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a b s t r a c t

In this paper, a nonlinear time series analysis of data representing dissolved oxygen col-

lected in the Lagoon of Orbetello (Grosseto, Italy) is performed. A first biological inspection

of the data shows that the coastal area is highly eutrophic and subject to unexpected phe-

nomena, like anoxic and distrophic crises. We use the recurrence plots and the recurrence

quantification analysis to show that, even if the time series are short and strongly nonsta-

tionary, it is possible to characterize the oscillations of dissolved oxygen and the oxygen

crises in terms of nonlinear dynamical systems.
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that contribute to growing of the eutrophication processes.
. Introduction

nderstanding, modelling, and forecasting the evolution of
n aquatic ecosystem is a hard task. In this context, dis-
olved oxygen (DO) is a highly informative variable which
epresents reliably important features of the ecosystem. DO
s relatively easy to measure using chemical or electrochemi-
al devices. The characterization of DO oscillations is a priority
or understanding the functioning of aquatic ecosystems and
or planning activities to prevent catastrophic events such

noxic crises. The complex interaction of aquatic ecosys-
ems, based on simultaneous events of chemical, physical, and
iological nature makes the DO oscillation extremely irreg-

∗ Corresponding author at: Center for the Study of Complex Systems, U
E-mail address: a.facchini@unisi.it (A. Facchini).

304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2006.12.001
ular, even if, at suitable time scales, oscillations may show
regularities.

Characterization and prediction of anoxic crises becomes
a particularly important task when dealing with coastal
lagoons. Due to their location and physical features, coastal
lagoons are very frail ecosystems (Carrada, 1990; Chapelle et
al., 2001).

As an example, the Orbetello Lagoon has been character-
ized by large fluctuations in physical and chemical conditions
niversity of Siena, Via Tommaso Pendola 37, I-53100 Siena, ITALY

Since the beginning of the 1990’s, the lagoon was put under
the authority of a committee for its protection, and in the last
decade it was object of studies aimed at its restoration (Lenzi,

mailto:a.facchini@unisi.it
dx.doi.org/10.1016/j.ecolmodel.2006.12.001
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1992; Bucci et al., 1992) and at modelling and understanding
of oxygen oscillations (Buffoni and Cappelletti, 1999).

Eutrophication is related to macroalgae and/or phytoplank-
ton blooms and it usually evolves in anoxic crises. Basically,
pollution is due to the organic matter accumulated in the
water column produced by sewage and anthropogenetic activ-
ities. A large quantity of organic matter in the water column
causes an excessive growth of the primary productivity, which
increases nutrients presence in the water. Continuous mon-
itoring of oxygen, temperature, wind, nutrients, and other
indicators of the ecological status of the lagoon is important
for understanding and controlling these periodic phenomena
(Viaroli and Christian, 2004).

In this paper, we propose a black box approach for the anal-
ysis of the dissolved oxygen in a lagoon, based on techniques
related to nonlinear dynamics concepts and deterministic
chaos. The main motivation for this approach lies in the
well known difficulties generally met in dealing with quan-
titative physical models of aquatic systems, due to the high
complexity of the processes involved and the presence of
high level noise in the real data. Here, the objective is to
show that performing a black box pre-analysis of data for
extracting qualitative information on the system dynamics
provides suggestions which can be fruitfully used succes-
sively in constructing and estimating a quantitative complex
model based on physical and biochemical laws. In fact, math-
ematical models like those investigated since long time by

Masters (1997), Gurney and Nisbet (1998), Scheffer (1998),
Murray (1993), successively extended by Marinov et al. (2005),
Zaldivar et al. (2004), Chapelle et al. (2000) for distributed
processes, and by Garulli et al. (2003), Mocenni and Vicino

Fig. 1 – View of the O
2 0 3 ( 2 0 0 7 ) 339–348

(2006), Hull et al. (2000) for the parameter identification,
can gain much from this qualitative information when deal-
ing with real world applications. For example, the use of
nonlinear time series analysis techniques is very impor-
tant for specifying the level of determinism in the system
and for estimating the minimum order of the system that
generates the measurements. In the applications, this can
be very useful for avoiding problems of order overestima-
tion, which is very common in modelling complex biological
processes.

Deterministic chaos as a fundamental concept is, by now,
well established and widely described in a rich literature
(the reader may refer to Ott, 2002 and Strogatz, 2001). The
fact that simple deterministic systems may exhibit compli-
cated temporal behaviors in the presence of nonlinearity
has influenced thinking and intuition in many fields. The
main question is whether chaos theory can be used to gain a
better understanding and interpretation of observed complex
dynamical systems and if this theory can give an advantage
in predicting such time evolution. The main task of nonlinear
time series analysis (NTSA) is to extract information on the
dynamical system from the observation of its evolution. This
approach is basically different from the statistical one, in the
sense that it can overcome typical limits of the traditional
linear and statistical tools.

The methods of NTSA based on nonlinear dynamical sys-
tems theory are extensively described in two monographs, one

by Abarbanel (1996) and one by Kantz and Schreiber (2005).
The application of NTSA to real world contexts, where deter-
minism is unlikely to be present in a stronger sense, can be
found in Schreiber (1999). Despite its wide range of applica-

rbetello Lagoon.
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ions, NTSA suffers from the problem of nonstationarity of
he measured time series, which may lead to pitfalls which
nvalidate the analysis, as pointed out by Kantz, Schreiber, and

itt (Kantz and Schreiber, 2005; Witt et al., 1998). In order
o cope with this problem, we will apply the recurrence plot
RP) and the recurrence quantification analysis (RQA), which have
een developed for the characterization of dynamical systems
r the search of transitions even in short and nonstationary
ime series (Trulla et al., 1996; Marwan et al., 2002). In the next
ections, we will introduce the RP as a tool for the visual inves-
igation of spatio-temporal recurrences in the phase-space
ynamics and we will illustrate how RP and RQA are useful
or the characterization of nonstationary time series in the
ramework on nonlinear dynamical systems.

Recurrence plots will be computed and recurrence quan-
ification analysis will be performed on the measurements
f the dissolved oxygen in the lagoon of Orbetello, showing
hat the time series exhibits a recurrent behavior typical of
haotic systems.

. Site description and data acquisition

he Orbetello lagoon is located along the southern coast of
uscany, near Grosseto (Italian West Coast). It is an important
cosystem from environmental and economical point of view.
ery rich in flora and fauna, as well as productive activities,
he Orbetello lagoon is divided in two basins (Ponente and
evante) and covers a total area of about 27 km2. Its exten-
ion is limited by two sand dunes, which follow the coastline
s far as Monte Argentario, while the two basins are divided
y the Orbetello isthmus and by a dam connecting the town
f Orbetello to Argentario (Fig. 1). The lagoon runs NW–SW
nd has three connections to the sea: The Ansedonia canal
unning east, the Nassa canal running west, and the Fibbia
anal running north. The meteorological and environmental
ituation is strongly influenced by the annual average temper-
ture (about 16 ◦C), the scarce precipitation, and the limited
ides (10–45 cm). Wind intensity is the unique important phe-
omenon that favors the water movement in summer. The
bove ecological status of the lagoon, together with the inten-
ive agriculture, aquaculture, and urban activities, causes a
trong eutrophication of the lagoon. The excessive concentra-
ion of nutrients produces an excessive growth of macroalgae
nd a decrease in the dissolved oxygen in the water (about 7–
ppm on average, 5–6 ppm in summer) (Lunardini and Cola,
000). In this context, a certain amount of hydrogen sulphide
s produced by the anaerobic bacteria activity, causing damage
o the biological community, see e.g. the death of vegetables
nd animal organisms (Buffoni and Cappelletti, 1999). The
vailable data consists of a time series recorded in the period
8/07/2001–24/09/2001 by a multiparametric device using a
ampling time of 1 h (1657 data samples).

. Computational techniques
he analysis of ecological time series poses several prob-
ems. In particular, standard linear techniques, such as Fourier
ransform (FT), are not suitable for the investigation of phe-
3 ( 2 0 0 7 ) 339–348 341

nomena whose behavior is nonlinear and nonstationary. In
fact periodic phenomena show period and amplitude depend-
ing directly on the state of the system. In this section, we
describe our approach, based on the concepts of the NTSA
framework: the attractor reconstruction, the recurrence plot
(RP), and the recurrence quantification analysis (RQA).

3.1. Attractor reconstruction

The attractor of the underlying dynamics was reconstructed
in phase space by the time delay vector method (Takens,
1981; Abarbanel, 1996). Starting from a time series [s1, . . . , sN],
where si = s(i�t) and �t is the sampling time, the system
dynamics can be reconstructed using the theorem of Tak-
ens and Mañe. The reconstructed trajectory X is expressed
as a matrix in which each row is a phase space vector xi =
[si, si+� , . . . , si+(DE−1)� ] and i = 1, . . . , N − (DE − 1)�. The matrix is
characterized by two key parameters: the embedding dimension
DE and the delay time �. The embedding dimension is the min-
imum dimension at which the reconstructed attractor can be
considered completely unfolded and there is no overlapping
of the reconstructed trajectories. If the chosen dimension is
lower than DE, the attractor is not completely unfolded and the
underlying dynamics cannot be investigated. A higher dimen-
sion should not be used due to the increase in computational
effort. The parameter DE is often estimated by the method
False Nearest Neighbors (Abarbanel, 1996), looking for the inter-
ception points of the trajectories in a poorly reconstructed
attractor. As the dimension increases, the attractor unfolds
with greater accuracy, and the number of false neighbors
decreases to zero. The first dimension with no overlapping
points is DE.

The time difference in number of samples � (or in time units
��t) represents a measure of correlation existing between two
consecutive components of DE-dimensional vectors used in
the trajectory reconstruction. Following a commonly applied
methodology, the time delay � is usually chosen in correspon-
dence to the first minimum of the autocorrelation function
(Abarbanel, 1996).

3.2. Time series analysis based on recurrence plots

Recurrent behaviors are typical of natural systems. In the
framework of dynamical systems, this implies the recurrence
of state vectors, i.e. states with large temporal distances
may be close in state space. The recurrence plot, proposed for
the first time by Eckmann et al. (1987), is a visual tool able
to identify temporal recurrences in multidimensional phase
spaces. Since phase spaces of more than two dimensions can
be only visualized by a projection, it is hard to investigate
recurrences in the state space. In the RP, any recurrence of
state i with state j is pictured on a boolean matrix expressed
by:

RDE
i,j

= �(� − ‖xi − xj‖), (1)
where xi, xj ∈ RDE are the embedded vectors, i, j ∈ N, �(·) is the
Heaviside step function, and � is an arbitrary threshold. In the
graphical representation, each nonzero entry of Ri,j is marked
by a black dot in the position (i, j). Since any state is recurrent
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Fig. 2 – (a) Recurrence plot of a periodic and (b) white noise
signal. The periodic signal shows a distribution of long
lines parallel to the LOI. This indicates that, after a certain
amount of time, the state comes back to its original value,
and that the orbits visit the same region after the same
time, i.e the signal is periodic. On the contrary, the white
noise shows a random distribution of points, indicating
that the orbits do not visit regularly any region of the
342 e c o l o g i c a l m o d e l l

with itself, the RP matrix fulfills Ri,i = 1 which, hence, contains
a diagonal line, which is called line of identity (LOI).

To compute a RP, the norm in Eq. (1) must be defined.
We use the maximum norm (L∞), because it is independent
of the phase space dimension and no rescaling is required.
Special attention must be paid to the choice of the threshold
�. There is not a specific guideline for estimating �, being the
noise level of the time series the most important variable to
be taken in account. Values suggested are some percentage
of the maximum diameter of the attractor (in any case, not
more than 10%).

RPs are widely used in searching for deterministic dynam-
ics in highly irregular stationary time series, since the
characteristic textures of deterministic behaviors are distri-
butions of short lines parallel to the LOI. Recently, RPs were
used in the analysis of nonstationary time series. In this case,
the traditional methods of time series analysis are not ade-
quate for the computation of the characteristic parameters
that identify chaotic dynamics, such as Lyapunov exponents,
correlation dimension (Kantz and Schreiber, 2005).

3.3. Structures in RPs

The initial purpose of the RP was the visual inspection of high
dimensional phase space trajectories. The RP is characterized
by patterns of two kinds, Typology and Textures (Eckmann et
al., 1987).

Typology offers a global impression and can be character-
ized as: (a) Homogeneous, typical of stationary processes, and
usually is associated with white noise. (b) Periodic, character-
ized by diagonal lines parallel to the LOI, which have the same
periodic distance from each other. These are typical of peri-
odic systems. (c) Drifts, caused by slow varying parameters in
the system. (d) White areas or bands, indicating nonstationarity
and abrupt changes in the dynamics (Marwan, 2003).

The textures are the local structures that can be observed in
a RP, which are: (a) Single points, if the state does not persist for
a long time. Usually a RP made only of single points is related
to white noise. (b) Diagonal lines of length L, expressed by:

Ri+k,j+k = 1|Lk=1,

indicating that the trajectory visits the same region of phase
space at different times. (c) Vertical and horizontal lines of length
L, expressed by:

Ri,j+k = 1|Lk=1 Ri+k,j = 1|Lk=1,

indicating that the state does not change or change slowly in
time.

As an example, Fig. 2(a) shows the typical RP of a periodic
system, while Fig. 2(b) is the RP of white noise. Fig. 3(a), show-
ing the RP of the x(t) variable of the Lorenz system (Fig. 3(b)),
reveals the typical structures of a chaotic signal: a distribu-
tion of short lines parallel to the LOI. This structures show
one of the main characteristics of chaotic systems, in which

the recurrence but not the exact repetition of the states at
different times occurs (for a deeper understanding of these
structures, the reader may refer to the paper by Gao and Cai
(2000)).
phase-space.

3.4. Recurrence quantification analysis

The recurrence quantification analysis (Webber and Zbilut, 1994)
is a tool based on the statistical description of the parallel lines
distribution among the RP. It was introduced for the analysis
of time series with nonstationarity or high levels of noise.

Measures of complexity are defined using the recurrence
point density and diagonal structures in the recurrence plot:
the recurrence rate (RR), the determinism (DET), the average diag-
onal line length (L), and the entropy (ENTR). The computation of
these measures on moving windows yields the time depen-

dency of these measures. Studies based on RQA measures put
in evidence the ability to find bifurcation points and chaotic
transitions (especially chaos-order transitions) in stationary
and nonstationary signals (Trulla et al., 1996).
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Fig. 3 – (a) Recurrence plot of the Lorenz time series (x(t)
component) showing the main characteristic of
chaos-looking RPs: a distribution of lines of various length
parallel to the LOI. The RP is computed using
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E = 3, � = 10, � = 5. The line of identity was removed. (b)
he x(t) component of the Lorenz system.

These measures provide a qualitative description of the
ynamics underlying the investigated time series, while their
ignificance is endorsed by research in various fields of non-
inear science. For instance, RP and RQA have been used in the
nalysis of biological systems including neuronal spike trains
Kaluzny and Tarnecki, 1993), electromyographic data (Santo
t al., 2006), intercranial EEG recordings (Thomasson et al.,
001), electrocadiograms recording (Marwan et al., 2002), pro-
ein folding (Zbilut et al., 2004), and DNA sequences (Wu, 2004).

In contrast to the original definition of Eckmann et al.
1987), where a fixed number of neighbors was used (i.e. a
hanging threshold for each considered state), we use a fixed
hreshold �. The recurrence plot is therefore symmetric, and
n the following we will introduce the RQA measures within
his assumption.

The first measure, the recurrence rate, counts the black dots
n the RP:

R = 1
N2

N∑
RDE

i,j
. (2)
i,j=1

t is a measure of the density of recurrence points, and, for
he limit N → ∞, corresponds to the definition of the correla-
ion sum introduced by Grassberger and Procaccia (1983). High
3 ( 2 0 0 7 ) 339–348 343

values mean that the system recurs to a specific state with
high probability, while low values indicate a less probability to
recur.

The next measures consider the diagonal lines, and can
be used for the detection of chaos-period and period-chaos
transitions (see Trulla et al., 1996).

For a fixed �, we denote with P�(l) the histogram of of the
lengths l of the diagonal structures, and by li the length of
the ith equivalence class of diagonal structures. We define the
Determinism:

DET =
∑N

l=lmin
lP�(l)

∑N

i,j
RDE

i,j

, (3)

which is the fraction of the recurrent points forming diagonal
lines. It represents a measure of the predictability (determin-
ism) of the system. Processes with stochastic behaviors cause
very few short diagonal lines, while deterministic processes
cause longer lines and less single or isolated points. However,
the measure does not have the real meaning of the determin-
ism of a process. The choice of the length lmin is critical. For
lmin = 1 the determinism is equal to the recurrence rate. For
larger values lmin, P�(l) contains less elements, therefore there
is a tradeoff between the requirement to count as many diag-
onal lines as possible and to eliminate the short lines due to
the tangential motion, i.e. recurrent points belonging to the
same part of trajectory but not to different orbits (Theiler, 1986;
Marwan, 2003).

Diagonal lines show the range in which a segment of the
trajectory is rather close to another segment at different times,
giving a hint on how much the trajectories diverge. The average
diagonal line length

L =
∑N

l=lmin
lP�(l)

∑N

l=lmin
P�(l)

, (4)

is the average time in which two segments run close to each
other. It can be interpreted as the mean of the prediction time,
i.e. the time in which the prediction of the behavior phase
space trajectories is reliable. The smaller is L, the higher will
be tendency of the trajectory to diverge, which is related to the
Lyapunov exponents, as stated by Thiel et al. (2004).

Alternatively, one can choose to measure the maximum line
length Lmax or the divergence DIV:

Lmax = max
i=1,...,N

{li}, DIV = 1
Lmax

. (5)

As already mentioned, the higher the DIV, the higher the ten-
dency of trajectories to diverge, recalling the typical behavior
of a chaotic systems.

The measure entropy refers to the Shannon entropy of the
distribution probability of the diagonal lines length:

ENT = −
N∑

l=lmin

p(l) ln p(l), p(l) = P�(l)∑N

l=lmin
P�(l)

(6)
and reflects the complexity of the RP in respect to the
diagonal lines, e.g. for uncorrelated noise or periodic sys-
tems its value is rather small (< 0.5), indicating low comple-
xity.
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Fig. 4 – Time series of the DO oscillations in the period
18/07/2001–24/9/2001 (1657 points). Here the daily and

0.6) reveals the presence of white bands and white patches
indicating the nonstationary nature of the analyzed time
series (Fig. 6). A distribution of relatively long lines parallel to
344 e c o l o g i c a l m o d e l l

For the detection of chaos–chaos transitions, Marwan et al.
(2002) introduced other additional two RQA measures: the lam-
inarity (LAM) and the trapping time (TT), in which the attention
is focused on vertical structures and black patches. Using an
analogous formalism as DET, we define the laminarity:

LAM =
∑N

v=vmin
vP�(v)

∑N

i,j
RDE

i,j

, (7)

which is the fraction of the vertical lines in respect to all recur-
rence points. P�(v) is the histogram of the vertical line lengths
in the RP. In order to avoid the influence of points belonging
to the tangential motion, LAM is computed starting from vmin.
Laminarity represents the occurrence of laminar states in the
system, i.e. it shows when the state of the system remains on
a specific state.

In analogy with L, we define the average length of the ver-
tical structures as the trapping time:

TT =
∑N

v=vmin
vP�(v)

∑N

v=vmin
P�(v)

. (8)

It represents the average time in which the system is “trapped”
in a specific state, and peaks indicate that the system is
undergoing a state transition. In contrast to the other RQA
measures, laminarity and trapping time allow the investi-
gation of chaos–chaos transitions in rather short (e.g. 2000
points) and nonstationary time series (Marwan et al., 2002).

In our analysis, we consider further two estimators of recur-
rence time as suggested by Gao and Cai (2000). We denote the set
of points of the trajectory x, which fall into the neighborhood
of an arbitrarily chosen point at i with

Ri = {xj1 , xj2 , . . . |Ri,jk
}. (9)

The elements of this set correspond to the recurrence points
of the ith column of an RP. The corresponding recurrence
times between these recurrence points (recurrence times of first

type) are {T(1)
k

= jk+1 − jk}k∈N. Due to possible tangential motion,
some of the recurrence points in Ri correspond to recurrence
times T

(1)
k

= 1. However, in order to obtain the real recurrence
times (Poincaré recurrence times), such points must be dis-
carded. One approach is to remove all consecutive recurrence
points with T

(1)
k

= 1 from the set Ri. This results in a new
set R′

i = {	xj′1
, 	xj′2

, . . .}. Then, the recurrence times (recurrence

times of second type) {T(2)
k

= j′
k+1 − j′

k
}k∈N are calculated from the

remaining recurrence points (i.e. from R′
i). Hence, T(2) mea-

sures vertically the time distance between the beginning of
(vertically) subsequent recurrence structures in the RP.

4. Results and discussion

The time series of the DO, which covers the period 18/07/2001–
24/09/2001 (1657 points), is characterized by almost regular
daily oscillations that in some periods become quite evi-
dent, while in other time intervals, they break up (refer to

Fig. 4). The DO measurements range from 0.2 to 8.65 mg/l.
The values are compatible with those typical of the summer
period observed in another shallow ecosystem in the central
Italy region (D’Autilia et al., 2004). In the considered period,
monthly oscillation is visible. The boxed areas indicate the
period in which the alarm threshold was reached.

the concentration of DO reached the alarm threshold in two
periods: 05/08–14/08 and 01/09–07/09, indicated by boxes in
Fig. 4.

Under the point of view of the standard linear analysis, the
Fourier transform of the signal (Fig. 5) only shows a strong
peak corresponding to a frequency of 1.11e−5 (1 day−1), while
other lower time scales are compressed on the low frequencies
and masked by the continuous component of the signal. The
power spectrum was computed using a moving kaiser window
of 512 samples, without detrending.

A visual inspection of the recurrence plot (DE = 8, � = 1, � =
Fig. 5 – Power spectral density of the DO time series. The
peak at the frequency 1.15e−5 corresponds to the daily
oscillation.
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The analysis suggests important conclusions under the
ig. 6 – Recurrence plot of the analyzed time series of dissol
C), periodic (P), and laminar patterns (L).

he LOI is found in the zone 433–649 and 865–1057. Outside,
he RP is characterized by different patterns like distribu-
ion of short lines, laminar patches, vertical and horizontal
ines. The RP starts with a chaos-looking zone (1–300), after
hat, a periodic zone arises (300–433) followed by a short dis-
ribution of laminar patches (433–649). The same scenario
an be observed in the zones 649–865 (chaos looking), 865–
057 (periodicity), and 1057–1225 (laminar patches). The last
art of the RP shows again chaos looking patterns (1225–
657).

From the visual inspection of the RP we can conclude that
n the period of about 1660 samples, corresponding to 66 days,
he dynamics of the DO shows two chaos-periodic transitions;
he change in the dynamics is spaced out by a laminar phase.

For a better understanding of this phenomenon, we
erformed an RQA on the time series, whose results
re shown in Fig. 7. We are interested in the trends of
he curves, while the fast variation around the profile of
he curves is an ordinary effect of the moving window.
sing the CRP-Toolbox for Matlab® (available on the web
t the address http://www.agnld.uni-potsdam.de/∼marwan/
oolbox), we have computed the following RQA measures:
ecurrence rate (RR), determinism (DET), maxline (Lmax), diver-
ence (DIV), entropy (ENTR), laminarity (LAM), trapping time
TT), and recurrence times of first and second type (T1, T2). The

esults refer to embedding parameters DE = 8, � = 1 and to a
ormalization of the time series to zero mean and standard
eviation one. The RQA parameters were � = 0.6, lmin, vmin = 8
nd a moving window size of 96 samples (4 days) with a shift
xygen. The RP shows an alternate behavior of chaos-like

of 24 points (1 day). Using different larger window sizes and
shifts, we have obtained smoother RQA curves, but with a
behavior similar to the one showed in the figure. On the con-
trary, a decrease of the parameters caused an increase of the
roughness.

Following the method, lmin, vmin are chosen as the first zero
crossing of the autocorrelation function (Marwan, 2003). We
found lmin, vmin = 8. With such choice we look for a duration
of recurrences of at least 8 h. The value also reflects the three
periods of the typical mediterranean summer day: morning,
afternoon, and night.

The RR reflects the nature of the RP, showing two large
peaks corresponding to the two periodic and Laminar zones.
The peak-to-peak distance is about 28 days, i.e. the moon
phase is clearly visible. Higher values of the determinism are
found in the zones corresponding to the periodic zone, and
a decrease of the measure was found in correspondence to
the laminar transition periods. The low values of the DIV cor-
respond to the periodic phase and the high values with the
chaotic phase. The values of entropy are greater than zero and
range from 0 to 3.2, trapping time ranges from 8 to 15 and the
divergence between 0.1 and 0.2. The two peaks of the laminar-
ity curve indicate the existence of a change in the dynamics of
the DO. The three DIV peaks correspond to the chaos-looking
zones.
theoretical and applicative point of view. Theoretically, we
have the evidence of chaotic and complex behaviors of the DO
oscillations. This agrees with the theoretical models proposed

http://www.agnld.uni-potsdam.de/~marwan/toolbox
http://www.agnld.uni-potsdam.de/~marwan/toolbox
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Fig. 7 – Recurrence quantification measures of the DO time series shown in Fig. 6. The analysis was performed using the
embedding parameters DE = 8, � = 1. The RQA parameters were � = 0.6, lmax, vmax = 8, and a window size of 96 samples

ch
with a shift of 24. These measures reveal the transitions from
cycle is repeated again.

by Jørgensen (1995), in which the chaotic regime corresponds
to a high quality status of the ecosystem.

Regarding the applications, we observe that the time series
show cyclically different chaos-periodic-laminar regimes.
Referring to our data, this happens twice in 2 months (see
Figs. 6 and 7). In our analysis, the laminar regimes correspond
to the lowest levels of DO, and they systematically occur before
the periodic ones. We argue that it may be possible to forecast
the onset of an anoxic event by observing the succession of
chaotic and periodic oscillations. This fact is confirmed by the
analysis of the last part of the RP, where a pure chaotic-like
regime is evident, indicating the wealthiness of the DO-related
processes.

5. Conclusion
Natural systems are known to be self organized critical sys-
tems, and combine the equilibrium concept of criticality with
the nonequilibrium concept of self-organization, Kauffman
would say at the Edge of Chaos (Kauffman, 1993). It had been
aos (C) to periodicity (P) and then to laminarity (L). Then the

predicted by theoretical models (Jørgensen, 1995, 2006) that a
lake ecosystem lays in this zone, and establishes a relation-
ship between the level of information stored in the system
and its evolution toward the edge of chaos.

In this paper, we proposed a method based on nonlin-
ear dynamics concepts and time series analysis through state
space embedding: we used the recurrence plots and the recur-
rence quantification analysis, which enabled us to investigate
the dynamics of the dissolved oxygen oscillations in the
Lagoon of Orbetello, being the time series short and strongly
nonstationary.

The recurrence plot analysis allowed us to identify long
temporal scales (28 days) in the signal, showing how the recur-
rent behavior of the state variables of the system is influenced
by the moon cycle.

The proposed method of analysis provides new evidence
of the complexity of ecological processes related to the

coexistence-succession of different dynamical regimes, mak-
ing the ecosystem rich and adaptive to the externalities.
Further considerations concern the development of tools for
managing and controlling the distrophic events in the lagoon.
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n fact, we note that a timely detection of the dissolved oxygen
ecrease is possible by observing the chaos-period transition

see for example Fig. 6, where the periodic regime is about 1
eek long).

Even if it is not possible to give a clear indication of the
haotic nature of the investigated time series, the recurrence
uantification analysis parameters support our thesis. In par-
icular, the two peaks in the divergence measure correspond
o the zones that we indicate as chaotic. The two chaos-
eriod-laminar transitions that we observe in the evolution
f the system support our conclusions. Furthermore, two
haos-period transitions are separated by laminar phases cor-
esponding to the two anoxic crises suffered by the lagoon in
he period.
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