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Abstract. Recently, several complex network approaches to time series analysis have been developed and
applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial
time series. Among these techniques, recurrence-based concepts and prominently e-recurrence networks,
most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less
interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical
properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to
define two new local and two new global measures of dimension in phase space: local upper and lower
clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well
as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are
well-behaved in most non-pathological situations and that they can be estimated reasonably well using
e-recurrence networks constructed from relatively short time series. Moreover, we study the relationship
between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise
dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local
clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable
periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that

e-recurrence networks exhibit an important link between dynamical systems and graph theory.

1 Introduction

Recurrence of previous states is a key property of dynam-
ical systems [1]. In mathematical terms, one speaks of a
recurrence if at time ¢;, a trajectory of a complex system
returns into the dynamical neighbourhood of a previous
state z; = x(t;) (t; < t;). Such a neighbourhood can be
defined by either considering the k-nearest neighbours of
x; (fixed mass of the neighbourhood) or in terms of an
e-ball B.(x;) centered at x; (fixed volume of the neigh-
bourhood). In the latter case, one defines the binary re-
currence matric

Rij(e) = O(e — ||z — ;1)) (1)
for a trajectory sampled at a fixed number of points ¢; in
time, where O(-) is the Heaviside function and || - || some
norm (e.g., maximum or Euclidean norm) in the metric
space including the considered attractor. From this defi-
nition, it is evident that a recurrence directly corresponds
to R;; = 1. For the sake of clarity, we will more specifically
speak about an e-recurrence in the following to distinguish
this definition from the alternative k-nearest neighbour
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based definition. The recurrence matrix can be easily visu-
alised in terms of recurrence plots (RPs) [1-3], the appear-
ance of which allows for a simple graphical discrimination
between qualitatively different types of dynamics.

Since the poineering work of Poincaré [4] on the three-
body problem, it has been more and more recognised that
recurrences are important for understanding the overall
dynamics [3], i.e., they encode all relevant information
about the behaviour of a stationary system. Even more,
it has been proven recently that the temporal pattern
of recurrences allows us to reconstruct the rank-order of
any scalar time series (i.e., a unique representation of the
original trajectory up to a scaling by some monotonous
function) [5-7]. As a consequence, many well established
dynamical invariants (such as correlation entropy, correla-
tion dimension, or 2nd-order mutual information) can be
estimated from RPs [8]. Moreover, the statistical analysis
of line structures in RPs known as recurrence quantifica-
tion analysis (RQA ) allows the definition of a large variety
of additional measures of complexity, which correspond
to time intervals with similar consecutive states (verti-
cal/horizontal lines) or time evolution (diagonal lines off
the main diagonal), respectively. Since these measures are
easily calculable, RQA has found numerous applications
in the last two decades [1].
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Besides the phenomenon of recurrence, another ap-
pealing paradigm that has attracted considerable interest
over the last years are networks with complex topology,
called shortly complex networks. In the most simple case
(to which we will restrict our attention in this work), a
network can be mathematically described as simple graph
G = (V,E), where V. = {1,...,N} is the set of ver-
tices with |[V| = N, and E C V x V is the set of edges
between pairs of vertices. Note that we do neither con-
sider multiple edges between two vertices, nor hyperedges
connecting more than two vertices with each other, i.e.
|E| < N(N—1)/2. Furthermore, we will restrict our atten-
tion to unweighted and undirected networks. In this case,
the whole network connectivity is completely described by
the symmetric adjacency matriz

I (i,j) e E

All quantitative information about the network geometry
follows from structural properties of the adjacency matrix,
which can be characterised by a rich variety of different
measures [9-12]. We emphasise that although we are con-
sidering simple graphs, the resulting graph topology may
be highly non-trivial, which justifies the term complez net-
work as a contrast to regular chains or lattices.

Recently, it has been suggested that every RP can
be alternatively viewed as a complex network [13-18],
which captures the geometric skeleton of the attractor in
phase space (i.e., temporal recurrence relationships cor-
respond to spatial proximity relationships). Specifically,
neighbouring observations in phase space are represented
by mutually linked vertices of a complex network, i.e.,

Aij = Aij(€) = Rij(e) — 04, (3)
where §;; is the Kronecker delta used here to avoid self-
loops in the network. We note that this setting corre-
sponds to a specific choice of the Theiler window in
RQA. As a specific type of networks, the e-recurrence net-
works described by the adjacency matrix A;; are geomet-
ric graphs [19,20] aka spatial networks [21], i.e., graphs
whose vertices are objects in some metric space (specif-
ically, the phase space of a dynamical system or its re-
construction, e.g., based on time-delay embedding). More
specifically, they can be classified as proximity graphs [22]
in arbitrary spatial dimensions. As a consequence, given a
proper sampling from the considered (dissipative) system,
e-recurrence networks approximate the underlying contin-
uous system and encode relevant geometric information
about the corresponding attractor. Moreover, the quanti-
tative analysis of e-recurrence networks provides comple-
mentary insights with respect to RQA, since correspond-
ing network-theoretic quantities are not based on temporal
correlations or explicit time ordering (e.g., line structures
in the RP) like most classical RQA measures [17].

We note that the idea beyond e-recurrence networks
is a straightforward generalisation of recent approaches
in neurosciences [23,24] and climatology [25,26], where
the considered systems are approximated by networks
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based on mutual correlations between the individual sets
of observations measured at certain discrete points in
physical space. Furthermore, we emphasise that there
are close links to other problems utilising distances be-
tween objects in some metric space, such as cluster anal-
ysis [22], dimensionality reduction (e.g., multidimensional
scaling [27] or isometric feature mapping [28]), or set-
oriented approaches for identifying dynamically invariant
objects [29,30].

It should be mentioned that there are multiple ot-
her approaches to analysing time series by means of
complex network methods. Specific concepts proposed
so far include transition networks based on a coarse-
graining of phase space [31], cycle networks [32], corre-
lation networks [33], visibility graphs [34], and k-nearest
neighbour [35] as well as adaptive nearest-neighbour
networks [36]. The two last methods differ from the
e-recurrence networks only in the way the local neighbour-
hood of a vertex is defined. We emphasise that the latter
class of methods offers the most general applicability to
a variety of different situations (for a detailed discussion
of all approaches and their potentials and limits, we refer
to [17,18]). The above mentioned methods have already
been used for studying complex systems from various per-
spectives and fields of applications, however, the evalua-
tion of their full potential is still in the process of explo-
ration. For the remainder of this paper, we will exclusively
consider e-recurrence networks, implying that the results
obtained in this work do not apply to other types of time
series networks due to their different construction princi-
ples. Specifically, even for k-nearest neighbour networks,
the construction principle of which is most similar to that
of e-recurrence networks, the local neighbourhood defini-
tion is already so different that our considerations cannot
be easily transferred to this type of networks. However,
since k-nearest neighbour networks are based on the orig-
inal RP definition [2] and have some further interesting
properties, it will be worth considering them in a similar
way as done here in future work.

Recent numerical findings revealed that among other
measures from graph theory, the local and global transi-
tivity properties are particularly well suited for identifying
and discriminating qualitatively different types of dynam-
ics. Specifically, the global network transitivity has been
demonstrated to provide a good discriminatory statis-
tics for automatically distinguishing between periodic and
chaotic dynamics in complex bifurcation scenarios [37].
Moreover, it has been suggested that the local clustering
coefficient is able to trace the location of certain dynami-
cally invariant objects [14,17]. In this work, we will further
elaborate on the relationship between attractor properties
on the one hand, and e-recurrence network properties on
the other hand, with a special emphasis on dynamically
invariant properties such as fractal dimensions. In particu-
lar, we will further explore the interrelationships between
local recurrence rates (i.e., the relative frequency of edges
a vertex contributes to), the local and global transitivity
properties of the graph, and the fractal dimension of the
underlying attractor. We note that the latter results in
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certain scaling properties of different statistical measures
that are exclusively based on the temporal evolution of
the system under study, establishing a close link between
the dynamics on, and the structure of the attractor, which
shall be explored here from a complex network perspec-
tive. We note that similar findings have also been reported
independently concerning links between the structure and
function of complex networks [11], e.g., in terms of their
synchronisability [38], the spreading of failures [39], etc.

This paper is organised as follows: in Section 2, we re-
view some basic concepts from complex network as well
as dynamical systems theory needed in this work. Some
rigorous theoretical results linking the transitivity prop-
erties of e-recurrence networks with the fractal structure
of the underlying attractor are provided in Section 3 and
illustrated by numerical findings in Section 4. Finally, our
main results are briefly summarised.

2 Theoretical background
2.1 Network properties
2.1.1 Direct connectivity properties

In complex network research, the most important vertex
property is its degree (frequently also referred to as degree
centrality), i.e., the number of links to other vertices in the

graph:

ki = A (4)

i

Since this measure is extensive, i.e., k; usually increases
monotonously with increasing IV, we prefer to use a non-
extensive property, the normalised degree or local degree
density, which can be defined as the probability that a
given vertex ¢ is linked with any other randomly chosen
vertex j:

pi = P(Ay; =1). (5)
For a finite graph, the latter one is estimated by
) 1 ki
piN_l;AijN_l- (6)

We note that for e-recurrence networks, A;; = A;;(e) de-
pends explicitly on the recurrence threshold ¢ (i.e., the
spatial scale of coarse-graining), so that also k; and p; are
functions of €. In this case, p;(¢) corresponds to the local
recurrence rate RR;(e) of the observed state x(¢;). In a
similar way, we can identify the global edge density

1 N
N_Zm (7)

of an e-recurrence network with the (global) recurrence
rate RR observed for the underlying system. Since in this
case, A;; depends explicitly on ¢, so do RR as well as
all graph-theoretical measures derived from the adjacency
matrix.

1
- a
pr—n;ﬁ
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2.1.2 Transitivity properties

In general, the term transitivity refers to the reproduc-
tion of binary relations between mathematical objects.
Formally, given a set X of objects, a (directed or undi-
rected) relation R over X is called transitive iff whenever
A € X is related to B € X and B is related to C' € X,
then A is also related to C.

In dynamical systems theory, there are several notions
of transitivity, e.g., metric and topological transitivity,
which describe properties of certain (continuous) topo-
logical transformations [40,41]. In contrast, in a complex
network, the term transitivity is related to fundamental
algebraic relationships between triples of discrete objects.
Specifically, in graph-theoretical terms, we identify the set
X with the set of vertices V', and the relation R with the
mutual adjacency of pairs of vertices. Hence, for a given
vertex ¢ € V, transitivity refers to the fact that for two
other vertices j,k € V with A;; = Ay, = 1, Aj, = 1
also holds (here as well as in the following general con-
siderations, we omit the e-dependence of the adjacency
matrix for e-recurrence networks). In a general network,
this is typically not the case for all vertices. Consequently,
characterising the degree of transitivity (or, alternatively,
the relative frequency of closed 3-loops, which are com-
monly referred to as triangles) with respect to some in-
dividual vertex or the whole network provides important
information on the structural graph properties, which may
be related to important general features of the underlying
system.

Following the above general considerations, the local
transitivity characteristics of a complex network are quan-
tified by the local clustering coefficient [42], which mea-
sures the probability that two randomly chosen neigh-
bours of a given vertex i are mutually linked, i.e.,

Ci = P(Aj, = 1Ay =1, A = 1)
_ P(Aj =1, A =1,A=1) (8)
o P(Aij = 13Aik = 1) ’
For finite graphs, the corresponding probability is typi-
cally estimated in terms of the relative frequency of links
between the neighbouring vertices of a given node 1, i.e.,

»  number of triangles including vertex 4

number of triples centred on vertex ¢
2k AgeAij A )
 ki(ki—1)

where triple refers to a pair (j, k) of vertices that are both
linked with ¢, but not necessarily mutually linked.

Local transitivity properties translate to global net-
work properties by sophisticated averaging. In this con-
text, two different measures may be distinguished [10-12]:
on the one hand, the global clustering coefficient intro-
duced by Watts and Strogatz [42] is defined as the arith-
metic mean of the local clustering coefficients taken over
all vertices of the network:

N N N
;1 ;1 D in=1 AjeAij Ak
ch;afNZ

. (10)
3 AvjAi(1 = 05)
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A potential disadvantage of this measure is that it gives
equal weights also to vertices with sparse connectivity,
which can by definition only contribute to few triangles in
the network. On the other hand, the definition of the clus-
tering coeflicient according to Barrat and Weigt [43,44],
which has been later suggested to be termed network tran-
sitivity [11], gives equal weight to all triangles in the net-
work:

g _ 3 x number of triangles in the network
~ number of linked triples of vertices

N
i gkt Ak Aig Ak

= . 11)
N (
Dt Aij Aik (1 = 6j1)

Note that differences between both measures are generic

and typically persist even for large networks [10].

2.1.3 Relationships between different measures

As shown above, estimates of both local degree density
and local clustering coefficient can be written in terms of
(joint) probabilities for the existence of edges in certain
parts of a complex network. In terms of e-recurrence net-
works (or, even more general, spatially embedded graphs),
these different parts may be interpreted as certain regions
in (phase) space. Equation (9) suggests a possibly non-
trivial relationship between the two aforementioned local
network properties. For different models of scale-free net-
works, it has been shown that C; ~ k- ! at least for large
degrees k; [45,46]. Similar observations have been made
for different real-world networks [47-49].

Unlike for the aforementioned examples, for e-recur-
rence networks as spatially embedded graphs, there is no
obvious simple dependence of C; on the density of vertices
(and, hence, the local degree density). In contrast, the

corresponding correlations between C; and k;, which ha-
ve been numerically studied in a previous paper [17] for
different low-dimensional dynamical systems, have found
to be system-specific and often not significant. However,
there are examples such as the logistic map

Tnt1 = f(xn) = axn (1 — xp) (12)
with € § C [0,1] and a € [0,4], where local maxima of
the degree centrality roughly coincide with maxima of the
local clustering coefficient (see Fig. 1, this feature will be
further discussed in Sect. 4.1 of this paper). In general,
the local transitivity properties of e-recurrence networks
do not simply capture density effects, but have a distinct
meaning in terms of attractor geometry, which will be fur-
ther highlighted in Section 3.

It should be noted that for e-recurrence networks, de-
gree centrality, local degree density, and edge density are
monotonously increasing functions of € by definition. A
similar observation has been made for the global cluster-
ing coefficient, which follows mainly from the fact that
parts of the phase space outside the attractor boundaries
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get an increasing weight as the proximity threshold € be-
comes larger [17]. Note that there is no similar general de-
pendence for the local clustering coefficient. We will also
further address this point within the course of this paper.

2.2 Attractor properties

The fundamental structural properties of attractors in
dissipative dynamical systems follow from their invari-
ant density p(x) associated with the natural measure u
as du(z) = p(x)dx. The study of the latter is particularly
interesting for chaotic systems, where the attractor has a
complex shape in phase space, and allows the definition
and investigation of dynamically invariant properties such
as entropies, fractal dimensions, and related measures of
complexity. In this work, we are particularly interested in
the concept of fractal dimensions and their relationship
with the properties of e-recurrence networks.

2.2.1 Global attractor dimensions

The most common definition of a fractal dimension takes a
self-similarity property of chaotic attractors into account:
Given a partitioning of phase space into a set of fixed m-
dimensional hypercubes of length [, one determines the
number n(1) of such cubes necessary to fully cover the at-
tractor. Typically, one observes n(l) ~ [P° with some scal-
ing exponent Dy, which is referred to as the boz-counting
or capacity dimension

(13)

Although Dy is often called “the” fractal dimension, there
is a multiplicity of other definitions of fractal dimensions.
These generalised dimensions are related with the order-g
Rényi entropies

)
S0 =, s> p@) (geRTUPY,  (14)
i=1
as [50]
A0
Dy = llgl(l) log (15)

with Dy, < Dy, for g1 > go. Special cases of this defi-
nition include Dy, the information dimension D; (where
Sy corresponds to the Shannon entropy), and the correla-
tion dimension Ds. The latter can be equivalently defined
using the correlation integral [51]

Cle) = / dyu(z) / dn(y) O — Iz —yl).  (16)
. . logCle)
D2 = ;l—{% loge (17)
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Fig. 1. (Color online) Colour-coded representations of estimates of (A) local degree density p; and (B) local clustering coefficient
C; for the e-recurrence networks obtained from trajectories of the logistic map for different control parameters a (N = 10000,
no embedding, £ = 0.050 with o being the empirical standard deviation of the respectively considered realisations). (C) Scatter
plot between p; and C; in = € [0.1,0.9] (this choice reduces the effects of the attractor boundaries) for a = 3.9, yielding a

~
~

rank-order correlation coefficient pg
supertrack function (vertical line) for a = 3.9.

Given only a finite set of sampled points on a specific
trajectory (i.e., a time series) of the system, an unbiased
estimator of C(e) is given by the correlation sum

Y Ole—lai—al), (18)

4,j=1,i#]

Cle) =

lim !
which corresponds to the global recurrence rate RR (and,
hence, the edge density p of the associated e-recurrence
network). If the supposed power-law behaviour C(e)
eP2 of the correlation integral applies, one may usually
find that also p(e) o eP2 for € € [emin, Emaz), such that
Do can be estimated as

Dy = dlog p(e) for

= 19
2 dloge (19)

€€ [Emina <<5771(1;E] .

The finite size of this scaling interval is caused by the
fact that (i) for small €, the number of recurrences (i.e.,

0.25. (D) Magnification of the profile of p; (black) and C; (grey) in the vicinity of a

neighbours in phase space with respect to the consid-
ered e-distance) is too low to observe the correct slope
of log p = f(loge) with sufficient statistical confidence (fi-
nite-resolution limit of a finite time series), whereas (ii) for
large e, parts of phase space that are not covered by the
attractor (and therefore do not contain any observations)
are successively included in the considered e-balls, which
leads to a saturation of p. Moreover, in the latter case,
more and more redundant information is included in the
estimation (e.g., due to the consideration of points that
are neighbours in phase space just because they are also
close in time). Therefore, in most available methods for

estimating D, from time series, the consideration of a suf-
ficiently large ensemble of different values of ¢ is necessary
to obtain proper estimates.

A practical alternative is considering scale-local dimen-
sions Dy(e) [52], i.e., numerical estimates of D, obtained
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from the respective relationships evaluated for only one
fized value of . Note, however, that these quantities often
do not provide proper estimates of the true dimension.

2.2.2 Pointwise dimensions

The defining equation (17) of the correlation dimension
has been formulated globally as a property of the whole at-
tractor. However, the correlation sum is defined as an un-
weighted average of contributions from all observed state
vectors x;, i.e.,

Ce) = DG (20)

N
Gl = Y O lm-ml=pe) (@)

J=1,j#1

coinciding with the local recurrence rate (local degree den-
sity p;) of z; (the same considerations apply to the corre-
lation integral C(e) in Eq. (16)). Motivated by this, one
defines the pointwise dimension [53]

log ju(B:(x))

D,(z) = lim log e

22
e—0 ’ ( )
where p1(B:(x)) is the measure of a ball of radius ¢ centred
at . Commonly, this pointwise dimension is estimated as

5 () = 108 AC)

2
dloge (23)

for e € [emins Emaz)-
If D,(z) exists (note that convergence cannot be expected
in general), it is independent of « for almost all x with re-
spect to the invariant measure p. Since unlike for C(g), no
symmetric two-point correlations are involved in the local
recurrence rate, the pointwise dimension provides a lo-
cal estimate of the information dimension D; rather than
Ds. As for the (global) correlation dimension, the practi-
cal estimation of pointwise dimensions may be challenging
since the limit ¢ — 0 can hardly be assessed with a limited
number of data available.

2.2.3 Lyapunov dimension

The Lyapunov (or Kaplan-Yorke) dimension is based on
the temporal stretching and folding characteristics of the
dynamical system under study. Let {\1,...,\;,} denote
the spectrum of Lyapunov exponents of the system or-
dered such that Ay > Ao > ... > A\, and n be the largest

integer such that
> oA =o. (24)
j=1
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Then the Lyapunov dimension or Kaplan-Yorke dimen-
sion Dy, is defined as [53-55]

1 n
D =n+ A 25
|>‘n+1|j; J ( )

The Kaplan-Yorke conjecture states that Dy = Dy for
typical attractors.

The Lyapunov dimension is typically considered a
global measure as it applies to the whole attractor except
for a set of measure zero. In contrast, the local Lyapunov
dimension D (z) can vary across the attractor [56,57]. It
has (so far) mainly been studied for maps F' and can be
obtained from equations (24, 25) after the replacements
Dy — Dy (F,z) and A\; — In(a;(x)), where a;(z) are the
ordered singular values of the map’s Jacobian DF(x). The
most important property of Dy (F,x) is that it provides
an upper bound on the box-counting dimension Dy, i.e.,

Dy < max Dp(F,x).

The local Lyapunov dimension Dy (EF*, x) of the k-th it-
erate of the map F' converges to the Lyapunov dimension
Dy, as k — oo [56].

2.3 Links between network and attractor properties

We have already argued that (given a proper sampling of
the considered trajectory) the local degree density of an
e-recurrence network (i.e., the local recurrence rate) al-
lows defining an estimator of the invariant density p(x)
of the underlying attractor. The latter is known to be
fundamental for both the structure of, and the dynamics
on the attractor, whereas a similar statement applies to
the connectivity of vertices and the overall structure of a
network. These established links suggest that there might
well be more possible interrelationships between dynami-
cal system and network properties. This is evident for the
estimation of the correlation dimension from the scaling
of the edge density with varying . In addition, as it will
be shown in a complementary paper [58], there are cases
where the degree distribution of an e-recurrence network
includes a scale-free part, the characteristic exponent of
which can be related to the pointwise dimension of the un-
derlying system. We note that similar observations have
been made for another type of complex networks gener-
ated from time series, the so-called visibility graphs, which
also show a power-law decay of the degree distribution for
certain fractal time series, the exponent of which is di-
rectly related to the Hurst parameter [59,60].

Another important relationship between the geomet-
ric properties of a dynamical system and the transitivity
properties of their induced e-recurrence networks can be
inferred from the theory of random geometric graphs [61].
Specifically, it has been shown that for such graphs, the
expected global clustering coefficient depends on the (in-
teger) dimension of the metric space in which the consid-
ered graph is embedded. In the remainder of this paper,
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we will generalise this result to arbitrary non-integer spa-
tial dimensions and discuss the resulting implications in
some detail.

3 Continuous clustering coefficient
and clustering dimension

In the following, we develop and successively apply a gen-
eral theory linking the local as well as global transitivity
properties of e-recurrence networks with geometric attrac-
tor properties. For this purpose, we define a novel notion
of fractal dimension based on these transitivity proper-
ties, and compare these new definitions with several other
existing measures described in the previous section.

3.1 Continuous measures for transitivity
3.1.1 General theory

Let p be a probability density on some set S C R, such
that all closed e-balls

Be(z) ={y € S:d(z,y) < e}
with z € S and € > 0 are p-measurable, where

d(z,y) = max |z; —yi

)

is the maximum metric and S is the topological closure
of S. Then we define the continuous c-degree density and
continuous e-clustering coefficient of any point x € S as

p(w;E)Z/B()p(y)dy=/B()du(w)
sy PWIP(2)O(e — d(y, 2)) dy dz
B p(w;e)?

(26)

Clx;e) , (27)

the latter being the probability that two points y and z
randomly drawn according to p are closer than € given
they are both closer than € to x. As a global measure, we
define the continuous e-transitivity of S as

70 = | [[[ sawwmeet - e
xO(e — d(y, 2))O( — d(z,2)) dx dy dz]/

[ JJ [ rawtnre - iw.u)

xO(e —d(z,x))dx dy dz} , (28)

which is the probability that among three points x,y, 2
drawn randomly according to p, y and z are closer than ¢
given they are both closer than ¢ to z.
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3.1.2 Examples: dynamical systems defined on the unit
interval

If S is the unit box [0,1]™ and p is the uniform density
p(z) =1, one can easily see that C(x;¢) =7 (e) = (3/4)™
for all points x € [e,1 — e]™. This is because for m =1, a
randomly chosen y € B.(z) = [v — &,z +¢] has on average
three quarters of B.(x) within its own B.(y), namely half
of B.(x) for y = x £+ ¢ and the whole B.(z) for y = x.
For m > 1, the integral in the numerator of equation (27)
decomposes as

m T;+e
Clase) = (2;)% 1 / /  O—ln=ddnd

= (3¢*)™/(2e)*™ = (3/4)™. (29)
The same is true whenever x is in the topological interior
of S, p is sufficiently smooth in a neighbourhood of z,
and ¢ is small, because then the situation looks locally
approximately the same as for the uniform density on the
unit box. For example, if S and p are the main attractor
and invariant density of the logistic map (12) at a = 4, for
which S = (0,1) and [62]

1
p(l‘) - W\/I(l 71})7

then one can also show that for small ¢,

(30)

2¢e
p(x7€) ~ 7T\/,’E
and
3e?
( )p(y)p(Z)Q(E —d(y,2))dydz~ "
Be(x
so that

C(x;e) — 3/4

as e — 0. For z € {0,1}, we get C(x;¢) = 1 for all €, since
then all pairs of points in B.(z) are on the same side of
x and thus have a distance < e. Note that these results
are consistent with recent findings described in [17] (see
Sect. 4.1).

In general, the stronger a smooth p varies inside B, (x),
the more C(z;¢) exceeds its lower bound (3/4)™. More
precisely, the larger m, the closer C(x;¢) is related to the
2nd-order Rényi entropy of p restricted to B.(z), since the
Heaviside function then acts more and more like a delta
function and the denominator of C(z;e) becomes approx-
imately proportional to |, Bo(a) p(y)? dy. The phenomenon
that the clustering coefficient is influenced by the local
density wariability rather than by the local density level
was also observed in a different context for climate net-
works [63].

We have to emphasise that the above result C(x;¢) =
T(e) = (3/4)™ is only valid when using the maximum
norm for defining distances between points in phase space.
For other choices of the metric d, e.g., the Euclidean one,
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there will in general not be a similarly simple exponential
relationship, although it is sometimes at least asymptoti-
cally exponential. For example, for the uniform density on
the unit box and using the Euclidean metric, we find

L mI'(m/2) 11-m 31
C(I’E)*lfwwr((mﬂ)/z) [2F1<2’ P ’2’4)

1 1-m m+1 m+3 1
— oF1 ) ; ;
m+1 2 2 2 4

(m+1)/2
2 (3
~ ~ 0.862™ /3
\/wm <4) /3

where 2 Fy(+) is the hypergeometric function and the ex-
ponential fit is only good for m > 40. The latter result
can be obtained from the expressions for the volumes of
m-~dimensional spheres and their intersections and is con-
sistent with previous findings in [61].

(31)

3.2 Clustering dimensions
3.2.1 General theory

The aforementioned observations motivate the definition
of two new local and two new global measures of dimension
for general S and p, namely the upper and lower clustering
dimension of S at x,

logC(x;¢)

Dg(x) =1 32
¢(x) msup - 3/a) (32)
. . logC(z;e)

l o )

and D (z) = hgn_}glf log(3/4) (33)
and the upper and lower transitivity dimension of S,

) log 7 (¢)
D =1 34
4 H;lj(l)lp log(3/4) (34)

.. . logT(e)

I

and Dy = llIall_}(I)lf log(3/4)° (35)

Note that D¢ (x) and DL (x) need not be continuous in .
For example, in the logistic map with a = 4, the border
points & € {0,1} have C(z;e) = 1 (see above), so that
D¢(z) = DL (z) jumps from 1 to 0 for z — 0, 1. For a < 4,
such discontinuities also occur in the interior of .S, because
inside B.(z) for a point  on a supertrack function [64,65]
of the logistic map, p has asymptotically a power-law form

p(y) ~ |y — x|

on one side of z, and is approximately constant on the
other side of x [55]. To see this, assume that the k-th iter-
ate of the map, f*, has a local maximum at z, f*(x) = y.
Then, all points close to = get mapped by f* to points
rather close to y but smaller than y. This explains why the
density then has a peak at y, which diverges only to the left
side of y. The power-law decay can be seen from the local
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quadratic approximation of f* at x, since that has a slope
linear in the distance from z, and the density transforms
using the inverse of the slope, i.e., 1/(distance from z). As
a consequence, for ¢ — 0, almost all mass inside B.(z) is
on the power-law side and, hence, almost all y, z € B:(x)
have distance < ¢, yielding C(z;e) — 1 for e — 0. Hence,
D¢(z) = DL(z) = 0 at all points on the supertrack func-
tions of the logistic map. This behaviour can be seen in
Figure 1, where the supertrack functions are clearly visi-
ble in terms of pronounced maxima of C(x) that have been
numerically estimated from the e-recurrence networks of
sample trajectories [66].

3.2.2 Examples: self-similar sets

If S is highly self-similar, D%(z) and DL () can also differ
considerably, as can be seen from the example in which
plz) =1 and S = {z € [-1,1] : |z| € Sc}, where
Sc C [0,1] is the Cantor set (=numbers that have a
ternary expansion in which all digits are either 0 or 2). In
that case, it is easy to see from the symmetry that C(0;¢)
oscillates between 3/4 and 1 for e — 0, with C(0;¢) = 3/4
if ¢ = 1/3™ for some integer n > 0, and C(0;e) = 1 if
¢ = 2/3" for some integer n > 1. Hence, D§(0) = 1 and
DL(0) = 0. Similarly, for almost all € S, one can show
that C(x;¢) is infinitely often 7/8 and 1 for e — 0, so that
D¢ (z) > log(7/8)/log(3/4) ~ 0.464 and DL (x) = 0. Only
for the countably many points of the form z = +a/3"
with integers a,n > 0, we get C.(z) =1 for all e < 1/3"
and, hence, D¢(x) = DL(z) = 0. In the same example,
also D% and DY differ since 7 (¢) = 1 whenever ¢ = 1/3"
with integer n > 0 and 7 (¢) = 11/13 whenever € = 5/3"
with integer n > 1, with intermediate values for other val-
ues of €, so that D% = log(11/13)/log(3/4) ~ 0.581 and
DL =o.

The same values are obtained when S is a version of
the Cantor set in which, starting with the unit interval,
iteratively the middle fraction of relative width 1 — 2« is
removed from every remaining interval, for v < 1/3, where
a = 1/3 gives the standard Cantor set. Other measures of
dimension, however, have values depending on «, e.g., the
box-counting, information, and correlation dimension of S
and the pointwise dimension of almost all z € S are all
—log2/loga, which varies between log2/log3 ~ 0.631
and 0. In particular, this shows that both Dg(x) and
D% can be either smaller or larger than all those clas-
sical measures of dimension. This finding is supported by
further analytical as well as numerical results (see, e.g.,
Sect. 4.2.2).

As a further example, let us consider the generalised
baker’s map

o Aa(En, Yn < @,
Tt = (1 - )‘b) + Abfrn» Yn > Q,
_ S yn/a, Yn < @,
Y1 = { (- 0)/(1—a), y>a Y

with @ < 1, Ay, Ay > 0 and A\, + Ay < 1 [53,55], which
yields a transformation of the unit square [0, 1] x [0, 1]. If
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S is the attractor of the symmetric version of this map
with @« = 1/2 and A\, = A\, = 1/4, it is a cartesian product
of a Cantor set similar to those discussed above and the
unit interval. Hence, for almost all 2z € S, C(x;¢) attains
7/8 x 3/4 and 1 x 3/4 infinitely often for € — 0, so that
DY(z) > log(7/8)/log(3/4) + 1 ~ 1.464 and DL(x) = 1.
Similarly, we obtain that D% = log(11/13)/log(3/4)+1 ~
1.581 and DY} = 1.

The above examples suggest that it might be inter-
esting to take the difference D% — DL as a measure of
self-similarity of an attractor. As a non-fractal example,
one may consider again the chaotic attractor of the logis-
tic map at a = 4, for which D% (z) = D%' = Dy = 1is
consistent with Dy(xz) = D1 =m = 1 as one would expect
for this non-fractal case.

3.2.3 Clustering and topological dimension of phase space

In some cases, D¥(z) and D% (x) may even exceed the non-
fractal dimension m of the surrounding space. For exam-
ple, for S = [~1,1] and p(z) = 322/2, D5(z) = D¢(x) =
m = 1 for all z # 0, but D5(0) = DZ(0) ~ 2.24 > m
since C(0;e) = 21/40 < 3/4 for all ¢ € (0,1). This is
because of p(0) = 0, so p(y) cannot be considered ap-
proximately constant on B (0) for small e, although p is
smooth. The best upper bound for D¥(z) in terms of m
is mlog2/(log4 — log3) ~ 2.41 m. To see this, we split
B.(z) into 2™ generalised “quadrants” corresponding to
the possible vectors of signs of y; —x;, ¢ = 1,...,m. Note
that all pairs y, z € B (z) that are in the same generalised
quadrant have d(y, z) < e, and the probability of y, z be-
ing in the same generalised quadrant is at least 1/2™ no
matter how p(B.(x)) is distributed over these regions, so
that C(x;e) > 1/2™. That this bound is sharp even for
arbitrarily smooth p can be seen from the set of examples
with § = [-1,1]™ and p(z) = [[\~,(2a + 1)2?*/2 with
integers a, m > 0, for which C(0;e) — 1/2™ as a — oc.

That D% might also exceed m can be seen from an-
other Cantor-like example. Starting with the unit cube
So = [0, 1]™, replace this cube by 1 4 2™ smaller cubes of
the form [, [3/7+s;,4/T+s;| with s1 =+ = s, =0 or
s; € {—3/7,3/7} for all i, i.e., one small cube located at
the center of the original cube, and 2™ cubes fit into the
corners of the original cube, giving a set S1 C Sy. Repeat-
ing the same replacement infinitely often with each cube
gives a descending sequence of sets Si. Figure 2 shows
the result Sy of two iterations for m = 2. The intersec-
tion S = (N;2; Si = Sx is a Cantor-like fractal for which
TE) =(7-2"4+1)/(4" +6-2m +1) < (3/4)™ when-
ever m > 5 and ¢ = 4/7" for some integer n > 0, hence
D%(S) > m. We do not know whether even D% (S) can
exceed m but conjecture that this is impossible (this con-
jecture is supported by further numerical results in Sec-
tion 4).

3.2.4 Local clustering and Lyapunov dimensions

For a homogeneous fractal the pointwise dimension as
the most traditional other local dimension measure by
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Fig. 2. Intermediate step Sz (black squares) of the fractal
construction to show that D% can exceed m.

definition equals the global measure of information di-
mension for all z except for a set of measure zero, i.e.,
D,(z) = D, = D [53]. However, many chaotic attrac-
tors have a complex internal structure (e.g., embedded
objects of measure zero with deviating pointwise dimen-
sions), such as the Réssler [67] and Lorenz systems [67,68].
In such cases, D¢(x) and DL(z) can show considerable
regional differences (see Sect. 4.3 for the Rossler system).
Beside the pointwise dimensions, the only other local mea-
sure of dimension with this property that we are aware
of is the local Lyapunov dimension Dy (z) [56], which is
based on the local contraction of a map. Thus, it might
be worthwile to compare these measures.

For the logistic map at a = 4, e.g., Dp(z) = 1 for
x € [3/8,5/8] and Dr(x) = 0 otherwise, while D¢ (z) =
D.(z) =1 for x € (0,1) and D¢(z) = D5(x) = 0 for z €
{0,1}. For the generalised baker’s map, we will provide
some results in Section 4.2.2.

3.3 Estimation of clustering dimensions

In general, if S'is an attractor of an ergodic dynamical sys-
tem with invariant density p, we can estimate C(x(t;);¢)
and 7 (g) from a finite sample z(t;) € S of a trajectory in
S sampled at time points t1,...,ty, using the standard
(sample) clustering coefficients (Eq. (9)) and transitivity
(Eq. (11)).

By the weak law of large numbers, C;(¢) and 7 (¢) con-
verge in probability to C(x(¢;);e) and 7 (g) as N — oo, for
each ¢ > 0 and a general choice of time points ¢; (e. g., reg-
ularly spaced with a time step that is coprime with all pe-
riodic orbits’ periods). In other words, C;(¢) and 7 (¢) are
statistically consistent estimators of C(x(t;);€) and 7 ().
Our four new dimension measures can then be estimated
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from a sufficiently long sampled trajectory as

Au lOg éi (E)
Dei= ReE log(3/4)’ (37)
DL, = min log Ci(e) (38)

ce€ log(3/4)’

A log 7T (e
Dy =

T~ R log(3/4

A _ log7(e)
Dy =
and D =min) (3/4)"

;, (39)

(40)

for a suitably large set £ of different values of ¢ that are
as small as possible while still providing for sufficiently
large values of k;(g). We emphasise that the above set of
equations is only feasible if C;(¢) > 0 and 7 (¢) > 0, respec-
tively. For all other points in phase space represented by a
vertex i, the aforementioned dimension measures cannot
be defined in a meaningful way.

Note that k;(e) has a binomial distribution and be-
comes (for e — 0 and large N) asymptotically Poissonian
with mean and variance [21]

A~ Np(a)eP ),

where D,, again denotes the standard pointwise dimension.

Conditional on a given k;(¢), C;(¢) has asymptotically the
mean C(x(t;);¢) and a variance proportional to k;(g)~2,
so that also C; (¢) has asymptotically a variance propor-
tional to k;(g)~2. For this reason vertices with low degree
are unlikely to yield reliable estimates of local clustering
dimensions (see below).

The ratio max £/ min € should exceed the magnifica-
tion factor of any suspected self-similarity (i.e., 3 in the
Cantor set), see Figure 9B for an example. In general, it
has been established that there is no generally applica-
ble rule for choosing ¢ for computing recurrence network
properties [16]. In fact, the values of € that may provide
feasible results are restricted by practical considerations,
i.e., the available sample size determines the smallest pos-
sible spatial dimensions of structures to be resolved by
network-theoretic measures, which directly relates to the
minimally possible €, whereas large € do not allow obtain-
ing information on the geometric fine structures of the
attractor. In typical situations, a reasonable trade-off can
be found for edge densities below 5%. With respect to the
joint estimation of upper and lower clustering/transitivity
dimensions, our numerical studies (see Sect. 4) reveal that
for attractors with a self-similar structure, these measures
typically alternate between lower and upper bounds as ¢
is varied (cf. Fig. 9B). According to this observation, we
suggest as a rule of thumb that the range of £ should be
chosen so that both upper and lower limits can be identi-
fied from at least two distinct intervals of €, respectively.
Note that in contrast to the estimation of other notions of
dimension (like with the Grassberger-Procaccia algorithm
in the case of correlation dimension [69]), it is not neces-
sary to estimate the slope from a double-logarithmic plot
here.
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4 Examples

In the following, we illustrate our previous considerations
by numerical as well as further analytical results obtained
for some benchmark examples of both low-dimensional
maps and time-continuous dynamical systems.

4.1 Logistic map
4.1.1 The a = 4 case

For the logistic map (12) at a = 4, the knowledge of the
invariant density p(z) of the main attractor (Eq. (30)) al-
lows deriving analytical expressions for quantities such as
local degree density and local clustering coefficients [17].
In the latter case, one has to consider the simplification
that the denominator in Eq. (8) factorises, i.e., the prob-
abilities of two randomly chosen vertices j and k to be in
the e-ball around x; are independent and equal:

= P(Ay)* ~ p}. (41)
Since the chaotic attractor is bound to the interval (0, 1),
a careful treatment of the resulting integration bound-
aries reveals that spatial variations in all measures can be
understood as being originated in the coverage of phase
space regions outside the attractor (i.e., outside the in-
terval (0, 1)) rather than being a direct effect of the local
degree density. The corresponding results obtained in [17]
are briefly summarised in Table 1. The analytical consid-
erations explain the numerical findings concerning the e-
dependence of the global clustering coefficient C as well as
the z-dependence of the local clustering coefficient C; for
fixed € in an excellent manner [17]. Figure 3 demonstrates
that this actually holds for both local degree density and
clustering coefficient and for all z and e.

From the dependence of the invariant density and,
hence, the local degree density on both z and e, one
may conclude that the pointwise scale-local dimension
shows a similar dependence. However, when looking in
more detail at estimates of the actual pointwise dimension
ﬁp(:v) obtained from the scaling exponent of the local de-
gree density (Fig. 4), one finds that as expected, both
D,(z) and the scale-local (fixed ¢) estimate D¢ i(e) =
logC;(e)/ log(3/4) approach values close to 1 in a broad
range in the middle of the chaotic attractor, i.e., in some
interval that is not influenced by the attractor boundaries.
The smaller € and the larger IV, the better the pointwise
convergence of D,(z) — 1 and D¢ ;(¢) — 1 obtained by
numerical calculations for this region. We emphasise that
the profile of the pointwise dimension is much smoother
than that of the local clustering dimension, which follows
from the fact that a variety of different values of € has been
used in the estimation of D, (x), while only one ¢ had to
be considered for De ;(e), resulting in a larger variance of
the estimate.
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Table 1. Analytical expressions for the expectation values of the local degree densities and clustering coefficients for the logistic
map at a = 4 in dependence on both z and ¢ [17]. Note that the remaining integrals cannot be solved analytically.

Starting from the general identities

and

ElC(a,e)] ~ { oy B p(zﬂ |/ Ty o) -

—c max(y—e,z—¢) —e

we use the abbrevations

b
Li(a,b) = / dy p(y)

Blatied = [ " dy [p@) / e p(zﬂ ,

in order to obtain

0,z +¢), 0<z<e,
Elp(z,¢)] L(zx—¢ec,xz+e), e<z<1l—¢,
Li(x—e,1) 1-e<z<1
and
I1(0, 2 4 €)% (I2(0, 250,y +¢) + Io(2,6;0,2 +¢) + La(e, 2 + 5y — e,2 +¢€)), 0<z<e,
BlC(z,e)] =S Iz —e,x+e) 2 (Ia(x — e, 252 — e,y +¢) + L(z,x +e;y —e,x+¢)), e<z<1-—cg¢,

Lz—e, 1) ?(Lz—cl-—cgr—cyt+e)+L(l—czz—el)+hzly—cl), l1l-e<z<l.
These expressions hold generally for one-dimensional maps defined on the unit interval.

For the logistic map at a = 4 with the invariant density p(x) according to equation (30), one specifically finds

L0,z +¢) = ; — 71r arcsin(l — 2z — 2¢),
Lz —e,x+¢) = 71r larcsin(1 — 2z + 2¢) — arcsin(1 — 2z — 2¢)],
Li(z—e,1) = ; + 711_ arcsin(1 — 2z + 2¢),
I(0,2;0,y +¢) = b1 arcsin(1 — 2z) — L /w dy aresin(l — 2y — 2¢)
4 2 ™ Jo V(1 -y)
Iy(z,e;0,z +¢) = (;ﬂ — 7r12 arcsin(l — 2z — 25)) (arcsin(1 — 2z) — arcsin(1 — 2¢)),
1

1 arcsm(l — 2y + 2¢)

Vyl—y)

arcsin(l — 2y 2¢)

L(e,z+ey—e,x+¢e) = _, arcsin(l — 2z — 2¢)(arcsin(1l — 2z — 2¢) — arcsin(1 — 2¢)) 9
™ o

1
Lz —e,z;x—e,y+e) = 7r12 arcsin(l — 2z + 2¢)(arcsin(1l — 2x 4 2¢) — arcsin(1 — 2z)) 9 / dy

T \/y 1—
L(z,z+¢&y—e,x+¢e) = _, arcsin(l — 2z — 2¢)(arcsin(l — 22 — 2¢) — arcsin(1 — 2z)) 12 arcsm(l - 2y +2)
m T V(L —y)
L(x—el—¢gz—e,y+e) = 12 arcsin(1l — 2z + 2¢)(arcsin(1 — 2z + 2¢) + arcsin(1 — 2¢)) 12 arcsm(l ~ =)
™ u V(L —y)
1
L(l—ex;x—e1)=— (2 + 12 arcsin(l — 2z + 25)) (arcsin(1 — 2z) + arcsin(1 — 2¢)),
T

arcsin(1 — 2y + 2¢)

11 1 [t
Lz, 1y —e,1) = in(1—2 d
sty e = ¢y a2+ [l MO
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Fig. 3. (Color online) Analytical values (upper panels) and numerical estimates (lower panels) of the local degree density p(z;e)
(left) and the local clustering coefficient C(xz;¢e) (right) for the logistic map at a = 4. Numerical results have been obtained for
one realisation of the system with N = 10000 points. Diagonal lines indicate regions that are affected by information taken

from outside the attractor.

Close to x = ¢ and 1 — ¢, the corresponding esti-
mates become larger than the theoretical upper limit of
1, whereas for # — 0,1, Dy(z) — 0 and D¢ (g) — 0
as expected (see Sect. 3.2.1). The observed overshoot-
ing of the estimates D,(z) close to & = &,1 — & results
from a loss of convergence of the estimator, which is un-
derlined by Figure 4D. Moreover, the scatter plot of G
versus D,(z;) for different ¢ (Fig. 4C) demonstrates that
apart from the regions close to the attractor boundaries,
all points with an e-neighbourhood that lies completely
within (0, 1) are characterised by D, (z;) = De.i(e) ~ 1 as
expected. For the regions suffering from boundary effects
(which are particularly pronounced in Figure 4C due to
rather large choices of €, cf. the discussion in [16]), there
is still a clear (but nonlinear) dependence between both
measures. Note that the two-band structure in the scatter
plot between both measures results from some numeri-
cal effects due to a slight asymmetry between the density
close to the two attractor boundaries, which is expected
to vanish for higher N.

4.1.2 Bifurcation scenario

It has already been shown that for the logistic map, re-
gions with a high invariant density, which are typical for

the supertrack functions, coincide with local maxima of
both local degree density p(x) and local clustering coeffi-
cient C(x) (Fig. 1). For the local degree density, this ob-
servation is related to the fact that supertrack functions
correspond to accumulation points of iterates of the map,
in the vicinity of which trajectories tend to stay for a fi-
nite amount of time since they are only weakly repulsive
in comparison with the usual exponential separation rate
of the map [70]. A corresponding reasoning for C(z) has
already been discussed in Section 3.2.1.

From the application point of view, one could ask
whether p(x) or C(x) are better suited for approximating
the (possibly unknown) location of supertrack functions
in a map. The specific supertrack shown in Figure 1D
suggests that the local maximum of C(z) approximates
the theoretical location better than that of p(z). This ob-
servation is related to the argument from Section 3.2.1
that the invariant density p(x) is approximately constant
on one side of a supertrack function of the map, but de-
cays like a power-law with increasing distance on its other
side. As a consequence, estimating p(z) with a finite £ can
be expected to result in a shift of the local maximum of
p(z). In order to study the generality of the latter find-
ing, Figure 5 shows the complete profile of p(x) and C(x)
for a = 3.9. One finds that at least the most pronounced
interior maxima of the local clustering coefficient indeed
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Fig. 4. (Color online) Properties of the e-recurrence networks
obtained for one realisation of the logistic map at a = 4:
point estimates of (A) Ci(e) and (B) Dp(x;) as well as (D)
the goodness-of-fit 72 of the linear regression of log p; vs. log e
used for the estimation of D, (z;) (Eq. (23)) in dependence on
xz. In addition, the relationship between estimates of the lo-
cal clustering coefficient CA’z and pointwise dimension ﬁp (z4) is
shown for different choices of the edge density p in panel (C).
For the estimation of network properties, N = 10000 points
have been used with an edge density of p = 0.01, while es-
timates of the pointwise dimension have been obtained from
N = 107 points. The initial 100 points have been removed to
avoid transient behaviour.

coincide very well with supertrack functions of low or-
der, whereas the corresponding maxima of p(z) are some-
what shifted from the known locations of the supertracks.
We emphasise, however, that these shifts are directly re-
lated to our choice of € (the same holds for the differ-

ences between the estimated C; and the theoretically pre-
dicted value of 1 at the supertracks) and vanish in the
limit N — oo, ¢ — 0. For further higher-order super-
track functions, the numerical coincidence of maxima of
C(x) with the supertracks is even weaker, which is also a
result of the finite sample size and insufficient spatial res-
olution. Using longer realisations and smaller values of ¢
(not shown) yields a more reliable profile and, hence, im-
proves the skills of both vertex properties for localising
supertrack functions.

4.2 Two-dimensional maps

For the logistic map discussed above, the chaotic attrac-
tors often cover simply connected subintervals of (0, 1),
with the possible exception of a countable set of iso-
lated points on supertrack functions, which has measure 0.
In contrast to this case, there are numerous examples
of chaotic maps that have attractors with a pronounced
fractal structure. Following our theoretical considerations
from Section 3, it is interesting to study the behaviour of
clustering and transitivity dimensions for such maps and
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Fig. 5. (Color online) Profile of the invariant density p(x)
(blue) and estimates of the two network measures p; (black)
and C; (red) for the logistic map at a = 3.9 (parameters as
in Fig. 1). The positions of the first 12 supertrack functions
are indicated by vertical lines. Note that unlike the invariant
density, the degree density is not a probability density, i.e., not
normalised.

compare it with the classical concepts of pointwise and
local Lyapunov dimensions (see, e.g., [71]).

4.2.1 Hénon map

As a first example, we consider the Hénon map [72]

2
Tyl = Yn +1—ax;,,

Ynt1 = b, (42)
with the canonical parameters a = 1.4 and b = 0.3. The
chaotic attractor of this map has a fractal structure, be-
ing smooth in one direction and a Cantor set in the other.
Numerical estimates of the correlation dimension yield
Dy = 1.42 £ 0.02 [69]. The pointwise dimension of the
attractor has been extensively discussed in the framework
of multifractal chaotic attractors and unstable periodic
orbits [71].

Figure 6 shows colour-coded representations of the lo-
cal clustering coeflicients and pointwise dimensions. Un-
like for the logistic map, we find no clear relationship be-
tween both measures. A pronounced exception are the tips
of the attractor, which locally represent zero-dimensional
structures (D¢ (z,y) — 0, Dp(z,y) — 0). The strong dif-
ferences between the respective measures, which can be
found in large parts of the attractor, seem to be a conse-
quence of the specific filamental structure of the attractor.
In fact, the Hénon attractor has a fractal support, which
results in rather specific topological and metric proper-
ties [73].

A similar inconsistency can be observed when compar-
ing the upper and lower clustering dimensions with the lo-
cal Lyapunov dimension (see Fig. 7), where no clear statis-
tical relationship seems to exist as well. Nevertheless, the
local clustering dimensions behave in the expected way:
the upper clustering dimension 153 is smaller than the
upper bound 2.41m & 4.82 discussed in Section 3.2.3 for
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Fig. 6. (Color online) Properties of the e-recurrence networks
obtained for one realisation of the Hénon map at a = 1.4 and
b = 0.3: Colour-coded representation of point estimates of (A)
C; and (B) Dy(z:) as well as (D) the goodness-of-fit 72 for the
estimation of ﬁp(xi) in dependence on z and y. In addition,
the relationship between estimates of the local clustering coef-
ficient C; and pointwise dimension ﬁp(xi) is shown for different
choices of the edge density p in panel (C). For the estimation
of network properties, N = 10000 points have been used with
an edge density of p = 0.01, while estimates of the pointwise
dimension have been obtained from N = 10° points. The initial
1000 points have been removed to avoid transient behaviour.

almost all vertices, with only very few exceptions corre-
sponding to vertices with low degree (Fig. 7B). A similar
observation is made for ch, which is always smaller than
the dimension of the surrounding space (m = 2) and shows
non-zero values for the vast majority of vertices (Fig. 7TA).
Most vertices with zero values of DlCz have very low de-
gree as well, pointing to a purely statistical effect. How-
ever, there are some exceptions such as vertices with some
very specific location, e.g., close to the tips of the attractor
bands.

As a consequence of the aforementioned observations,
very long realisations are typically required to numerically
capture the local features of the chaotic attractor of the
Hénon map with reasonable confidence. This is further
underlined by the transitivity dimensions: the larger N,
the better the estimated values of this measure obtained
for fixed € approach stationary values corresponding to
the upper and lower transitivity dimensions (Fig. 8). In
contrast, for too small IV, we observe significant deviations
from the asymptotically estimated values, which becomes
particularly important for e — 0.

4.2.2 Generalised baker's map

For the symmetric version of the baker’s map (Eq. (36)),
one finds that for y # 1/2, the Jacobian is given as
diag(1/4,2) with singular values a1 = 2 > as = 1/4.
Hence, the local Lyapunov dimension is Dy, (z,y) = 14+1/2
since a1 > 1 > ajas and alaé/Q = 1. For the cluster-
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Fig. 7. (Color online) Relationships between point estimates
of (A) lower and (B) upper clustering dimensions on the one
hand, and local Lyapunov dimensions on the other hand, for
one realisation of the Hénon map at ¢ = 1.4 and b = 0.3
estimated from N = 30000 data points (initial condition
(z,y) = (0,0), the first 1000 iterations have been removed
from the trajectory to avoid transient behaviour) using 100
equally spaced values of € in the interval [0.005, 0.1]. Red dots
correspond to vertices with low degree k; < 5, for which the
obtained estimates of f)gi are hardly significant.

1.4 . . . .
N =1000
13} -. N=3000 H
: — N =10000
L2 — N =30000]

0.04
3

0.06

Fig. 8. Estimation of the transitivity dimensions D%' of the
Hénon map at a = 1.4 and b = 0.3 (one realisation with initial
condition (z,y) = (0,0), the first 1000 iterations have been
removed from the trajectory to avoid transient behaviour) for
different N obtained with the same set of thresholds € as in
Figure 7. Dashed horizontal lines indicate numerical estimates
of Dg—’l obtained with N = 30000 data points.
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Fig. 9. (Color online) Estimates of the clustering dimen-
sions obtained for one realisation of the standard baker’s map
(a=1/2 and A\, = \p = 1/4) with initial conditions (zo,yo) =
(0.2,0.2). All results have been obtained with N = 30000 data
points. Initial transients have been avoided by removing the
first 1000 iterations from the sample trajectory. (A) Colour-
coded representation of the local clustering coefficient C; ob-
tained with e = 0.1. (B) Scale-local estimates of the transitivity
dimension D7 (¢) in dependence on the considered e. Horizon-
tal lines indicate the true values of these measures derived ana-
lytically. Qualitatively the same results have been obtained for
other (lower) choices of N (not shown here), indicating rea-
sonable convergence properties of the proposed estimator. In
addition, point estimates of the local upper (C, D) and lower
(E, F) clustering dimensions ﬁgi (estimated with 100 equally
spaced values of ¢ in [0.005, 0.1]) are shown in dependence on
both variables = (C, E) and y (D, F). Solid horizontal lines
correspond to the theoretical values, whereas dashed lines in-
dicate the median values obtained from the considered sample
of state vectors.

ing and transitivity dimensions, we have shown in Sec-
tion 3.2.2 that for almost all (x,y) € S, D¢ (z,y) 2 1.464,
D% ~ 1581, and Di(z,y) = DL = 1. The latter re-
sults are confirmed by numerical calculations, the results
of which are summarised in Figure 9. It is notable that
the estimated values of the transitivity dimension roughly
coincide with the theoretically predicted upper and lower
bounds. However, there are examples where these bounds
are exceeded. We identify two possible reasons for such
behaviour: too large € or (for small €) too small N, i.e.,
finite-scale and finite sample size effects. Due to the re-
sulting outliers obtained when varying e, numerical val-
ues for the upper (lower) clustering dimension typically
have a positive (negative) bias with respect to the the-

667

oretically predicted values, which is nicely illustrated by
Figure 9C-Figure 9F. As a statistical estimation effect,
this bias is more severe for local dimensions, since the
variance is larger than for transitivity dimensions (see
above). However, a bias also exists for the transitivity
dimensions, where it is just smaller (e.g., see the over-
shooting in Fig. 9B).

For the generalised baker’s map, detailed analytical ex-
pressions are available for the global Lyapunov dimension
of the system [53,55]. For the local version of this measure,
we obtain the following results:

1+11n“/{3; ,Yy< aAha> A

2 yy<aha<
DL(w’y): In(1—a) ¢ (43)

L+, sy>aliNl—a> N

2 yy>anNl—a < .

These expressions can be used as a benchmark with which
we can compare the numerical estimates of our new mea-
sures ﬁgﬁ and D;l

In contrast to the Lyapunov dimensions, simple expres-
sions for the local clustering and transitivity dimensions
of the generalised baker’s map can (unlike for its sym-
metric version) only be obtained for some specific cases.
For example, concerning the dependence on « for fixed
Ao =X =1/4 and € = 7/4™ (n > 1), the transitivity can
be calculated as

(2a%(1 — a)?)(a® + (1 — a)?)
1+a(l—a)2a(l —a)(a(l —a)+1)—3)’

(44)

which allows deriving a corresponding expression for D.
In the derivation of the latter expression, we have used the
fact that each linked triple lies in a small band of width
16/4™ that is composed of four substrips of width 1/4™
with relative weights of o, a(1—a), a(1—a), and (1—a)?,
and gaps of width 1/4™, 5/4™, and 1/4"™, respectively. For
other values of ¢, the transitivity might be even smaller,
leading to larger values of Dr. Hence, the estimate based
on equation (44) has to be considered a lower bound for
the actual value of the upper transitivity dimension D%.
Figure 10A shows the a-dependence for different no-
tions of dimension. Analytical results for the “classical”
measures Doy, D; and D have been taken from [55].
Note that due to its definition [56], the maximum lo-
cal Lyapunov dimension D}*** is bound from above by
the dimension of the underlying phase space (m = 2,
see Eq. (43)), although numerical calculations would yield
higher values for o < A\,. We emphasise that setting some
dimension of a given set equal to that of the surrounding
space (m) whenever its numerical value exceeds m avoids
pathological behaviour, which has been observed in a sim-
ilar way for the clustering and transitivity dimensions in-
troduced in this paper (see Sect. 3.2.3). Concerning the
numerically estimated transitivity dimensions, we observe
that D% coincides rather well with the lower analytical
bound resulting from (44), but shows some positive bias.
There are two possible reasons for this: (i) either the es-
timate (44) for the lower bound of the transitivity 7 is

T=1
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Fig. 10. Dependence of several global measures of dimension-
ality on the parameters (A) a (Aa = Ap = 1/4) and (B) \a = X
(e = 1/2) of the generalised baker’s map (here, one realisation
has been considered for each parameter combination, initial
conditions and removal of initial transients as in Fig. 9). The
grey line in (A) corresponds to the theoretical lower bound of
D% (see text). Note that in (B), all “classical” measures (Do,
D1, D2 and D7'**) have equal values. Numerical estimates
have been obtained with N = 15000 (A) and N = 25000
(B) data points, respectively, using 50 equidistant values of
e € [0.001,0.015] (in this range, D% and DY approximate the
analytical results well for the a = 0.5 case as shown in Fig. 9B).
The results are robust for various choices of N.

still too conservative, or (ii) the numerical values are too
large due to some overshooting as indicated in Figure 9B.
Comparing D;l with the other dimension measures, it
becomes evident that in general, the transitivity dimen-
sion is neither an upper nor a lower bound to any of the
considered classical concepts.

The dependence of different dimension measures on
Aa = Ap is shown for @ = 1/2 in Figure 10B. Note that
for this specific choice of a, all “classical” dimensions take
the same values, which only depend on A\, = . For suf-
ficiently small A\, = X\; < 0.3, the upper and lower tran-
sitivity dimensions seem to take stationary values, which
is in contrast to the other measures of dimensionality. For
Aqe = Ap — 0.5, the map fills the complete two-dimensional
unit box, so that all dimensions converge to 2 (note that
this limit is not approached by the lower transitivity di-
mension due to the finite length of the considered realisa-
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tion). For too small A, = Ay, the numerical behaviour also
suggests that longer realisations of the system are neces-
sary to obtain reasonable results. In general, we conclude
that for the parameter range within which our results can
be considered reliably, the numerically estimated transi-
tivity dimensions take similar values as the other measures
and show a similar behaviour if the parameters of the gen-
eralised baker’s map are varied (with the exception of the
maximum local Lyapunov dimension), which suggests that
the new network-based dimensions are reasonably defined.

In all cases, note that the numerically estimated val-
ues of ﬁg—l show some residual variations superimposed
to their general trend. Besides the finite IV, this is mainly
due to the fact that only one specific realisation of the sys-
tem at every set of parameters is used. We expect results
to further improve if mean values taken from ensembles of
independent realisations are considered.

4.3 Rossler system

So far, we have only discussed examples of discrete
maps. Among the dynamical systems showing complex
behaviour, there are however many examples that are
time-continuous rather than discrete. In the following, we
will discuss as one paradigmatic example the well-studied
Rossler system

T=—-y—2z

y=z+ay

2=b+z(zx—c) (45)
with the parameters a = 0.2, b = 0.2 and ¢ = 5.7. For
the latter choice, the Rossler system is known to have
a chaotic attractor. Moreover, there are countably many
unstable periodic orbits (UPOs) of various periods, which
do not belong to the attractor, but are densely embed-
ded in it and support the invariant measure. Hence, these
UPOs form a subset of the attractor’s closure, which has
measure 0. As a consequence, traditional dimension esti-
mates typically characterise the properties of the chaotic
part, but are not suited for describing the properties of
the embedded unstable, but dynamically invariant peri-
odic structures. In contrast, our results obtained for the
logistic map suggest that local transitivity properties of
e-recurrence networks can be used for identifying at least
the least repulsive UPOs. In the following, we will further
discuss this idea and present some numerical results us-
ing the concept of continuous clustering and transitivity
dimensions introduced in this paper.

4.3.1 General considerations

Generalising the previous considerations concerning the
supertrack functions of the logistic map (see Sects. 3.2.1
and 4.1.2) to time-continuous dynamical systems, it
appears a reasonable assumption that the continuous
e-clustering coefficient C(x;¢) is in general a consequence
of the spatial alignment of neighbouring trajectories in
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phase space, which is closely related to the effective lo-
cal dimension of the attractor. In this respect, we note
that continuous systems may be transformed into discrete
maps by choosing a proper Poincaré section. For exam-
ple, supertrack-like structures in Poincaré sections of the
Lorenz system can be identified using the vertex proper-
ties (in particular, degree and local clustering coefficient)
of the associated e-recurrence networks [18].

Besides our specific considerations for maps, we note
that in general, spatial differences in C(x;¢) (and, hence,

Dgl(x)) can be theoretically understood using results for
random geometric graphs [61]. Recall that if individual re-
currence points are assumed to be separated by sufficiently
large time intervals (i.e., sojourn points are excluded) [17],
the actual spatial location of the associated vertices de-
pends on the specific sampling of the data. Therefore, an
e-recurrence network can be interpreted as a random ge-
ometric graph with a certain effective dimension (in our
case characterised by D7). We note that the latter con-
siderations apply both globally and locally, i.e., they also
hold for arbitrary subgraphs of an e-recurrence network.
Since for arbitrary geometric graphs, the subgraph proper-
ties follow from the spatial distribution of vertices, spatial
heterogeneities in this distribution can result in (among
others) different local transitivity properties and, hence,
a non-trivial spatial pattern of the pointwise (scale-local)
clustering dimension.

We emphasise that a low local dimension (<m) of
the attractor implies that trajectories cannot (locally) ex-
ponentially diverge in all directions of the m-dimensio-
nal phase space, but rather become (locally) almost par-
allel in some lower-dimensional subspace. Among other
cases, the latter behaviour can be considered typical in
the vicinity of UPOs, where trajectories become dynami-
cally trapped near an invariant lower-dimensional object
for a certain finite time [70]. Since for random geomet-
ric graphs, it is known [61] (and verified by our analyti-
cal considerations in Sect. 3) that the expected clustering
coefficient decreases roughly exponentially with increas-
ing spatial dimension of such networks, the hypothesis
that C(z;¢e) takes local maxima close to UPOs appears
justified, which translates into a low pointwise scale-local
clustering dimension D¢ (x;¢). From this perspective, D¢
directly relates to traditional concepts like pointwise di-
mensions (which, however, would typically characterise
the chaotic attractor rather than the embedded UPOs)
and local Lyapunov dimensions (which has, however, only
been formally defined for maps so far). Moreover, we note
that there is a direct link between Lyapunov dimension
and Lyapunov exponents, which measure the average di-
vergence rate of neighbouring trajectories and can be used
for a local attractor characterisation as well (see defini-
tion).

4.3.2 Period-3 UPOs

As an empirical verification of the above consideration, we
consider the dependence of the local clustering coefficient
Ci(g) on the spatial coordinates of a vertex. Specifically,
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Fig. 11. (Color online) Point estimates of (A) the local clus-
tering coefficient CA’z and (B) the minimum Euclidean distance
d; from the period-3 UPOs of the Rossler system (N = 10000,
p = 0.01). In addition, the dependence of (C) degree density
and (D) local clustering coefficient on d; are shown for short
distances (N = 50000, p = 0.01). We emphasise that d has
been measured here using the Euclidean norm, whereas for the
generation of the e-recurrence networks, the maximum norm
has been considered. Note that the respective (rank-order) cor-
relations ps between vertex properties and distance from the
UPO are significant and of comparable order for both mea-
sures.

we study the distance of vertices from the two period-3
UPOs embedded in the chaotic Rossler attractor, which
are particularly well expressed features of the system. As
it follows from Figure 11, there is a clear indication that
close to these UPOs, both vertex degree and local clus-
tering coefficient show increased values (note that due to
the three-dimensionality of the system, these maxima are
not as well expressed as in the case of, e.g., the logistic
map, particularly for some finite £ smearing out the spa-
tial signatures of the UPOs). At somewhat larger distances
from these invariant objects, we find a clear tendency to-
wards smaller values of both measures indicated by signif-
icant negative values of the rank-order correlation coeffi-
cients pg. For the degree, this is clearly a consequence of
the trapping feature of UPOs [70], while according to our
theoretical considerations, the corresponding result for the
local clustering coeflicient (and, hence, the associated local
clustering dimension) is caused by the low dimensionality
of the UPOs in comparison to the chaotic attractor itself.

For UPOs of higher periods (recall that these are
densely embedded in the chaotic attractors), we how-
ever find much weaker signatures in the spatial pattern
of C(z) [17]. This implies that the detection of high-
periodic UPOs (which are typically more repulsive and,
hence, characterised by shorter residence times in their
direct vicinity than UPOs of lower period) by means of e-
recurrence networks probably requires longer time series
(larger V) and lower recurrence thresholds e. We note that
in principle, UPOs can also be detected by other types of
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Fig. 12. (Color online) Variation of the scale-local transitiv-
ity dimension D7 (e) obtained for individual realisations of
the Rossler system with N = 5000 and p = 0.02 in a two-
dimensional cross-section (a = b) of the parameter space. Peri-
odic windows are characterised by minima of D7 (e) with val-
ues close to 1. White points indicate parameter combinations
for which the numerical algorithms did not provide feasible
results for the considered parameters (e.g., indicated an arti-
ficial fixed point behaviour due to the improper choice of the
sampling rate).

proximity-based complex network approaches to time se-
ries analysis, for example, cycle networks [32].

4.3.3 Bifurcation scenario

The bifurcation scenario of the Rossler system is very rich
and shows multiple complex bifurcations between peri-
odic and chaotic solutions in dependence on its three con-
trol parameters. Recently, much interest has been spent
on the investigation of so-called shrimps [74,75], i.e., spe-
cific self-similar periodic windows with a complex shape
that appear in certain two-dimensional subspaces of the
full parameter space (see Fig. 12) [76-78]. It has been
demonstrated that statistical measures based on recur-
rence quantification analysis as well as e-recurrence net-
works are well suited for automatically discriminating
between periodic and chaotic dynamics and, hence, un-
cover complex bifurcations between both types of be-
haviour [37]. Within the complex network approach, tran-
sitivity properties have been found to be among the most
suitable candidate measures for this purpose. Given the
framework of our considerations presented in this work,
this effect can be theoretically understood since periodic
trajectories correspond to a lower-dimensional dynamics
than chaotic ones, which is naturally detected by the tran-
sitivity dimension.
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5 Summary

The recently introduced e-recurrence networks have a
great potential for detecting qualitative changes in the
dynamics of complex systems, which may correspond to
nonstationarities, bifurcations, or different local attrac-
tor properties. While previous results have been mainly
obtained numerically, this paper provides a theoretical
framework for better understanding the links between
network and attractor properties. In particular, we ha-
ve studied the local and global transitivity properties
of e-recurrence networks, which are closely interrelated
with the local and global dimensionality of the studied
attractor. This relationship motivated the definition of
novel measures of dimensionality, the (local) clustering
and (global) transitivity dimensions, which can be directly
estimated from this type of networks. In this spirit, our
corresponding results demonstrate that e-recurrence net-
works provide an important link between dynamical sys-
tems theory on the one hand, and graph theory on the
other hand.

We emphasise that many other established measures
of dimensionality, such as box-counting and Rényi dimen-
sions, are based on the scaling of local residence proba-
bilities of typical trajectories on the attractor in different
parts of the phase space with successively refined spatial
resolution. As an exception, the correlation dimension is
based on spatial two-point correlations in phase space. In
this respect, clustering and transitivity dimensions are sta-
tistical properties of higher order, since they are based on
geometric three-point interdependences, i.e., the mutual
proximity of triples of state vectors on the attractor. As
a result, local clustering dimensions allow quantifying the
effective (possibly non-integer) local dimensions of the at-
tractor in different parts of phase space. The fundamental
importance of the corresponding geometric interpretation
becomes visible in the representation of distinct spatial
structures related with supertrack functions and UPOs,
which cannot be detected by other traditional measures
of dimensionality.

Beyond the aforementioned conceptual differences, we
note that our novel dimension measures have further im-
portant advantages in comparison to more traditional
properties such as correlation or pointwise dimensions.
These advantages mainly reflect the issue of practical esti-
mation: while for many classical dimension measures, scal-
ing properties of some quantity have to be carefully evalu-
ated (which requires large data sets and sophisticated esti-
mation strategies [62]), there is no need for considering any
specific scaling for estimating clustering and transitivity
dimensions. Besides the fact that the estimation becomes
more direct, this also allows numerically obtaining reason-
able estimates from rather short time series (i.e., data sets
of size N ~ O(10%...10%)) at least for low-dimensional
systems. The required amount of data is therefore signifi-
cantly lower than for classical properties such as Do, im-
plying that all numerical calculations performed for this
paper can be completed on standard desktop computers
within a reasonable amount of time. We expect that this
advantage of much lower requirements with respect to the
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number of data should persist for higher-dimensional sys-
tems.

In contrast to these benefits, we have identified situa-
tions where our new measures behave pathologically (e.g.,
exceed the non-fractal dimension of the phase space in
which the attractor is embedded). However, we emphasise
that similar pathologies may also be found for other con-
cepts of fractal dimension, e.g., due to the breakdown of
the supposed scaling relationships, or in terms of the “ar-
tificial” upper bound of the Lyapunov dimension. The nu-
merical examples discussed in this paper demonstrate that
there is no simple relationship with any existing dimen-
sion measure, i.e., clustering and transitivity dimensions
do not serve as bounds to any of the more traditional con-
cepts, but typically have values that are comparable with
those of other types of fractal dimensions estimated from
the same trajectories.

Our theoretical considerations also confirm recent nu-
merical results on the relationship between local transi-
tivity properties and the location of dynamically invari-
ant objects. Specifically, for the logistic map, high values
of the local clustering coefficient coincide with the posi-
tions of supertrack functions, which has been studied in
more detail in this work. For the three-dimensional chaotic
Rossler oscillator, it has been shown that unstable peri-
odic orbits with low periods coincide with local maxima
of the same vertex property [17]. Our results suggest that
these findings can be generalised to other (discrete as well
as time-continuous) complex systems, given that the in-
variant density of the attractor is sufficiently continuous
in phase space. Examples such as Cantor sets or the two-
dimensional Hénon map have been discussed as well, illus-
trating the fact that in particular the proper estimation
of local (pointwise) dimension measures is non-trivial for
attractors with a pronounced fractal structure. Our find-
ings suggest a fundamental relationship between the dif-
ferences of upper and lower clustering/transitivity dimen-
sions (which have been found for certain self-similar sets)
on the one hand, and the smoothness properties of the at-
tractor on the other hand. A more detailed investigation
of the corresponding interdependences will be subject of
future studies.

The relationship between local transitivity properties
and local attractor geometry theoretically justified in this
paper has some important consequences for possible prac-
tical applications of e-recurrence networks in dynamical
systems research. In particular, the fact that the local
clustering dimensions are excellent candidates for quan-
titatively characterising the (mean) dimensionality of the
system within some e-ball around any specific point on
the attractor can help numerically identifying dynamically
invariant objects such as unstable periodic orbits (or in-
variant manifolds of hyperbolic fixed points), which is still
a problem of intensive scientific research [79]. As a conse-
quence, we emphasise that our transitivity-based dimen-
sion concept offer a novel approach for studying structures
in the phase space of complex systems and appear to have
meaningful and potentially relevant applications in both
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dynamical systems theory and real-world time series anal-
ysis.
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