)

between the joint transitivity and the arithmetic mean of
the individual systems’ RN transitivities provides a purely
geometric indicator for the emergence of GS. Note that
for non-identical systems exhibiting GS, we still expect

TX �= TY due to subtle differences in the individual
attractors’ geometric shapes, so that we do not necessarily
have QT ≤ 1 (see figs. 2 and 3). However, for structurally
similar systems, TX ≈ TY and, thus, QT ≈ 1 for GS.

Results. – As a well-studied paradigmatic model ex-
hibiting different types of synchronisation phenomena,
we study the performance of JRNs for two non-identical
Rössler oscillators [37]

ẋ1 = −(1 + ν)x2 − x3,

ẋ2 = (1 + ν)x1 + axx2 + μY X(y2 − x2),
ẋ3 = bx + x3(x1 − cx),
ẏ1 = −(1 − ν)y2 − y3,

ẏ2 = (1 − ν)y1 + ayy2 + μXY (x2 − y2),
ẏ3 = by + y3(y1 − cy),

(6)

that are diffusively coupled via their second component as
in [15]. The detuning parameter ν accounts for a frequency
mismatch of the nonlinear oscillations exhibited by both
systems, making them non-identical even if ax = ay = a,
bx = by = b and cx = cy = c and, thus, prone to GS. In
the following, we will keep ν = 0.02 fixed. In turn, for
the characteristic parameters a, b and c, we will mainly
keep the same parameters for both systems throughout
all further considerations. Specifically, we study the geo-
metric signatures of the complex synchronisation scenarios
arising for two different dynamical regimes with chaotic
oscillations: the phase-coherent regime (a = 0.16, b =
0.1, c = 8.5) and the non–phase-coherent funnel regime
(a = 0.2925, b = 0.1, c = 8.5). We integrate the coupled
system with step size h = 0.001 until T = 10000, i.e.,
for 10000000 time steps. In order to ensure that even
very long transients are discarded, only data obtained
for T ≥ 1, 000 are used for estimating the Lyapunov
spectrum using the Wolf algorithm [38]. In a similar
way, for estimating the RN properties only the interval
T ∈ [5000, 6000] is considered. The corresponding 1000000
time steps are downsampled by a factor of 200 to obtain
RNs and JRNs with N = 5000 vertices. For comparative
purposes, we also consider the recurrence plot-based
indices CPR and JPR [15]. CPR, an indicator for PS, is
based on the cross-correlation between the two systems’
recurrence-based generalised auto-correlation functions,
whereas JPR attempts to identify synchronisation by
comparing the systems’ RN edge densities ρX,Y to ρJ ,
which become very similar in case of GS.

Let us first examine a unidirectional coupling config-
uration X → Y (μY X = 0), where the slightly faster
system X drives the slower one Y . For two phase-coherent
Rössler systems (fig. 2(A)), we find that when increasing
the coupling strength μXY beyond about 0.06, the fourth-
largest Lyapunov exponent λ4 turns negative. At about
the same value, CPR starts increasing indicating the
possible onset of PS. At μXY ≈ 0.17, the third-largest
Lyapunov exponent λ3 becomes significantly negative,
which is commonly interpreted as an indicator for the
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A B C

Fig. 2: Results of synchronisation analysis for two unidirectionally (X → Y ) coupled Rössler systems being (A) both in the
phase-coherent regime, (B) both in the funnel regime, and (C) in phase-coherent (X) and funnel regime (Y ): estimates of
the four largest Lyapunov exponents λ1, . . . , λ4 (note that one of the Lyapunov exponents is always equal to zero due to the
imposed coupling); recurrence-based synchronisation indices CPR (black) and JPR (grey) [15]; transitivities of individual and
joint recurrence networks TX (dark grey), TY (light grey) and TJ (black); transitivity ratio QT (from top to bottom).

A B C

Fig. 3: As in fig. 2 for bidirectional coupling.

onset of GS. At the same time, we observe a sharp
rise of JPR towards values of about 0.8, whereas QT
immediately rises to values close to 1 (in fact, there is
some weak overshooting because i) both systems are not
fully identical and ii) the edge densities of RNs and JRN
differ necessarily, resulting in slightly different estimates
of the corresponding network transitivities).

The results are qualitatively similar when studying
the same coupling configuration with both systems being

in the non-coherent funnel regime (fig. 2(B)). Here, λ4

becomes negative already at rather low coupling strengths,
whereas λ3 < 0 for μXY ≈ 0.3. The corresponding
emergence of GS is accompanied by a continuous tran-
sition of JPR and QT to values of about 1, where QT
again shows better convergence. Moreover, for symmetric
bidirectionally coupled funnel systems (μXY = μY X = μ,
fig. 3(B)), we observe qualitatively the same behaviour
as in the unidirectional case, with the corresponding
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transitions taking place at smaller values of the coupling
strength (i.e., λ4 < 0 for μ � 0.02 and λ3 < 0 for
μ � 0.17 [15]). Notably, the transition to GS as unveiled
by both JPR and QT is even more continuous than
for unidirectional coupling, and the residual difference of
JRN to the ideal value of 1 close to the transition point is
even larger, whereas QT is at the same time already very
close to 1.

Studying two symmetrically coupled phase-coherent
Rössler systems (fig. 3(A)), the synchronisation scenario
gets more complex as μ is varied. Specifically, we find
a small window close to the onset of PS at about μ =
0.039, where CPR shows a sharp rise to values close to
1 [15]. The consistent signatures of the different GS indi-
cators, together with the behaviour of the Lyapunov spec-
trum in this window, indicates the presence of (possibly
intermittent) GS. At μ � 0.04, also JPR and QT in-
crease considerably, reaching plateau values in the phase-
synchronised chaotic regime [15]. For μ ∈ [0.08, 0.092],
we find a more extended window of apparently periodic
dynamics (λ2 < 0) that probably corresponds to a regime
of intermittent lag synchronisation [15], whereas for even
larger coupling strength, we infer the presence of GS since
λ3 < 0, JPR ≈ 1 and QT ≈ 1.

In order to illustrate the limitations of the proposed
approach as well as the established JPR index, we finally
study the signatures of synchronisation for the mixed
case of a phase-coherent Rössler system X coupled to a
funnel oscillator Y , which can be taken as an example
for synchronisation between two strongly non-identical
systems. In the case of unidirectional coupling (fig. 2(C)),
we find λ4 < 0 for μXY � 0.1 accompanied by an increase
of CPR indicating the presence of PS. At μXY ≈ 0.3, also
λ3 approaches negative values, whereas both JPR and
QT increase gradually, but do not approach values close
to 1 even for relatively high coupling strengths. Thus,
the three possible GS indicators λ3, JPR and QT do
not give consistent results in this case, which implies that
we cannot unambigously conclude the possible presence of
GS here. A similar statement holds for the bidirectional
case (fig. 3(C)), which displays again a more complicated
sequence of transitions.

We emphasise that the results described above remain
still valid for considerably shorter time series lengths (e.g.,
for N = 500) and in the presence of moderate levels
(e.g., about 5–10% of the signals standard deviation) of
additive Gaussian white noise (not shown). These findings
indicate a reasonable robustness of our method and its
general applicability to real-world time series, which are
often short and display observational noise of similar
magnitude. It should be noted, that for such observational
data, there is usually no possibility to vary the coupling
strength between the considered systems. However, we
conjecture that when knowing the individual systems’ RN
transitivities as well as their joint transitivity, one can still
derive information on the presence or absence of GS. For
this purpose, sophisticated significance tests need to be

developed. A more detailed study of the aforementioned
aspects is outlined for future work.

Conclusions. – 25 years after the introduction of
recurrence plots by Eckmann et al. [26], the development
of recurrence-based techniques still continues. With this
paper, we would like to honour the seminal work by these
authors and show how the paradigms of recurrence plots
and complex networks have meanwhile been combined
to pave the way for new concepts in complex systems
analysis.

We have introduced a new fully geometric approach
for detecting GS between two coupled chaotic oscillators
based on time series data. Specifically, we have used a
complex network interpretation of the recurrence as well
as joint recurrence matrices, the transitivity properties of
which allow tracing changes in the effective dimensionality
of the individual system’s attractors as well as the attrac-
tor of the combined higher-dimensional system. We have
demonstrated that in the presence of GS, both systems
effectively behave as one, with the dimensionality of the
composed system approaching that of the individual ones.

For the case of structurally similar systems such as
slightly detuned chaotic oscillators with otherwise equal
characteristic parameters, we have shown that the ratio
QT between the JRN transitivity and the arithmetic
mean of the individual systems’ RNs transitivities quickly
approaches a value of 1 as GS takes place. In comparison
with the conceptually related measure JPR, our geometric
characteristic QT displays a better convergence to values
close to 1 expected for GS. We relate this finding to the
fact that QT captures higher-order dynamical character-
istics, whereas JPR does not. Note that for structurally
different systems, both indices fail to clearly indicate the
transition to GS as unveiled by studying the Lyapunov
spectrum.

In general, the proposed method has the advantage of
being applicable to relatively short time series of length
N � O(103), whereas the computational requirements
for numerically estimating the Lyapunov spectrum are
far higher and usually not met in case of real-world
applications. In this spirit, we conclude that the proposed
method has great potentials for future applications to
observational data from different fields of research.
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