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Abstract. This paper presents a new approach for analysing the structural
properties of time series from complex systems. Starting from the concept of
recurrences in phase space, the recurrence matrix of a time series is interpreted
as the adjacency matrix of an associated complex network, which links different
points in time if the considered states are closely neighboured in phase space.
In comparison with similar network-based techniques the new approach has
important conceptual advantages, and can be considered as a unifying framework
for transforming time series into complex networks that also includes other
existing methods as special cases. It has been demonstrated here that there are
fundamental relationships between many topological properties of recurrence
networks and different nontrivial statistical properties of the phase space density
of the underlying dynamical system. Hence, this novel interpretation of the
recurrence matrix yields new quantitative characteristics (such as average path
length, clustering coefficient, or centrality measures of the recurrence network)
related to the dynamical complexity of a time series, most of which are not yet
provided by other existing methods of nonlinear time series analysis.
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1. Introduction

Since the early stages of quantitative nonlinear sciences, numerous conceptual approaches
have been introduced for studying the characteristic features of dynamical systems based on
observational time series [1]–[4]. Popular methods that are increasingly used in a variety
of applications (see, for example, [5]) include (among others) Lyapunov exponents, fractal
dimensions, symbolic discretization and measures of complexity such as entropies and
quantities derived from them. All these techniques have in common that they quantify certain
dynamically invariant phase space properties of the considered system based on temporally
discretized realizations of individual trajectories.

As a particular concept, the basic ideas of which originated in the pioneering work of
Poincaré in the late 19th century [6], the quantification of recurrence properties in phase space
has recently attracted considerable interest [7]. One particular reason for this is that these
recurrences can be easily visualized (and subsequently quantified in a natural way) by means
of the so-called recurrence plots obtained from a single trajectory of the dynamical system
under study [8, 9]. When observing this trajectory as a scalar time series x(t) (t = 1, . . . , N ),
one may use a suitable m-dimensional time delay embedding of x(t) with delay τ [10],
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x(m)(t) = (x(t), x(t + τ), . . . , x(t + (m − 1)τ )), for obtaining a recurrence plot as a graphical
representation of the binary recurrence matrix

Ri, j(ε) = 2(ε − ‖xi − x j‖), (1)

where 2(·) is the Heaviside function, ‖ · ‖ denotes a suitable norm in the considered phase
space and ε is a threshold distance that should be reasonably small (in particular, much smaller
than the attractor diameter [9, 11, 12]). To simplify our notation, we have used the abbreviation
xi = x(m)(t = ti) (with ti being the point in time associated with the i th observation recorded in
the time series7) wherever appropriate.

Experimental time series often yield a recurrence plot displaying complex structures,
which are particularly visible in sets of recurrence points (i.e. Ri, j(ε) = 1) forming diagonal
or vertical ‘line’ structures. A variety of statistical characteristics of the length distributions of
these lines (such as maximum, mean, or Shannon entropy) can be used for defining additional
quantitative measures that characterize different aspects of dynamic complexity of the studied
system in more detail. This conceptual framework is known as recurrence quantification analysis
(RQA) [13]–[15] and is nowadays frequently applied to a variety of real-world applications of
time series analysis in diverse fields of research [16]. However, most of these RQA measures are
sensitive to the choice of embedding parameters, which are found to sometimes induce spurious
correlations in a recurrence plot [17].

Recent studies have revealed that the fundamental invariant properties of a dynamical
system (i.e. its correlation dimension D2 and correlation entropy K2) are conserved in the
recurrence matrix [18, 19], the estimation of which is independent of the particular embedding
parameters. What is more, recurrence plots preserve all the topologically relevant phase space
information of the system, such that we can completely reconstruct a time series from its
recurrence matrix (modulo some rescaling of its probability distribution function) [20, 21].

A further appealing paradigm for analysing the structural features of complex systems is
based on their representation as complex networks of passive or active (i.e. mutually interacting)
subsystems. For this purpose, classical graph theory has been systematically extended by a large
variety of different statistical descriptors of the topological features of such networks on local,
intermediate and global scales [22]–[24]. These measures have been successfully applied for
studying real-world networks in various scientific disciplines, including the structural properties
of infrastructures [25], biological [26], ecological [27] and climate networks [28, 29], to
give some prominent examples. The corresponding results have triggered substantial progress
in our understanding of the interplay between the structure and dynamics of such complex
networks [30]–[32].

The great success of network theory in various fields of research has recently motivated
first attempts to generalize this concept for a direct application to time series [33]–[43]. By
means of complex network analysis, important complementary features of dynamical systems
(i.e. properties that are not captured by existing methods of time series analysis) can be resolved,
which are based on spatial dependences between individual observations instead of temporal
correlations. For example, a corresponding idea has been successfully applied for describing
causal signatures in seismic activity by means of networks of recurrent events [44]–[46].
However, concerning applications to the field of time series analysis, a substantial number of
the recently suggested techniques have certain conceptual limitations, which make them suitable

7 Note that unlike many other methods of time series analysis, the concept of recurrence plots does not require
observations that are equally spaced in time.
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only for dealing with distinct types of problem. As an alternative that may provide a unifying
conceptual and practical framework for nonlinear time series analysis using complex networks,
we reconsider the concept of recurrences in phase space for defining complex network structures
directly based on time series. For this purpose, it is straightforward to interpret the recurrence
matrix R(ε) as the adjacency matrix A(ε) of an unweighted and undirected complex network,
which we suggest to call the recurrence network associated with a given time series. To be more
specific, the associated adjacency matrix is given by

Ai, j(ε) = Ri, j(ε) − δi, j , (2)

where δi, j is the Kronecker delta introduced here in order to avoid artificial self-loops,
corresponding to a specific choice of the Theiler window in RQA [9]. A related conceptual
idea has recently been independently suggested by different authors [35, 36, 39, 40, 42], but
not yet systematically studied. In this work, however, we aim to give a rigorous and detailed
interpretation of a variety of quantitative characteristics of recurrence networks, yielding novel
concepts for statistically evaluating distinct phase space structures captured in recurrence plots.
In this sense, our presented work continues and complements the developments in the field of
RQA within the last two decades [9, 43]. It shall be noted that a generalization to weighted
networks (as partially studied in [33, 34]) is straightforward if the recurrence matrix is replaced
by the associated distance matrix between pairs of states. In any case, recurrence networks based
on the mutual phase space distances of observational points on a single trajectory are spatial
networks, i.e. fully embedded in an m-dimensional space, which has important implications for
their specific topological features. We will raise this point in detail within this paper.

The consideration of recurrence plots as graphical representations of complex networks
allows a reinterpretation of many network-theoretic measures in terms of characteristic phase
space properties of a dynamical system. According to the ergodicity hypothesis, we suppose
that we can gain full information about these properties by either ensembles of trajectories, or
sufficiently long observations of a single trajectory. Following this line of ideas, we approximate
the (usually unknown) invariant density p(x) (which is related to the associated invariant
measure µ by dµ = p(x)dx) of the studied system by some empirical estimate p̂(ε)(x) obtained
from a time series, where ε defines the level of coarse-graining of phase space involved in
this procedure. Transforming the time series into a recurrence network then allows us to
quantitatively characterize the higher-order statistical properties (i.e. properties that are based
on joint features of different states) of the invariant density p(x) by means of network-theoretic
measures.

According to the above argumentation, quantitative descriptors of the topological features
of recurrence networks can be considered as novel and complementary measures. Specifically,
in contrast to the estimation of both dynamical invariants (in particular, K2, D2 and related
nonlinear characteristics), as well as traditional RQA measures that are exclusively based on
line structures in recurrence plots (i.e. the presence of temporal correlations between different
parts of a trajectory), the network-theoretic approach to quantitatively characterizing recurrence
plots is distinctively different as it relates to spatial dependences between state vectors in some
appropriate phase space. As we will demonstrate in this paper, our technique exhibits additional
deep insights into some phase space properties of dynamical systems such as the local attractor
fragmentation or the presence of dynamically invariant objects, which are directly related to
their complex dynamics, but are not provided by other existing methods. For this purpose,
we will take seriously the duality of adjacency matrices of complex networks, on the one hand,
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Table 1. Summary of definitions of vertices, criteria for the existence of edges,
and the directionality of edges in existing complex network approaches to time
series analysis (given in chronological order).

Method Vertex Edge Directed

Transition networks (2005) Discrete state s(t) Transition probability between states Yes
Cycle networks (2006) Cycle Correlation between cycles No
Correlation networks (2008) State x(t) Correlation between state vectors No
Visibility graphs (2008) Scalar state x(t) Mutual visibility of states No
k-nearest neighbour networks (2008) State x(t) Recurrence of states (mass) Yes
Recurrence networks (2008) State x(t) Recurrence of states (volume) No

and recurrence matrices of dynamical systems, on the other hand, which would in turn also allow
transferring concepts from dynamical systems theory (given that the corresponding recurrence
plot-based estimates are invariant under temporal reordering) to complex networks. In this work,
however, we will concentrate on a detailed discussion of how phase space properties can be
further quantified in terms of network theory.

The remainder of this paper is organized as follows. Section 2 presents a review of existing
approaches for extracting complex networks from time series, including a comprehensive
discussion of their potentials and possible conceptual problems (with a special emphasis on how
to interpret the resulting networks’ topological properties). The concept of recurrence networks
as a natural alternative is further discussed in section 3. In particular, it is demonstrated that
many network-theoretic measures yield sophisticated quantitative characteristics corresponding
to certain phase space properties of a dynamical system that have not yet been explicitly
studied in terms of other dynamical invariants or measures of complexity based on RQA.
In order to support our theoretical considerations, section 4 provides some examples of
how network-theoretic measures reveal phase space properties of various low-dimensional
dynamical systems. Finally, we summarize our main results and outline future directions of
further methodological developments based on our proposed technique.

2. Approaches for transforming time series into complex networks—
a comparative review

In this section, a brief review and classification of existing approaches for studying the
properties of time series by means of complex network methods is presented in chronological
order (see table 1). In particular, the strengths and possible limitations of the existing approaches
will be discussed.

2.1. Partitioning of phase space: transition networks

The concept of symbolic dynamics [47] allows characterizing the properties of a dynamical
system based on a partition {S1, . . . , SK } of its phase space into K mutually disjoint sets,
yielding a transformation of every possible trajectory into an (in principle, infinite) sequence of
abstract symbols. Formally, the proper application of concepts of symbolic time series analysis
(such as mutual information or other entropic quantities) requires the existence of a generating
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partition that corresponds to a unique assignment of symbolic sequences (i.e. sequences of class
identifiers) to every trajectory of the system. Note that this prerequisite is usually violated in
real-world applications due to the presence of noise; however, even in the ideal noise-free case,
generating partitions either do not exist or can hardly be estimated (see [48] and references
therein). Nevertheless, applications of symbolic time series analysis have recently attracted
considerable interest in numerous applications [49]–[52].

Partitioning of the phase space of a dynamical system can also be used for transforming a
time series into a complex network representation. In the simplest possible case, we identify the
different sets Si with the vertices of a network and consider the n-step transition probabilities

p(n)

i, j = P(xt+n ∈ S j |xt ∈ Si) (3)

for characterizing the edges of a fully connected weighted and directed graph [53]. By setting
a suitable threshold pmin to these transition probabilities, we obtain the adjacency matrix of an
associated unweighted, directed network, which we suggest referring to as the n-step transition
network, by setting

Ai, j(pmin; n) = 2(p(n)

i, j − pmin). (4)

We note that related graph-theoretic methods have been recently used for the set-oriented
approximation of almost invariant sets in dynamical systems [54, 55]. Recent applications
of transition networks in the field of time series analysis include the characterization of
transitions in cellular automaton models of vehicular traffic by means of the associated degree
distributions [56]–[59] (which has been recently generalized to the consideration of weighted
networks [60]), as well as the analysis of stock exchange time series [61, 62] in terms of
identifying vertices with the highest relevance for information transfer using betweenness
centrality and inverse participation ratio.

From the time series analysis point of view, the main disadvantage of the transition network
approach is that it induces a significant loss of information on small amplitude variations. In
particular, two observations with even very similar values are not considered to belong to the
same class if they are just separated by a class boundary. This might influence the quantitative
features of a corresponding network, as it is not exclusively determined by the widths of the
individual classes, but also by their specific definition. Corresponding results are known for
other methods of symbolic time series analysis such as estimates of mutual information [63, 64]
or block entropies [52, 65]. In this respect, the recurrence network approach introduced in this
work is more objective as it only depends on a single parameter ε. Note, however, that coarse-
graining might be a valid approach in the case of noisy real-world time series, where extraction
of dynamically relevant information hidden by the noise can be supported by grouping the data.

2.2. Cycle networks for pseudo-periodic time series

In 2006, Zhang and Small [33]–[35] suggested to study the topological features of pseudo-
periodic time series (representing, for example, the dynamics of chaotic oscillators like the
Rössler system) by means of complex networks. For this purpose, individual cycles (defined
by minima or maxima of the studied time series) have been considered as vertices of
an undirected network, and the connectivity of pairs of vertices has been established by
considering a generalization of the correlation coefficient to cycles of possibly different length
or, alternatively, their phase space distance.
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A potential point of criticism concerning this method is that the definition of a cycle is
not necessarily straightforward in complex oscillatory systems. In [33]–[35], the authors mainly
considered nonlinear oscillators in their phase-coherent regimes; however, it is not clear how a
cycle could be defined for non-phase-coherent oscillations, for example, in the Funnel regime
of the Rössler system. The same problem arises for systems with multiple timescales, which are
hence hard to treat this way. Furthermore, it is not intuitively clear how to interpret correlations
of cycles, since the values of the corresponding measures are not exclusively determined by the
proximity of the corresponding parts of the trajectory in phase space, but depend also on the
specific choice of sampling. This could yield rather different estimates of the cycle correlation
coefficient (or, alternatively, the phase space distance) between two cycles, even if the two parts
of the trajectory are very close to each other.

2.3. Correlation networks of embedded state vectors

A generalization of the cycle networks method used by Zhang and Small that can also be
applied to time series without obvious oscillatory components has been suggested by Yang and
Yang [37] using a simple embedding of an arbitrary time series. In their formalism, individual
state vectors x(m)

i in the m-dimensional phase space of the embedded variables are considered
as vertices, from which the Pearson correlation coefficient can be easily computed as

ri, j = r(x(m)

i , x(m)

j ) =

∑m
k=1 x̃(ti + (k − 1)τ )x̃(t j + (k − 1)τ )√∑m

k=1 x̃2(ti + (k − 1)τ )
√∑m

k=1 x̃2(t j + (k − 1)τ )
, (5)

with

x̃(ti + (k − 1)τ ) = x(ti + (k − 1)τ ) −
1

m

m∑
k=1

x(ti + (k − 1)τ ) (6)

being the zero-mean components of the respective embedding vectors (for scalar time series,
the generalization to vector-valued time series is straightforward). If ri, j is larger than a given
threshold, the vertices i and j are considered to be connected, resulting in an undirected network
representation. An equivalent approach called fluid-dynamic complex networks (FDCN) has
recently been proposed by Gao and Jin [42, 66] and successfully applied for characterizing the
nonlinear dynamics of conductance fluctuating signals in a gas–liquid two-phase flow.

One potential conceptual problem of this particular technique is that the consideration of
correlation coefficients between two phase space vectors usually requires a sufficiently large
embedding dimension m for a proper estimation with low uncertainty (more specifically, the
standard error of the correlation coefficient is approximately proportional to 1/

√
m − 1). Hence,

local information about the short-term dynamics captured in a time series might get lost when
following this approach. Even more, since embedding is known to induce spurious correlations
to a system under study, the results of the correlation method of network construction may suffer
from related effects.

With respect to the interpretation of the resulting network patterns, we note that for
vertices corresponding to mutually overlapping time series segments, the consideration of
correlation coefficients, as applied in the papers cited above, corresponds to studying the local
autocorrelation function of the signal. Hence, the presence of edges between these vertices is
exclusively determined by linear correlations within the signals. In principle, we might think of
replacing the correlation coefficient by other measures of interrelationships such as the mutual
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information, which are also sensitive to general statistical dependences [28, 29, 67]; however,
the appropriate estimation of such nonlinear quantities would require a considerably larger
amount of data, i.e. a very large embedding dimension m.

Finally, when studying time series with pronounced cycles (like trajectories of the Rössler
system), different cycles could be included in one embedding vector (depending on the sampling
rate), which casts additional doubts with respect to the direct interpretability of the resulting
network properties.

2.4. Visibility graphs

An alternative to the latter two threshold-based concepts has been suggested by Lacasa
et al [38] in terms of the so-called visibility graph. In this formalism, individual observations
are considered as vertices, and edges are introduced whenever a partial convexity constraint is
fulfilled, i.e. x(ta) and x(tb) are connected if for all states x(tc) with ta < tc < tb,

xa − xc

tc − ta
>

xa − xb

tb − ta
(7)

holds. Since the visibility condition is symmetric with respect to a and b, visibility graphs
are undirected. Visibility graphs have been used to study the behaviour of certain fractal
as well as multifractal stochastic processes [68, 69], energy dissipation in three-dimensional
turbulence [70] and the nonlinear properties of financial [71, 72] and environmental time
series [73]. Recently, a slightly modified approach of horizontal visibility graphs has been
proposed and applied to certain random time series [74].

Although visibility graphs are easily established and allow an alternative estimation of the
Hurst exponent of fractal time series, an interpretation of the convexity constraint in terms of
other phase space properties of the considered system has not yet been provided. Moreover, in
its present formulation, the application of this approach is restricted to univariate time series.

2.5. Complex networks based on neighbourhood relations in phase space

As it has already been mentioned, the transformation of time series into complex networks
by means of neighbourhood relationships has already been discussed by different authors. In
particular, there are two possible approaches that can directly be related to slightly different
definitions of recurrence plots [9].

On the one hand, a neighbourhood can be defined by a fixed number k of nearest neighbours
of a single observation, i.e. a constant ‘mass’ of the considered environments [35, 36]. We refer
to this method as a k-nearest neighbour network in phase space. This setting implies that the
degrees kv of all vertices in the network are kept fixed at the same value k. Hence, information
about the local geometry of the phase space, which is mainly determined by the invariant
density p(x), cannot be directly obtained by most traditional complex network measures (see
section 3)8. Note that the adjacency matrix of a k-nearest neighbour network is in general not
symmetric, i.e. the fact that a vertex j is among the k-nearest neighbours of a vertex i does not
imply that i is also among the k-nearest neighbours of j . Hence, k-nearest neighbour networks
are directed networks.
8 As an alternative measure, we could consider the inverse distance of the kth nearest neighbour as a measure for
phase space density.
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On the other hand, we can define the neighbourhood of a single point in phase space
by a fixed phase space distance, i.e. considering a constant ‘volume’ [39, 42, 43, 75]. This
approach has the advantage that the degree centrality kv gives direct information about the
local phase space density (see section 3). The consideration of neighbourhood relationships
within a fixed phase space volume corresponds to the standard definition of a recurrence plot
as mentioned in the introduction section. The resulting networks will therefore be referred
to as recurrence networks in the following. Unlike the k-nearest neighbour networks, these
recurrence networks are undirected graphs by definition. We note that Gao and Jin [42] termed
an equivalent approach as fluid–structure complex networks (FSCN) and used it for analysing
gas–liquid two-phase flow and the Lorenz system as a toy model in terms of link density.
In addition, they related their observations to the presence of unstable periodic orbits (UPOs) in
a dynamical system. We will come back to this point in section 4.3.

We note that since all complex network approaches based on the proximity of different
parts of the trajectory (i.e. cycle, correlation, k-nearest neighbour and recurrence networks)
do not preserve information about the temporal order of the respective state vectors (i.e. are
invariant with respect to random permutations of these vectors), the resulting characteristics
of network topology represent dynamically invariant properties related to the state density in
the corresponding (abstract) phase space. As a consequence, considering a recurrence network
based directly on a univariate time series (or a one-dimensional dynamical system), we cannot
distinguish between stochastic and deterministic systems with the same phase space density
(for a simple example, see appendix A.2). However, in such cases, embedding or consideration
of phase space dimensions larger than one provides a feasible solution for this identification
problem. Furthermore, as we will show in the following sections, the statistical characterization
of recurrence networks provides useful and complementary insights into the phase space
structures that cannot be obtained by other existing approaches of nonlinear time series analysis.

2.6. Recurrence networks as a unifying framework for complex network-based time
series analysis

Following the considerations in the previous subsections, many existing methods for
transforming time series into complex networks suffer from specific conceptual limitations. In
particular, the concepts used for defining both vertices and edges of the networks, which differ
across the various techniques, are in some cases rather artificial from a dynamical systems point
of view (table 1).

In contrast to the other recently suggested approaches, the identification of a recurrence
matrix with the adjacency matrix of a complex network is a straightforward and natural idea
that conserves many local properties of the invariant density of the studied dynamical system
captured in single observational time series. In particular, individual values of the respective
observable can be directly considered as vertices of the recurrence network (similar to the
visibility graph concept), while the existence of an edge serves as an indicator of a recurrence,
i.e. pairs of states whose values do not differ by more than a small value ε in terms of a suitable
norm in phase space.

It should be pointed out that not only recurrence networks but also other existing methods
of complex network-based time series analysis are based on the concept of recurrences in phase
space. Apart from the k-nearest neighbour networks originating from the idea of a fixed local
recurrence rate (i.e. a fixed mass of the neighbourhoods), the idea of considering a threshold
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Table 2. Relationships between recurrence network entities and corresponding
geometrical objects and their properties in phase space.

Recurrence network Phase space

Vertex State x(t)
Edge Recurrence of states
Path Overlapping sequence of ε-balls

value to the proximity of two vertices can also be found in other previously suggested methods.
In particular, correlation networks [37] (see section 2.3) can be regarded as a special case
of recurrence networks where the usual metric distance has been replaced by the correlation
distance [76]

dC(xi , x j) = 1 − ri, j , (8)

where ri, j is the correlation coefficient between two embedded state vectors defined in
equation (5). Similar considerations apply to the case of cycle networks. Note, however,
that the advantage of using the concept of recurrences of individual states in phase space
defined by metric distances instead of correlations or cycle properties associated with state
vectors of dynamical systems is that it allows for creating networks without any embedding
or consideration of groups of states. On the one hand, this independence from a particular
embedding is beneficial when dynamical invariants of the studied system are of interest. On
the other hand, the statistical properties of the resulting recurrence networks reflect exclusively
the invariant density of states in phase space (in terms of certain higher-order statistics), because
time-ordering information is lost in this framework.

Following the above considerations, it can be argued that the concept of recurrence
networks yields a unifying framework for transferring time series into complex networks in
a dynamically meaningful way. In particular, this approach can be applied (i) to both univariate
and multivariate time series (phase space trajectories), (ii) with and without pronounced
oscillatory components and (iii) with as well as without embedding9. Moreover, similar to
traditional RQA, studying network properties for sliding windows in time also allows for coping
with non-stationary time series [43]. Consequently, unlike for most of the existing techniques,
there are no fundamental restrictions with respect to its practical applicability to arbitrary time
series.

3. Quantitative characteristics of recurrence networks

While the definitions of edges and vertices in our approach have already been given above
(table 1), we now provide a geometrical interpretation of a third important network entity, the
path, within the framework of recurrence networks (table 2). A path between two vertices i
to j in a simple graph without multiple edges can be written as an ordered sequence of the
vertices it contains, i.e. (i, k1, . . . , kl i, j −1, j), where the associated number of edges li, j measures
the length of the path. In phase space, a path in the recurrence network is hence defined

9 Possible embedding effects on recurrence plots have already been exhaustively treated in the literature [43],
whereas a corresponding detailed investigation of recurrence networks remains a subject for future studies.
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Table 3. Correspondence between recurrence network measures and phase space
properties. Specific terms are discussed in the text.

Scale Recurrence network Phase space

Local Edge density ρ Global recurrence rate R R
Degree centrality kv Local recurrence rate R Rv

Intermediate Clustering coefficient C Invariant objects
Local degree anomaly 1kv Local heterogeneity of phase space density
Assortativity R Continuity of phase space density
Matching index µi, j Twinness of i, j

Global Average path length L Mean phase space separation 〈di, j 〉i, j

Network diameter D Phase space diameter 1

Closeness centrality cv Local centredness in phase space
Betweenness centrality bv Local attractor fractionation

as a sequence of mutually overlapping ε-balls Bε(xi), Bε(xk1), . . . , Bε(xkli, j −1), Bε(x j), where

Bε(xi) ∩ Bε(xk1) 6= ∅, . . . , Bε(xkli, j −1) ∩ Bε(x j) 6= ∅.10

Due to the natural interpretation of vertices, edges and paths, the topological characteristics
of a recurrence network closely capture the fundamental phase space properties of the dynamical
system that has generated the considered time series. In the following, we will present a detailed
analysis of the corresponding analogies for different network properties that are defined on a
local (i.e. considering only the direct neighbourhood of a vertex), intermediate (i.e. considering
the individual neighbourhoods of the neighbours of a vertex) and global (i.e. considering all
vertices) scale (table 3)11. It has to be emphasized that these quantities can be considered as
(partly novel and complementary) measures within the framework of RQA.

3.1. Local network properties

3.1.1. Degree centrality (local recurrence rate). As a first measure that allows us to quantify
the importance of a vertex in a complex network, the degree centrality [77] of a vertex v, kv, is
defined as the number of neighbours, i.e. the number of vertices i 6= v that are directly connected
with v:

kv =

N∑
i=1

Av,i . (9)

Note that, in general, the sum is taken over all i 6= v. However, according to our definition (2),
we skip the corresponding condition in the following. Normalizing this measure by the

10 An ε-ball centred at state vector x is defined as the open set Bε(x) = {y ∈ Rm : ||x − y|| < ε}.
11 Alternatively, we could classify the corresponding phase space properties according to the fact whether they
refer to individual points, small regions, or the entire phase space. In this respect, measures related to a single
vertex v (centralities, local clustering coefficient and local degree anomaly) give local, those related to a specific
edge (i, j) (shortest path length, matching index and edge betweenness) give intermediate, and all others give
global information about the phase space properties.

New Journal of Physics 12 (2010) 033025 (http://www.njp.org/)

http://www.njp.org/


12

maximum number of possible connections, N − 1, we obtain the local connectivity

ρv =
1

N − 1

N∑
i=1

Av,i = R Rv, (10)

which, from the recurrence plot point of view, corresponds to the local recurrence rate R Rv of
the state v. Thus, degree centrality and local connectivity yield an estimator for the local phase
space density, since for a vertex v located at position xv in phase space,

1

N
(kv(ε) + 1) ≈

∫
Bε(xv)

dx p(x) ≈ (2ε)m p(xv) (11)

(when using the maximum norm) and, hence,

p̂(xv) = lim
ε→0

lim
N→∞

kv + 1

(2ε)m N
. (12)

In complex network studies, one is often interested in the frequency distribution of
degree centralities, P(k), in particular, the presence of an algebraic scaling behaviour, which
is a characteristic of scale-free networks [22]. In the case of recurrence networks, however,
we note that the emergence of a scale-free property in the degree distribution requires
distinct structures of the phase space density, which are probably only present in rather
specific cases. Moreover, although several authors have recently focused their attention on
this characteristic obtained from different types of complex networks derived from time
series [33], [37]–[39], [42], [56]–[59], [68]–[70], we would like to underline that for a complete
characterization of the phase space properties of a dynamical system, not only degree centralities
but also other higher-order statistical measures have to be studied.

3.1.2. Edge density (global recurrence rate). In some situations, it is useful not to consider
the full distribution of degree centralities in a network, but to focus on the mean degree of all
vertices

〈k〉 =
1

N

N∑
v=1

kv =
2L

N
, (13)

as a simple characteristic quantity of this distribution, where

L =

∑
i< j

Ai, j = ρ
N (N − 1)

2
(14)

is the total number of edges in the recurrence network. The mean degree centrality 〈k〉 is directly
proportional to the edge density ρ of the network or, alternatively, its recurrence plot equivalent,
the global recurrence rate R R,

ρ(ε) =
1

N

N∑
v=1

ρv(ε) =
2

N (N − 1)

∑
v<i

Av,i(ε)

=
2

N (N − 1)

∑
v<i

2(ε − ‖xv − xi‖)

= R R(ε) = C2(ε) ∼ ε−D2 . (15)
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Note that the recurrence rate coincides with the definition of the correlation integral C2(ε),
which is commonly used to estimate the correlation dimension D2, for example, using the
Grassberger–Procaccia algorithm [78].

The connection between the edge density and the correlation dimension can be understood
by the fact that the local recurrence rate R Rv of a vertex v corresponds to the measure of an
m-dimensional ball Bε(xv) of radius ε centred at the point xv in the m-dimensional phase space
in the limit that time goes to infinity (N → ∞). When considering the Euclidean norm as a
distance measure in phase space, these balls are defined as hyperspheres, for the maximum norm
as hypercubes, etc. Then, the pointwise (information) dimension of the probability measure µ

at xv is defined as Dp(xv) = −limε→0(ln µ(Bε(xv))/ln ε) [4]. Owing to the heterogeneity of the
phase space visited by the trajectory (i.e. the non-uniform phase space density that results in
different degree centralities kv in different parts of this space), the proper estimation of Dp is
a nontrivial task and often requires expensive computational power and a high data quality and
quantity. Thus, we expect a better statistics for D2, since it more heavily weights regions of
the phase space that have a higher probability measure µ. Although the correlation integral has
been well established in the literature for estimating the correlation dimension, we point out the
improvement in estimating D2 based on the diagonal lines in Ri, j(ε), which yields an algorithm
that is independent of the embedding parameters [19]. Consequently, the recurrence network
representation Ai, j of a time series fully conserves the geometric properties of the phase space
of the underlying dynamical system.

3.2. Intermediate scale network properties

3.2.1. Local clustering coefficient. The clustering coefficient of a vertex v, Cv, characterizes
the density of connections in the direct neighbourhood of this vertex in terms of the density of
connections between all vertices that are incident with v. In many networks, such loop structures
formed by three vertices occur more often than one would expect for a completely random
network. Hence, high clustering coefficients reveal a specific type of structure in a network,
which is related to the cliquishness of a vertex [24].

In this work, we consider the definition of clustering coefficient proposed by Watts and
Strogatz [24],

Cv =
2

kv(kv − 1)
N1

v , (16)

where N1
v is the total number of closed triangles including vertex v, which is bound by the

maximum possible value of kv(kv − 1)/2. For vertices of degree kv = 0 or 1 (isolated or tree-
like points, respectively), the clustering coefficient is defined as Cv = 0, as such vertices cannot
participate in triangles by definition.

Equation (16) can be rewritten in terms of conditional probabilities as

Cv = P(Ai, j = 1|Av,i = 1, Av, j = 1) =
P(Ai, j = 1, Av,i = 1, Av, j = 1)

P(Av,i = 1, Av, j = 1)
(17)

using Bayes’ theorem with

P(Av,i = 1, Av, j = 1) =
1

(N − 1)(N − 2)

N∑
i=1

N∑
j=1, j 6=i

Av,i Av, j (18)
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and a similar expression for P(Ai, j = 1, Av,i = 1, Av, j = 1). As for a recurrence network,
the value of Ai, j depends only on the phase space distance and the choice of ε; the latter
relationship can be used to derive analytical results at least for one-dimensional systems based
on their invariant density. Corresponding details can be found in appendix A, including the
corresponding treatment of the Bernoulli and logistic maps as specific examples.

3.2.2. Global clustering coefficient. As for the degree centrality, we consider the average value
of the clustering coefficient taken over all vertices of a network, the so-called global clustering
coefficient

C =
1

N

N∑
v=1

Cv, (19)

as a global characteristic parameter of the topology of a network. We expect that the value
of C is—for a given dynamical system with a phase space density p(x)—in the asymptotic
limit N → ∞ exclusively determined by the choice of ε, which defines the scale of resolution.
A more detailed discussion of the corresponding effects and their implications for certain model
systems will be given in section 4.

3.2.3. Mean nearest neighbour degree. The mean nearest neighbour degree knn
v of vertex v

gives the average degree in the neighbourhood of v,

knn
v =

1

kv

N∑
i=1

Av,i ki . (20)

The degree centrality kv is a measure of the density of states in the immediate neighbourhood
of state v, whereas knn

v can be interpreted to indicate the mean density of states in the next
neighbourhood (next topological shell of neighbours) of state v. Hence, both measures taken
together contain information about the local density anomaly in the vicinity of v, which we
propose to measure by the local degree anomaly

1kv = kv − knn
v . (21)

Vertices with a positive degree anomaly (1kv > 0) hence indicate local maxima of phase space
density, while those with 1kv < 0 correspond to local density minima. Hence, the local degree
anomaly may be considered as a proxy for the local heterogeneity of the phase space density.
In a similar way, the average absolute value of the local degree anomaly, 〈|1kv|〉v, serves as a
measure of the overall spatial heterogeneity of the phase space density profile.

3.2.4. Assortativity. A network is called assortative if vertices tend to connect preferentially
to vertices of a similar degree k. On the other hand, it is called disassortative if vertices of
high degree prefer to connect to vertices of low degree, and vice versa. Hence, assortativity can
be quantified by the Pearson correlation coefficient of the vertex degrees on both ends of all
edges [24, 79],

R=

1
L

∑
j>i ki k j Ai, j −

[
1
L

∑
j>i

1
2(ki + k j)Ai, j

]2

1
L

∑
j>i

1
2(k

2
i + k2

j )Ai, j −

[
1
L

∑
j>i

1
2(ki + k j)Ai, j

]2 . (22)
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If the density of states in phase space hardly varies within an ε-ball, the degrees on either ends
of an edge will tend to be similar and hence the assortativity coefficient R will be positive.
This means that the more continuous and slowly changing the density of states is, the closer R
will be to its maximum value one. Within the framework of recurrence networks, R can hence
be interpreted as a measure of the continuity of the density of states or put differently of the
fragmentation of the attractor. Note that this aspect has not yet been specifically addressed by
other nonlinear measures, in particular, within the RQA framework.

3.2.5. Matching index (twinness). The overlap of the neighbourhood spaces of two vertices
i, j is measured by the matching index

µi, j =

∑N
l=1 Ai,l A j,l

ki + k j −
∑N

l=1 Ai,l A j,l

, (23)

where µi, j = 0 if there are no common neighbours, and µi, j = 1 if the neighbourhoods
coincide [24]. Using the notion of ε-balls around points in phase space, we can alternatively
write

µi, j ∝
µ(Bε(xi) ∩ Bε(x j))

µ(Bε(xi)) + µ(Bε(xi)) − µ(Bε(xi) ∩ Bε(x j))
. (24)

Owing to the spatial constraints of the recurrence network, the neighbourhood spaces of
i, j can only overlap if

di, j = ‖xi − x j‖6 2ε, (25)

i.e. µi, j = 0 for all pairs of vertices (i, j) with di, j > 2ε. Moreover, the matching index µi, j

decreases on average with increasing spatial distance di, j between the two considered states.
Note that since Ai, j = 0 already for di, j > ε, unconnected points with a matching index µi, j > 0
may exist.

The matching index of pairs of vertices in a recurrence network is closely related to the
concept of twins [80], which has recently been successfully applied for constructing surrogate
data (twin surrogates) in the context of statistical hypothesis testing for the presence of complex
synchronization [81, 82]. Twins are defined as two states of a complex system that share the
same neighbourhood in phase space, i.e. the two vertices of the recurrence network representing
these states have a matching index µi, j = 1. Hence, the matching index can be used for
identifying candidates for twins. Note that pairs of vertices i and j in a recurrence network with
µi, j . 1 can still be considered as potential twins, since µi, j = 1 is in some cases approached
by only slight changes of the threshold ε. Consequently, we suggest interpreting the matching
index as a measure of the twinness of i and j . Furthermore, it should be noted that adjacent
pairs of edges (i, j) (Ai, j = 1) with a low matching index µi, j ' 0 connect two distinct regions
of the attractor and may therefore be indicative of geometrical bottlenecks in the dynamics
(cf our discussion of the betweenness centrality in section 3.3.5).

3.3. Global network properties

3.3.1. Shortest path length. As we consider recurrence networks as undirected and
unweighted, we assume all edges to be of unit length in terms of graph (geodesic) distance.
Consequently, the distance between any two vertices of the network is defined as the length
of the shortest path between them. Note that time information is lost after transforming the
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Figure 1. Schematic representation of the transformation of (a) a periodic
trajectory in phase space (arrows indicate the temporal order of observations)
into (c) the recurrence network (lines illustrate the mutual neighbourhood
relations). (b) The associated recurrence plot representation. (d) A table listing
the resulting shortest path lengths between any two vertices.

trajectory into a network presentation. Therefore, the terminology of the shortest path length li, j

in the recurrence network reflects the minimum number of edges that have to be passed on a
graph from a vertex i to a vertex j . In the same spirit, li, j is related to the distance of states i and
j in phase space.

In order to better understand the meaning of shortest path lengths, let us study
their calculation for two toy model series: first, we consider a periodic trajectory x(t) =

sin(6π · 0.1t), y(t) = cos(6π · 0.1t), with t = 0, 1, . . . , 10, i.e. there are N = 10 points in the
phase space (figure 1(a)). The corresponding recurrence plot is shown for ε =

π

5 (figure 1(b)).
As it has already been mentioned above, the recurrence matrix Ri, j and the adjacency matrix Ai, j

of the associated recurrence network are basically equivalent. Adopting a common visualization
of connectivity patterns from the literature on complex networks, we illustrate the recurrences
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Figure 2. The same as in figure 1 for a general non-periodic trajectory
(3, 2, 4, 8, 2, 5, 7, 6, 0, 2) embedded in a two-dimensional phase space (X, Y ) =

(xt , xt+1).

of the considered model time series by placing the individual observations (vertices) on a circle
with equal common distances (figure 1(c)). In this representation, the shortest path length (in
the network sense) between two vertices i and j corresponds to the smallest number of ‘jumps’
in phase space via pairs of neighbours (i.e. recurrences) in phase space. Obviously, the number
of such jumps is determined by the prescribed value of ε and the spatial distance between
i and j . For instance, the shortest path from vertex i = 1 to j = 10 is l1,10 = 3 as indicated
by the matrix of mutual shortest path lengths (figure 1(d)). Note that this list is symmetric
by definition, i.e. li, j = l j,i . The same heuristic analysis can also be performed for a general
non-periodic trajectory in phase space as shown in figures 2(a)–(d).

We wish to underline that the terminology of shortest path lengths in networks does not
have a direct relevance for the dynamical evolution of the observed system. In contrast, li, j

measures distances among a discrete set of points on the attractor in units of the neighbourhood
size ε. For example, in the periodic case displayed in figure 1, it takes nine iterations (time
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points) from vertex 1 to vertex 10 in the time domain, while the shortest path to cover the phase
space distance has only a length of l1,10 = 3. Hence, shortest paths do not allow to infer the
temporal evolution of the system. Even more, for the path concept in a recurrence network, no
information about the temporal order of the individual observations is considered (for example,
the shortest path between vertices 1 and 2 in figure 1 is given by the sequence (1, 8, 5, 2), which
is not ordered in time).

One should note that if the phase space is strongly fragmented (for instance, in the period-3
window of the logistic map, which has been discussed elsewhere [43], the phase space consists
of three discrete points), the resulting recurrence networks can be composed of different
disconnected clusters. Furthermore, there might be more than one shortest path connecting two
nodes. For example, in the aperiodic example in figure 2, the shortest path from node 1 to node
7 (l1,7 = 3 as shown in figure 2(d)) can be obtained by three different choices: (1, 2, 6, 7),
(1, 5, 3, 7) and (1, 5, 6, 7).

3.3.2. Average path length. The average path length L is defined as the mean value of the
shortest path lengths li, j taken over all pairs of vertices (i, j),

L= 〈li, j〉 =
2

N (N − 1)

∑
i< j

li, j . (26)

Here, for disconnected pairs of vertices, the shortest path length is set to zero by definition. Note
that in most practical applications, this has no major impact on the corresponding statistics.

The average phase space separation of states 〈di, j〉i, j serves as an ε-lower bound to L,
since

di, j 6 εli, j (27)

due to the triangular inequality, and hence

〈di, j〉6 εL. (28)

Interpreted geometrically, this inequality holds because L approximates the average distance
of states along geodesics on the recurrence network graph (which can be considered as the
geometric backbone of the attractor) in multiples of ε, while 〈di, j〉i, j gives the mean distance of
states in Rm as measured by the norm ‖ · ‖.

3.3.3. Network diameter. By a similar argument as used in equation (27) for the average path
length, the diameter

D = max
i, j

li, j (29)

of the recurrence network (i.e. the maximum path length) serves as an ε-upper bound to the
estimated diameter

1 = max
i, j

di, j (30)

of the attractor in phase space:

16 εD. (31)
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3.3.4. Closeness centrality. The inverse average shortest path length of vertex v to all others
in the recurrence network is measured by the closeness centrality [77]

cv =
N − 1∑N

i=1 lv,i

. (32)

If there is no path connecting two vertices i and j , the maximum shortest path length in the
graph, N − 1, is used in the sum by definition. In a recurrence network, cv can be geometrically
interpreted as measuring the closeness of v to all other states with respect to the average length
(in units of ε) of geodesic connections on the recurrence network graph. In other words, cv is
large if most of the other vertices are reachable in a small number of ε-jumps from state to state.

From equations (27) and (32), we can see that the inverse closeness c−1
v is bounded from

below by the average phase space distance of vertex (state) v to all other vertices (states) 〈dv,i〉i

in units of ε (geometrical closeness), as measured by the norm ‖ · ‖,

1

ε

N

N − 1
〈dv,i〉i 6 c−1

v . (33)

Put differently, geometrical closeness provides an upper bound for topological closeness,

cv 6 ε
N − 1

N
〈dv,i〉

−1
i . (34)

3.3.5. Betweenness centrality. Let σi, j be the number of shortest paths between two vertices
i and j , and σi, j(v) the number of such paths that include a specific vertex v of the network.
Then, the betweenness centrality of v is defined as [83]

bv =

N∑
i, j 6=v

σi, j(v)

σi, j
. (35)

In addition to degree and closeness centralities, betweenness centrality yields another possibility
to identify especially relevant vertices. Note that unlike the degree centrality kv, it is defined
locally but depends on global adjacency information.

For general complex networks, the meaning of bv can be understood in terms of the
importance of individual vertices for the transport of information or matter, assuming that both
typically travel through the network on shortest paths. In general, there are σi, j different shortest
paths connecting two vertices i and j . We then regard a vertex v to be an important mediator
for the transport on the network, if it is traversed by a large number of all existing shortest
paths. According to these conceptual ideas, in equation (35), the contribution of shortest paths
is weighted by their respective multiplicity σi, j , the physical rationale for this normalization
being that the total volume of information flow between two vertices, when summed over all
shortest paths connecting them, should be the same for all pairs in the network.

For a recurrence network, the notion of information transfer is not useful anymore.
However, we can still argue in a geometric way that high betweenness states are typical for
regions of sparse phase space density that separate different high-density clusters (referring
to the information flow analogy mentioned above, we consider the corresponding vertices as
geometric bottlenecks). Thus, the occurrence of high betweenness values can be a sign of highly
fractionated attractors (on the scale resolved by the considered threshold ε). A more detailed
discussion of the corresponding implications for some simple model systems will be given in
section 4.
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3.3.6. Edge betweenness. While betweenness centrality refers to vertex properties of a
network, an equivalent measure can also be defined based on the number of shortest paths on the
network that include a specific edge (i, j). We refer to the corresponding property as the edge
betweenness bi, j . Note that although there is a conceptual difference between vertex-related and
edge-related betweenness, both quantities are indicators for regions of low phase space density
that separate regions with higher density (or, to phrase it differently, of regions of high attractor
fractionation) and thus have practically the same dynamical meaning.

4. Examples

In the following, we will show the potentials of the network-theoretic measures discussed in
the previous section for recurrence networks obtained from three paradigmatic chaotic model
systems.

4.1. Model systems

Basic results for one-dimensional maps have already been described for the logistic map
(see [43]) based on numerical calculations and are supplemented by some further computations
in the appendix. At this point, we prefer to discuss in some more detail the properties of systems
that are defined in somewhat higher dimensions. In particular, we consider the Hénon map

xi+1 = yi + 1 − 1.4x2
i , yi+1 = 0.3xi (36)

as an example for a chaotic two-dimensional map, and the Rössler system

d

dt
(x, y, z) = (−y − z, x + 0.2y, 0.2 + z(x − 5.7)) (37)

as well as the Lorenz system

d

dt
(x, y, z) =

(
10(y − x), x(28 − z) − y, xy −

8

3
z

)
(38)

as two examples for three-dimensional chaotic oscillators. In all the following considerations,
no additional embedding will be used. Note, however, that for the continuous systems, temporal
correlations between subsequent observations have been excluded by removing all sojourn
points from the recurrence matrix [9, 84].

Figures 3 and 4 show examples of typical trajectories of these three model systems. In
addition, the shortest paths between the first and last points of the individual realization are
indicated, underlining the deep conceptual differences between the concepts of the trajectory
(in phase space) and path (in a recurrence network, see section 3).

4.2. ε-dependence of network properties

In order to evaluate the robustness of the topological properties of recurrence networks, their
dependence on the free parameter of the method, ε, has to be explicitly considered [12].
In the following, we will briefly summarize the main findings for the three model
systems.
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Figure 3. One trajectory of the Hénon map (attractor indicated by grey dots)
formed by 100 iterations (i.e. N = 101), indicated by circles. The initial
condition is marked by a square, the size of which corresponds to the
neighbourhood threshold ε = 0.25 (maximum norm) considered in the derivation
of the corresponding recurrence network. The shortest path (with l1,101 = 10)
between the first and the last point is indicated by a continuous red line.

4.2.1. Global network properties. The variations of L with the threshold ε are shown in
figure 5 and verify the existence of an inverse relationship of a corresponding lower bound
postulated in equation (28).

For the global clustering coefficient, the dependence on ε is more complicated and depends
on the specific properties of the considered system (figure 5). In particular, while for too
small ε, problems may occur, since the recurrence network will generally decompose into
different disconnected clusters for a length N of the considered time series, for intermediate
threshold values, an approximately linear increase of C with ε seems to be a common feature
of all three examples. Following the discussion of the behaviour of one-dimensional maps in
appendix A, we argue that this increase is most likely related to the effect of the attractor
boundaries.

Finally, concerning the assortativity coefficient R, we observe that for small ε, the
recurrence networks are highly assortative (e.g. R is close to 1). This behaviour can be related
to the fact that in the case of small neighbourhoods, these phase space regions are usually
characterized by only weak variations of the phase space density, so that neighbouring vertices
have a tendency to obey a similar degree. As ε becomes larger, larger regions of the phase
space are covered, where the density may vary much stronger, which implies that the degrees
of neighbouring vertices become less similar. Note, however, that since in this case, the mutual
overlap of the different neighbourhoods becomes successively larger, there is still a significantly
positive correlation between the degrees of neighbouring vertices. We further observe that the
decrease of R with ε is interrupted by intermediate increases, which are probably related to
some preferred spatial scale of the separation of certain dynamically invariant objects such as
UPOs. We will come back to this point in section 4.3.3.
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Figure 4. (a, b) Chaotic attractor of the Rössler system (dark dots) and
realization of one particular non-periodic trajectory (blue line), corresponding to
T = N1t = 11.4 time steps. The size of the considered neighbourhood ε = 1
(maximum norm) is indicated by a red square around the initial condition.
(Note that the square gives an idealized representation of the considered
neighbourhood.) The red line displays the shortest path between the initial
condition and the final value on this trajectory (l = 5). (c, d) One example
trajectory of the Lorenz system with T = 5 time steps, and the resulting shortest
path between the initial and the final state (ε = 1.5, l = 9).

4.2.2. Vertex properties. Similar to the global network properties discussed above, the
properties of the individual vertices of a recurrence network show a corresponding dependence
on the recurrence threshold ε as well. This observation is rather trivial for the degree centrality,
where not only the global mean value (proportional to the recurrence rate R R) but also the local
value at an individual vertex must be a monotonously increasing function of ε [9]. We note that
for comparing the properties of recurrence networks between different dynamical systems (or
for different values of the control parameters of the same system) that generally have attractors
with different phase space diameters, it is indeed favourable to fix the recurrence rate R R instead
of the metric distance ε. For a detailed discussion on this question see, e.g., [85].

Concerning other vertex properties such as bv or Cv, we note that the spatial distribution
of the individual values becomes successively smoother as ε increases, since the small-scale
features of the phase space density captured by these measures cannot be resolved with
large recurrence thresholds anymore. However, for sufficiently small ε, we find that the main
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Figure 5. Dependence of (a–c) the average path length L, (d–f), the global
clustering coefficient C and (g–i) the assortativity coefficient R for the Hénon
map, Rössler and Lorenz system (from left to right) using the maximum norm.
Dashed lines in the plots of L(ε) indicate the approximate presence of the
theoretically expected 1/ε dependence of the average path length. Note that
although a normalized threshold ε might yield a better comparability of the
results for the different systems, we prefer using the absolute values here since
the typical normalization factors—either an empirical estimate of the standard
deviation of the phase space density (which may be crucially influenced by
asymmetric densities) or the attractor diameter (which is itself not a priori known
in advance) have certain conceptual problems.

structures resolved by the local vertex properties are preserved [12]. In the following, we will
operate with different values of R R for different systems and network-theoretic measures,
depending on the computational requirements and the spatial scales of interest.

4.3. Spatial distributions of vertex properties

In the following, we will study the interrelationships between local network properties and
structural features of the phase space for the three considered chaotic model systems.
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Figure 6. Colour-coded representation of the local recurrence rate R Rv

(proportional to the degree centrality kv) in phase space (a) Hénon map (N =

10 000), (b) Rössler (N = 10 000) and (c) Lorenz systems (N = 20 000). The
value of ε for each case is chosen in such a way that the global recurrence rate
R R = ρ ≈ 0.03.

4.3.1. Degree centrality. When considering the degree centrality kv or, equivalently, the local
density ρv for all vertices of the network, a broad range of variability is found (figure 6). In
particular, the behaviour follows the expectation that regions with a high phase space density
(for example, the merger of the two scrolls of the Lorenz oscillator) also reveal a high density
of vertices and, hence, high degree centralities. Note that the calculation of a recurrence plot
depends on the parameter ε, which should be tailored to the considered system under study
and the specific questions one wishes to address. Several ‘rules of thumb’ for the choice of
the threshold ε have been advocated in the literature [9, 11]. It has been suggested that the
choice of ε to achieve a fixed recurrence rate R R is helpful for the estimation of dynamical
invariants in many systems [9]. Therefore, this procedure will be adopted here to obtain an
overall visualization of the degree centrality kv in phase space, with R R = ρ ≈ 0.03 (which lies
within the typical scaling region of the correlation integral). However, as we will see later, for
the local clustering coefficients (section 4.3.3) disclosing local fine structures of the phase space
density, it is necessary to choose smaller ε.

4.3.2. Closeness centrality. Figure 7 reflects the spatial distribution of the closeness centrality
cv. In good agreement with our previous theoretical considerations on the geometric meaning
of this measure (section 3.3.4), we find high values of cv near the centre of gravity of the
attractor in phase space, and low values at phase space regions that have large distances from
this centre.

4.3.3. Clustering coefficient. There is no distinct relationship between the local clustering
coefficient Cv and the degree centrality kv (figure 8), which implies that the spatial patterns
of Cv are not primarily related to variations of the phase space density itself. Instead, we argue
that Cv characterizes higher-order properties related to the heterogeneity of the phase space
density in the vicinity of a vertex v. For example, in a two-dimensional system, an alignment
of vertices along a one-dimensional subspace will produce clearly higher clustering coefficients
than a homogeneous filling of the neighbourhood, since a larger number of neighbours of a
specific vertex are also mutually connected in this case (see figure 9).
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Figure 7. Colour-coded representation of the closeness centrality cv (equation
(32)) in phase space of (a) Hénon map, (b) Rössler system and (c) Lorenz system
(N and ε are the same as in figure 6).
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Figure 8. Scatter diagrams between the local recurrence rate R Rv and the local
clustering coefficient Cv for typical realizations of (a) Hénon map, (b) Rössler
system and (c) Lorenz system. The inserted values ρs give the corresponding
rank-order correlation coefficient (Spearman’s rho).

The corresponding behaviour is underlined in figure 10 for the Hénon map, where
maximum values of Cv = 1 can be particularly found at the two tips of the attractor. Generalizing
these considerations to arbitrary dynamical systems, we note that Cv for a recurrence network
quantifies how randomly the vertices are distributed in a specific part of the phase space. In this
sense, Cv can be considered as an entropy-related quantity. As a more detailed interpretation
of this finding, we emphasize that from the theory of spatial random graphs [88] (which can
be assumed to yield the lowest possible clustering coefficients among all networks that are
embedded in a space with a prescribed dimension m), it is known that in the asymptotic limit
N → ∞ and ε → 0, the possible values of Cv are bound between a theoretical lower limit
and 1. Moreover, this lower bound systematically decreases with increasing m, which appears
reasonable if for a spatial network, we interpret Cv as an entropy-related quantity. To be more
specific, according to Dall and Christensen [88], this decay follows an exponential function for
sufficiently large spatial dimensions.

The presence of distinct structures in the spatial profile of the local clustering coefficient
is related to the emergence of specific dynamically invariant objects in the considered model
systems. In the case of the Hénon map (figure 10), there is a clear tendency that points that
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Figure 9. Schematic representation of the alignment of trajectories and the
resulting recurrence network structures (a) close to a UPO and (b) within a phase
space region with larger divergence of neighbouring trajectories and, hence,
more homogeneous spatial filling with observational points.

Figure 10. (a) Colour-coded representation of the local clustering coefficients
Cv for the Hénon map in its phase space. (b) Relationship between the local
clustering coefficients and the stable manifold of the hyperbolic fixed point of
the Hénon map. The finite length segment of the stable manifold is calculated by
the method described in [86, 87] (with 20 000 iterations).

are close to the stable manifold associated with the hyperbolic fixed point of the system
have remarkably higher values of Cv. Note, however, that because of finite size effects, this
coincidence cannot be found for all corresponding regions of the phase space. For the two
continuous systems (figure 11), points close to the trapping regimes of UPOs have higher
clustering coefficients. It is, in some sense, trivial to understand the role of UPOs in forming
such regimes of higher clustering coefficients. Whenever a trajectory visits the vicinity of a
UPO, it is captured in this neighbourhood for a certain finite time, during which the probability
of recurrences is increased. Furthermore, once the trajectory is trapped, the local divergence rate
becomes smaller (see figure 9). This smaller local divergence rate is captured by the clustering
coefficient in terms of higher-order correlations between neighbours of a vertex. Similar to the
finite-ε effect in the Hénon map, the regions with increased clustering coefficients in most cases
only coincide with UPOs of lower periods. Therefore, in figure 11, only a few UPOs of low
order are shown for comparison. Note that if two UPOs are separated by a distance smaller
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Figure 11. (a) Colour-coded representation of the local clustering coefficients
Cv for the Rössler system (N = 10 000) in its phase space. (b) Locations of
several UPOs with low periods, obtained using a method based on the windows
of parallel lines in the corresponding recurrence plot as described in [9]. The
chosen value of ε corresponds to a global recurrence rate of R R = 0.01. (c, d)
The same as (a, b) for the Lorenz system (N = 20 000).

than ε in phase space, the clustering coefficient is not able to distinguish between these two
structures and, hence, shows a broad band with increased values. In the limit of ε → 0 (and,
hence, N → ∞), also UPOs of higher periods can be detected by Cv. Following this argument,
Cv is a useful measure for detecting phase space regions with a high density of low-order UPOs,
which supports corresponding considerations in [42], where the influence of a finite value of ε

has, however, not been properly considered [12].

4.3.4. Betweenness centrality. Our interpretation of the betweenness centrality in section 3.3.5
implies that bv is a rather sensitive measure of the local fragmentation of the attractor and thus
gives complementary information, especially on very small scales. Unfortunately, numerical
limitations on the calculation of this measure did not allow us to explore the limit of small
neighbourhoods (ε → 0). However, from our computations with somewhat larger thresholds
(see figure 12), we can already derive some general statements about the behaviour of
betweenness centrality for the considered model systems. Firstly, note that regions close to the
outer boundaries of the attractor (in contrast to those in the vicinity of the inner boundaries,
e.g. of the Rössler oscillator) are not important for many shortest path connections on the
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Figure 12. Logarithm of the betweenness centrality bv for (a) the Rössler system
and (b) the Lorenz system (N and ε as in figure 11). Points shown as circles have
betweenness values below the lower limit of the displayed colour scale.

recurrence network. Hence, vertices settled in the corresponding parts of the phase space
are characterized by low betweenness values. Secondly, if there are pronounced regions with
rather few isolated points in between high-density regions (for example, between two UPOs
in the Rössler or Lorenz systems), there is an increasing number of shortest paths crossing
these vertices, which leads to higher values of bv. In turn, vertices in the vicinity of UPOs
(i.e. high-density regions) typically show lower betweenness values. Therefore, betweenness
centrality provides a complementary view on the attractor geometry in comparison with the
local clustering coefficient Cv (figure 11). However, we have to emphasize that bv alone does
not provide a feasible measure for detecting UPOs in dynamical systems [12].

4.4. Spatial distributions of edge properties

Similarly to the local vertex properties, we also illustrate the characteristics of different edges in
the recurrence networks. Since the resulting structures are more pronounced than for the three
model systems considered so far, figure 13 shows the matching index and edge betweenness
for one realization of the logistic map xi+1 = ax i(1 − xi) in the intermittent chaotic regime
(see [43]). The presence of intermittent dynamics can be clearly seen from the recurrence
plots in terms of extended square recurrence patterns, which hence lead to mutually connected
vertices of the associated recurrence networks that correspond to subsequent points in time.

Figures 13 and 14 show the complex dependence between phase space distance di, j ,
matching index µi, j and edge betweenness bi, j . For the matching index, the results are consistent
with our theoretical considerations presented in section 3.2.5. In particular, for di, j → 0, we have
µi, j → 1, while for di, j → 2ε, µi, j → 0. Concerning the temporal evolution during the laminar
(intermittent) phase, we recognize that at the beginning, there is hardly any change in the state
of the system; hence, di, j is very small for subsequent points in time (vertices of the recurrence
network), which relates to large values of the matching index near 1. As the laminar phases
are close to their termination, chaotic variations emerge and rise in amplitude, which leads to a
subsequent increase of di, j and, hence, decrease of µi, j .

Concerning the edge betweenness bi, j (the spatial pattern of which is very similar to
that of the vertex-based betweenness centrality bv due to the spatial proximity of edge and
corresponding vertices), the overall behaviour is opposite to that of µi, j . During laminar phases,
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Figure 13. (a, d) One example trajectory of the logistic map at a = 3.679 (chaotic
regime with intermittency), ε = 0.015σx (σx being the empirical standard devi-
ation of the time series), N = 1000 (only a part of the trajectory with 250 points
is shown). (b) Matching index µi, j between all pairs of vertices (colour-coded).
(c) Average matching index 〈µi, j〉 j of all vertices of the considered recurrence
network. (e, f) As in (b, c) for the logarithm of the edge betweenness bi, j .

we find that since all states are very close to each other, possible shortest connections may
alternatively pass through a variety of different edges, leading to low values of the edge
betweenness. Close to the termination, there is in turn an increase of this measure. However,
the most interesting feature of the edge betweenness is presented by isolated edges with very
high values of bi, j , which correspond to rarely visited phase space regions between intervals of
higher phase space density. More specifically, the average edge betweenness of vertices in such
low-density regions can exceed that of high-density regions by orders of magnitude (figure 13).

5. Conclusions

This paper has reconsidered the analysis of time series from complex systems by means of
complex network theory. We have argued that most existing approaches for such an analysis
suffer from certain methodological limitations or a lack of generality in their applicability.
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Figure 14. Scatter diagram of the matching index µi, j against the phase space
distance di, j for the logistic map at a = 3.679 (parameters as in figure 13).

As an appealing solution, we have suggested recurrence networks as a unifying framework
for studying time series as complex networks, which is based on a novel approach for the
quantitative assessment of recurrence plots in terms of complex network measures. As we have
argued, this specific approach is applicable to univariate as well as multivariate time series with
or without embedding. In addition, recurrence networks can be applied for studying time series
with non-equidistant timescales as well as temporal variations in non-stationary data (by using
sliding windows in time) and allow the construction of simple significance tests with respect to
the associated network-theoretic measures [43].

Our main achievement is to have provided a thorough reinterpretation of a variety
of statistical measures from network theory computed for recurrence networks in terms of
phase space properties of dynamical systems. Since all time ordering information is lost
in this approach, all complex network characteristics are dynamically invariant, i.e. they
are only sensitive to certain properties of the invariant density of the considered dynamical
system. From this invariance, it follows that specific measures such as the local clustering
coefficient might be used for detecting dynamically invariant objects like UPOs or chaotic
saddles. However, this feature also implies that the proposed method cannot be used to
distinguish between deterministic (chaotic) and stochastic systems, which is exemplified by
our comparison between the Bernoulli map and uniform noise in appendix A. As a possibile
means to overcome this potential point of criticism, we emphasize that an additional embedding
should change the properties of deterministic systems in a different way than for a stochastic
system; hence, studying complex network properties dependent on the embedding dimension
might help to solve this interpretation problem. We will further elaborate this idea in future
research.

Using widespread statistical characteristics of complex networks such as the ‘trinity’ of
centrality measures (degree, closeness and betweenness) and the clustering coefficient, we were
able to provide a detailed interpretation of the corresponding results for recurrence networks in
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terms of higher-order properties of the phase space density of a dynamical system. In particular,
degree centrality relates to the local density, closeness centrality to the average geometrical
proximity of an observation to all other observations, and betweenness centrality to the local
fragmentation of points in phase space. For the local clustering coefficient Cv, the analysis of
different model systems has revealed that the resulting values are related to the homogeneity
of the spatial filling, which becomes important close to the attractor boundaries and certain
dynamically invariant objects such as invariant manifolds or UPOs. The resulting local network
properties are qualitatively robust under changes of the recurrence threshold ε given that the
associated recurrence rate R R remains sufficiently small [12]. Additionally, we have presented
a rigorous analytical treatment of the local and global clustering coefficients of the recurrence
networks of one-dimensional chaotic maps, which perfectly matches our numerical results
(see appendix A). A possible further relationship between the local clustering coefficient
of a recurrence network and other nonlinear characteristics of the underlying dynamical
system such as the local Lyapunov exponent or the point-wise dimension remains a topic for
future work.

With respect to existing recurrence plot-based methods of time series analysis, e.g. RQA,
we would like to emphasize that our approach yields a complementary view on the phase
space properties of the underlying dynamical system. In particular, we note that nearly all of
the considered network-theoretical measures have no direct equivalent in traditional RQA, and
vice versa. Hence, there may be situations when either one of the two frameworks (i.e. RQA
or recurrence networks) provides better results than the other. Examples include the detection
of dynamical transitions between periodic and chaotic behaviour in maps [43], continuous
dynamical systems [85] or the analysis of protein folding [89, 90]. In [85], an additional
comparison with the standard approach based on numerical estimates of the maximum
Lyapunov exponents has also been presented. In turn, there have been some recent approaches to
applying methods of time series analysis to general complex networks (e.g. [91, 92]). We would
like to underline that due to the duality between the recurrence matrix of a time series and
the adjacency matrix of the associated recurrence network, RQA might be another promising
candidate for this purpose (as long as we restrict ourselves to measures that are invariant under
random permutations of observations), yielding interesting complementary insights on complex
networks in a variety of different situations. A more detailed investigation of the potential of a
corresponding approach will be the subject of our future research.

Finally, we would like to point out that although our studies in this work have only
been supported by results for low-dimensional systems, the proposed methods can also be
applied to higher-dimensional systems, e.g. for detecting dynamically relevant phenomena
like coherent structures or laminar phases. However, in such cases, we expect some technical
problems related to computational demands (associated with certain basic requirements to
the number of observations) for calculating different network properties (especially when
additional embedding is necessary), the removal of sojourn points, and the visualization
of the resulting vertex properties, which could present serious practical challenges for
applications of recurrence networks. Nevertheless, an application of recurrence networks to
carefully chosen low-dimensional subsets of observables from a high-dimensional system
can still yield insightful results, as recently exemplified by a study of a palaeoclimate time
series [43].
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Appendix A. Clustering coefficient of recurrence networks for one-dimensional maps

In order to compute the clustering coefficient of the recurrence network of a dynamical system,
certain system-specific integrals have to be solved. For the case of one-dimensional maps that
are defined on the interval [0, 1], these integrals can be explicitly expressed and eventually also
evaluated analytically.

A.1. General treatment

The computation of the local clustering coefficient involves the evaluation of certain integrals
to estimate the required probability terms discussed in section 3. For a simplified theoretical
analysis, let us assume that for a given observation xv at time tv, the probabilities that two
other observations xi and x j made at arbitrary times ti and t j are closer to xv than ε are
mutually independent. We have to emphasize that in the presence of temporal correlations, this
assumption is violated. As long as these correlations decay sufficiently fast, we argue, however,
that deviations from statistical independence do not lead to significant errors in the following
theoretical considerations, which is supported by the excellent agreement between approximate
analytical theory and numerical results (see figures A.2 and A.3)12.

Making use of the independence assumption discussed above, we may write for the
condition in the denominator of equation (17):

P(Av,i = 1, Av, j = 1) = P(||xv − xi || < ε, ||xv − x j || < ε)

≈ P(||xv − xi || < ε)P(||xv − x j || < ε)

= P(||xv − xi || < ε)2
=

[∫ xv+ε

xv−ε

dx p(x)

]2

. (A.1)

In contrast, we cannot justify a similar assumption in evaluating the corresponding numerator
P(Ai j = 1, Avi = 1, Av j = 1), which therefore requires a subtle choice of the integration
boundaries to assure a correct treatment of the three-point relationships

P(Ai, j = 1, Av,i = 1, Av, j = 1) =

∫ xv+ε

xv−ε

dx p(x)

∫ min(x+ε,xv+ε)

max(x−ε,xv−ε)

dy p(y). (A.2)

12 The assumption of statistical independence is consistent with the fact that we do not make use of any time
information in the construction of recurrence networks unless additional embedding is involved. In contrast, our
approach relies exclusively on spatial information. This implies that independent of a specific temporal sampling
(which can therefore be chosen to exclude temporal correlations), feasible results may be obtained as long as the
invariant density of the system under study is sufficiently well approximated by the state density of the sample time
series.
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Figure A.1. Schematic representation of the integration boundaries entering the
three-point relationships in equation (A.2) for ε 6 0.5.

As shown in figure A.1, the correct integration is not trivial. In particular, if we use the
abbreviations

I1(a, b) =

∫ b

a
dx p(x), (A.3)

I2(a, b; c, d) =

∫ b

a
dx

[
p(x)

∫ d

c
dy p(y)

]
, (A.4)

we obtain the following expressions for the local clustering coefficient Cv = C(xv) if ε 6 0.5:
06 xv 6 ε:

Cv =
I2(0, xv; 0, x + ε) + I2(xv, ε; 0, xv + ε) + I2(ε, xv + ε; x − ε, xv + ε)

I1(0, xv + ε)2

=
I (1)

2 + I (2)

2 + I (3)

2

I1(0, xv + ε)2
, (A.5)

ε 6 xv 6 1 − ε:

Cv =
I2(xv − ε, xv; xv − ε, x + ε) + I2(xv, xv + ε; x − ε, xv + ε)

I1(xv − ε, xv + ε)2

=
I (4)

2 + I (5)

2

I1(xv − ε, xv + ε)2
, (A.6)
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1 − ε 6 xv 6 1:

Cv =
I2(xv − ε, 1 − ε; xv − ε, x + ε) + I2(1 − ε, xv; xv − ε, 1) + I2(xv, 1; x − ε, 1)

I1(xv − ε, 1)2

=
I (6)

2 + I (7)

2 + I (8)

2

I1(xv − ε, 1)2
. (A.7)

Understanding the global clustering coefficient as the expectation value of the local one
(taken over the whole possible range in x), we use the following expression for deriving its
value:

C(ε) =

∫ 1

0
dxv p(xv) Cv(xv; ε) =

∫ 1

0
dxv p(xv)

P(Ai j = 1, Avi = 1, Av j = 1)

P(Avi = 1, Av j = 1)
. (A.8)

A.2. The Bernoulli map

Among all nonlinear maps defined on the unit interval [0, 1], the Bernoulli map xi+1 =

2xi mod 1 has the simplest possible invariant density p(x) ≡ 1.13 This allows an easy evaluation
of the integrals for an analytic computation of the local clustering coefficient, being aware of
the restricted integration range. As a result, we find:

Cv(xv; ε) =



1 −

( x

x + ε

)2
, 06 x 6 ε,

3

4
, ε 6 x 6 1 − ε,

1 −

(
1 − x

1 − x + ε

)2

, 1 − ε 6 x 6 1.

(A.9)

In particular, for ε → 0 (and N → ∞), we have Cv →
3
4 ∀x ∈ [0, 1], which corresponds to the

value of random geometric graphs in one dimension [88]. Hence, one may speculate about
this value being a universal limit for the recurrence networks of one-dimensional chaotic maps.
Moreover, for x → 0 and x → 1, we have Cv → 1 independent of ε. This behaviour is consistent
with our previous observations concerning the effect of sharp attractor boundaries on the local
clustering coefficient, for example, in the case of the tips of the Hénon attractor (section 4.3.3).

For the global clustering coefficient, the computation of equation (A.8) leads to

C(ε) =
3

4
+ ε

(
4 ln 2 −

5

2

)
, (A.10)

which is in excellent agreement with numerical results (see figure A.2). Hence, we argue that
deviations from the theoretical value 3

4 occur exclusively due to boundary effects, and can even
lead to C = 1 for very large thresholds ε.

A.3. Logistic map for a = 4

The logistic map at a = 4 is known to have the invariant density

p(x) =
1

π

1
√

x(1 − x)
. (A.11)

13 Note that from the recurrence network properties, this map cannot be distinguished from a stochastic process
with a uniform density in the same interval (see figure A.2).
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Figure A.2. Dependence of the global clustering coefficient C on the threshold
ε for (a) the Bernoulli map and (b) uniformly distributed noise with values in
[0, 1]. Note that due to the same distribution of the data, i.e. the same density in
the one-dimensional phase space, both empirical curves (circles) are equal and
match the theoretical expectations (dashed red lines). However, note that already
a two-dimensional embedding would lead to significant differences between both
systems (not shown here).

With this, we find the following expressions:

P(Av,i = 1, Av, j = 1) =



1

2
−

1

π
arcsin(1 − 2xv − 2ε), 06 xv 6 ε,

1

π
{arcsin(1 − 2xv + 2ε) − arcsin(1 − 2xv − 2ε)} , ε 6 xv 6 1 − ε,

1

2
+

1

π
arcsin(1 − 2xv + 2ε), 1 − ε 6 xv 6 1

(A.12)

and

I (1)

2 =
1

4
−

1

2π
arcsin(1 − 2xv) −

1

π2

∫ xv

0
dx

arcsin(1 − 2x − 2ε)
√

x(1 − x)
, (A.13)

I (2)

2 =

(
1

2π
−

1

π 2
arcsin(1 − 2xv − 2ε)

)
(arcsin(1 − 2xv) − arcsin(1 − 2ε)) , (A.14)

I (3)

2 =
1

π 2
arcsin(1 − 2xv − 2ε) (arcsin(1 − 2xv − 2ε) − arcsin(1 − 2ε))

+
1

π2

∫ xv+ε

ε

dx
arcsin(1 − 2x + 2ε)

√
x(1 − x)

, (A.15)

I (4)

2 =
1

π 2
arcsin(1 − 2xv + 2ε) (arcsin(1 − 2xv + 2ε) − arcsin(1 − 2xv))

−
1

π 2

∫ xv

xv−ε

dx
arcsin(1 − 2x − 2ε)

√
x(1 − x)

, (A.16)
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Figure A.3. (a) Analytical (dashed red line) and simulation results (circles) on
the dependence of the local clustering coefficient Cv on the spatial position x for
the logistic map at a = 4 (N = 5000, ε = 0.1). (b) As in (a) for the dependence
of the global clustering coefficient C on ε.

I (5)

2 =
1

π 2
arcsin(1 − 2xv − 2ε) (arcsin(1 − 2xv − 2ε) − arcsin(1 − 2xv))

+
1

π2

∫ xv+ε

xv

dx
arcsin(1 − 2x + 2ε)

√
x(1 − x)

, (A.17)

I (6)

2 =
1

π 2
arcsin(1 − 2xv + 2ε) (arcsin(1 − 2xv + 2ε) + arcsin(1 − 2ε))

−
1

π 2

∫ 1−ε

xv−ε

arcsin(1 − 2x − 2ε)
√

x(1 − x)
, (A.18)

I (7)

2 = −

(
1

2π
+

1

π 2
arcsin(1 − 2xv + 2ε)

)
(arcsin(1 − 2xv) + arcsin(1 − 2ε)) , (A.19)

I (8)

2 =
1

4
+

1

2π
arcsin(1 − 2xv) +

1

π 2

∫ 1

xv

dx
arcsin(1 − 2x + 2ε)

√
x(1 − x)

. (A.20)

Note that the integrals (I (1)

2 , I (2)

2 , I (3)

2 ) and (I (8)

2 , I (7)

2 , I (6)

2 ) can be transformed into each other
by the transformation x → 1 − x , and that I (4)

2 + I (5)

2 is invariant under the same transformation,
reflecting the corresponding symmetry of the phase space density p(x).

Since the remaining integrals can only be solved numerically, we are not able to give
an explicit equation for the functional dependence of the clustering coefficient on both x
and ε. However, comparing the numerical solution of our analytical results with the clustering
coefficient of the recurrence network for one realization of the logistic map at a = 4, we find
(apart from remaining fluctuations due to the finite length of the considered time series) again
excellent agreement (see figure A.3). In particular, for the attractor boundaries at x = 0 and
x = 1, we have Cv = 1 independent of ε as for the Bernoulli map. Moreover, we observe almost
uniform values of the local clustering coefficient close to 3

4 within the interval [ε, 1 − ε], and a
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systematic tendency towards larger values close to the boundaries. Since the measure of the
latter intervals systematically increases with increasing ε, these boundary effects are again
responsible for the systematic increase in the global clustering coefficient C as ε becomes larger.
In turn, the point-wise convergence of Cv →

3
4 for ε → 0 underlines the supposed universality

of this value for chaotic one-dimensional maps in agreement with corresponding theoretical
predictions for spatial random graphs [88].
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