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Abstract We propose a novel recurrence plot-based approach, the difference recurrence plot (DRP), to
detect small deviations between measurements. By using a prototypical model system, we demonstrate the
potential of DRPs and the difference to alternative measures, such as Pearson correlation, spectral analysis,
or cross and joint recurrence analysis. Real-world data comes from an application of guided ultrasonic
waves for structural health monitoring to detect damages in a composite plate. The specific challenge for
this damage detection is to differentiate between defects and the influence of temperature. We show that
DRPs are suited in the following sense: DRPs of two time series that derive from measurements at different
temperatures hold practically full recurrence, whereas DRPs of one time series from a measurement without
and one time series with defect show a hugely reduced recurrence rate.

1 Introduction

The rise of advanced data analytics and machine learn-
ing, being enabled by increased computational power
and memory, and data availability, has had its effect
on non-destructive testing (NDT) as well as on struc-
tural health monitoring (SHM). Both NDT and SHM
are used to find defects in materials, and sophisticated
evaluation methods help to improve detection capabili-
ties, for example to find smaller cracks in metals. NDT
uses probes and equipment separate from the inspected
part; SHM uses, instead, permanently installed sensors
on the inspected part, with interrogation either during
use or when not in use of, e.g. a craft.

Acousto-ultrasonics is an SHM method using a grid of
acoustic sensors (piezos) for example on a fuselage shell,
which both send and receive guided ultrasonic waves,
mechanical waves that propagate along the elongated
dimension of the inspected part [1]. When inspect-
ing composite parts (e.g. carbon fibre-reinforced poly-
mers, CFRP), guided ultrasonic waves are disturbed by
delaminations, material separations within the material
(caused by, e.g. hail or bird strike), so that such defects
can be detected.
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When applied during use of, e.g. an aircraft, the fol-
lowing challenge arises: environmental changes, espe-
cially different temperatures, have a large effect on
the signal, too, so that the effect of defects might be
masked. One approach to overcome this is the so-called
continuous baseline update: measurements are taken
every x minutes, and assuming that only small temper-
ature changes take place during this interval, the effect
of a defect exceeds the one of the changed temperature.

Typical evaluation is based on a comparison of
two consecutive measurements. The differences between
these two time series are small compared to the signal
amplitudes. Instead of the usually asked research ques-
tion to detect whether two signals from different sources
are correlated or synchronised, we are here interested in
detecting small deviations from originally identical sig-
nals. To be exact, for the application we describe there
are always small differences between time series, and
we are interested in detecting differences in these dif-
ferences (i.e. distinguishing between only temperature
differences between the measurements that create these
time series or temperature differences plus an appearing
defect).

We propose a new method for evaluation of two
time series with very small signal differences, the differ-
ence recurrence plot (DRP), firstly proposed in [2] and
rooted in recurrence quantification analysis (RQA).
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2 Structural health monitoring with guided
ultrasonic waves

Structural health monitoring (SHM) aims at checking
the structural integrity, especially the occurrence of
defects, with permanently installed sensors. Acousto-
ultrasonics use guided ultrasonic waves; the latter are
mechanical waves above the audible range (20kHz)
that propagate along the elongated dimensions of the
inspected part. The waves are sent and received with
piezo transducers, which have to cover the surface of,
e.g. a composite plate in a grid-like manner.

Guided ultrasonic waves can be used for example
to detect damages in composite structures, e.g. after
impact (through birds, hail etc.). Such damages influ-
ence the propagation of the waves and, thus, can be
detected using acousto-ultrasonics. A challenge for the
use of guided ultrasonic waves is, however, the effect
of environmental conditions, especially temperature. If
an SHM system using guided waves shall operate dur-
ing use of, e.g. an aircraft, temperature changes might
hide the effects on the received guided wave that are
caused by impact damages. Different methods exist to
overcome this challenge (see [3] for an overview). One
approach is the continuous baseline update: throughout
the operation of an aircraft, measurements are taken
after rather short intervals, in the range of several min-
utes. Each measurement is compared with the former
measurement, which serves as baseline. If only small
changes occur, this is expected to be related to temper-
ature, and the current measurement becomes the new
baseline. Impact damages are supposed to cause rela-
tively great changes between the current measurement
(time series) and the former one. Such relatively great
changes thus indicate damages; the current measure-
ment cannot serve as baseline.

Means of time series analysis to differentiate between
small changes due to temperature and slightly larger
changes due to a damage have to be found to deploy
continuous baseline update. In terms of data evalua-
tion and time series analysis, there are two different
approaches to do so: either features of each time series
are computed and compared to each other, as done in
[3] with some standard features as well as with recur-
rence rate (RR) of standard (univariate) recurrence
plots (RPs); or bivariate time series analysis is deployed
to compare the former measurement (the baseline) and
the current measurement with each other. We describe
the latter in Sect. 4 utilising difference recurrence plots
(DRPs) for this application.

3 Recurrence-based difference analysis

Differences (or similarities) between time series can be
detected using linear and nonlinear methods, such as
correlation coefficients, comparing power and wavelet
spectra, mutual information, or using recurrences.

Recurrence-based methods have been shown to be ver-
satile tools for detecting various phenomena related to
differences or similarties between time series or dynam-
ical systems, such as time scale differences [4], phase
synchronisation [5], nonlinear [6] and hidden couplings
[7], or even coupling directions [8]. Moreover, RPs have
been shown to be very sensitive on very small changes
such as frequency modulations, where other methods
fail [9, 10].

The two main extensions of RPs for direct compar-
ison of recurrence features are cross and joint RPs.
A cross recurrence plot (CRP) identifies differences
between the phase space trajectories xi and yi of sys-
tem X and system Y by [11]

CRi,j = Θ(ε − Di,j(X,Y )), (1)

with Di,j(X,Y ) = ‖xi − yj‖ the Euclidean distance
between the states xi and yi in phase space, Θ the
Heaviside function, and ε the recurrence threshold [12].
Large deviations in the phase space trajectories result
in missing recurrences. But the main potential of CRPs
is their ability to extract slight temporal differences
in mostly identical system (where some time distor-
tions were applied) in a non-parametric way [13, 14].
For a CRP-based similarity analysis, we can simply use
the average number of recurrence points on the main
diagonal (the τ -(cross) recurrence rate at lag 0, [4]),
cRR0 = 1

N

∑N
i=1 CRi,i (with N the length of the time

series or the number of phase space vectors), which
would be cRR0 = 1 for identical systems and cRR0 → 0
for non-identical systems.

In contrast, the joint recurrence plot (JRP) compares
the differences in the individual recurrence pattern, rep-
resented by the element-wise multiplication of the indi-
vidual RPs [6]

JRi,j = Θ
(
ε − ‖Di,j(X,X)‖

)
· Θ

(
ε − ‖Di,j(Y, Y )‖

)
,

(2)

where Di,j(X,X) = ‖xi −xj‖ is the distance matrix of
the pairwise Euclidean distances of all states in system
X (and analogous for system Y ). Thus, the focus is on
identifying simultaneous recurrences. Using JRPs, we
can define measures for generalised synchronisation or
nonlinear couplings [6, 15]. Here, we use the average
joint probability of recurrence [5],

pJR =
1

RR·N2

∑N
i,j=1 JRi,j − RR

1 − RR
, (3)

where we ensure the same recurrence rate RR =
1
N2

∑N
i,j=1 Ri,j for X and Y by selecting appropriate

values for the recurrence threshold ε [12]. We expect
pJR = 1 for systems with identical recurrence struc-
ture and pJR → 0 for systems with diverging recurrence
structure.
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Both approaches complement each other and work
very well for different research questions in various sci-
entific disciplines, such as measuring the coordination
between communicating people [16], detecting the cou-
pling structure within the cardio-respiratory [17] or
the climate system [18, 19], studying the asynchrony
between photovoltaic power generation and solar irra-
diance [20] or between the north–south sunspot activity
[14], or assessing the synchronisation between ecological
components or multi-species communities [21, 22].

In specific applications, such as NDT and SHM, the
identification of tiny deviations in the amplitude of sig-
nals is important. Standard methods, such as Pearson
correlation or spectral methods, are usually not sensi-
tive enough to reveal a significant result.

Therefore, we propose a new recurrence-based mea-
sure which is based on the difference of the individual
distance matrices D(X,X) and D(Y, Y ) [2]. The differ-
ence D(X,X) − D(Y, Y ) contains all deviations in the
geometry of the phase space trajectories, not only in
the neighbourhoods, but also for the state relationship
of far away states. By thresholding these differences, we
can define a quantifier, similar to standard RPs:

DRi,j = Θ
(
ε − |Di,j(X,X) − Di,j(Y, Y )|

)
. (4)

This difference RP (DRP) represents all pairs of states
which do not deviate with respect to a small error ε.
The sensitivity of the detected deviations can be con-
trolled by the selection of the threshold ε. Using the
same approach as for the RPs (fixing the threshold to
ensure a predefined RR of, e.g. RR = 0.05) would not
make much sense, because the idea is the use the RR
(RRDR = 1

N2

∑N
i,j=1 DRi,j) of the DRP for detecting

deviations. Therefore, the threshold selection procedure
has to be selected corresponding to the research ques-
tion. According to our experience and many numerical
experiments, to set ε to a fixed value corresponding to
0.1% of the standard deviation of the original (refer-
ence) signal u1 works well in most cases. For our spe-
cific research question of SHM, we will select a larger
ε in order to get the differences caused by structural
changes and not by temperature (procedure explained
below).

We illustrate this approach by comparing the z -
component of the Lorenz system:

dx

dt
=10(y − x),

dy

dt
=28x − y − xz,

dz

dt
= − 8

3
z + xy, (5)

with an almost identical copy of it which has a very
small deviation in the amplitude. The ODE is inte-
grated using a Runge–Kutte schema (4rd order) for
10, 000 time points with final temporal sampling of
Δt = 0.005s and removing the first 5, 000 data points

as transients (final length N = 5, 000). Using z (t)
we define two almost identical time series U1 and U2

(Fig. 1) by

u1(t) =z(t),
u2(t) =z(t) + 0.1 sin(0.4 · 2πt) (6)

and compare them by Pearson correlation, power spec-
tra, wavelet analysis, CRP, JRP, and DRP.

The Pearson correlation between both time series is
� = 1.000, indicating the very high similarity between
the two time series U1 and U2. The power spectrum
as well as the wavelet spectrum show also very similar
results for both U1 and U2 (Figs. 2 and 3).

Using RP-based methods, we use the CRP to find dif-
ferences between the states of two systems (i.e. ampli-
tude differences) and the JRP to measure simultaneu-
ous recurrences. The individual RPs (calculated with
embedding dimension m = 3, delay τ = 37Δt, and
recurrence threshold ε selected to ensure a fixed RR of
RR = 0.05) appear to be almost identical (Fig. 4A, B).
For the CRP-based similarity analysis (same parame-
ters used as for the individual RPs), we use cRR0; for
JRP-based comparison, we use the average joint proba-
bility of recurrence pJR. For CRP, we find cRR0 = 1.00,
indicating identical time series U1 and U2, although
their amplitudes actually differ slightly; for JRP, we
find pJR = 0.985, indicating only a very small devia-
tion in the recurrence structure (Fig. 4C, D).

The matrix with the differences between the distance
matrices |D(U1, U1) − D(U2, U2)| reveals the pairwise
distribution of these differences in terms of absolute
values (Fig. 5A). By thresholding this matrix, Eq. (4),
using 0.1% of the standard deviation of U1 we can
identify the specific pattern of those pairs of states
where the amplitude deviations vanish (Fig. 5B). In the
selected example, we added periodic distortions which
are now clearly visible by the periodic structures in this
DRP (with period length of 2.5s, corresponding to the
frequency of the distorting signal of 0.4, Eq. (6)). The
resulting RR is RRDR = 0.124, i.e. less than 13% of all
pairs do not deviate with respect to the neighbourhood
relationship in the phase space.

Next, we consider a continuous increase of the dis-
torting signal, ensuring a continuous difference of U2

from U1 by increasing the deviation coefficient α from
0 to 1.5 in u2(t) = z(t)+α sin(0.4·2πt). Pearson correla-
tion and the CRP-based measure cRR0 are not able to
identify the differences in this range of α (Fig. 6). The
JRP-based measure is slowly monotonously decreasing,
pointing to the increasing difference between U1 and
U2, but only the RR of the DRP identifies quickly the
tiny difference (Fig. 6). This result is robust for dif-
ferent (small) values of the recurrence threshold ε. For
very small ε = 0.1% of the signal’s standard deviation,
the smallest difference resulting from small α can be
identified.

Standard measures are usually designed to detect
interrelationships, coupling, or synchronisation. There-
fore, they are sensitive against the null hypothesis that
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Fig. 1 Almost identical
time series U1 and U2 based
on the z -component of the
Lorenz system

Fig. 2 A Power spectra of
very similar signals U1 and
U2 and B their difference,
indicating their strong
similarity in the frequency
domain
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Fig. 3 A, B Wavelet analysis of very similar signals U1 and U2 and C their difference, indicating their strong similarity
in the time-frequency domain
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Fig. 4 A, B Recurrence plots of very similar signals U1 and U2, C cross and D joint recurrence plot between U1 and U2,
indicating the strong coincidence in the phase space and the recurrence patterns
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Fig. 5 A Difference matrix
|D(U1, U1) − D(U2, U2)|
and B difference recurrence
plot. Both plots are
characterised by a periodic
pattern related to the
periodic nature of the
distortion signal
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Fig. 6 Measures of
“deviation” (Pearson
correlation �, CRP-based
cRR0, JRP-based pJR, and
DRP-based RRDR for two
different recurrence
thresholds ε) between U1

and U2 for increasing
deviation in signal U2

the systems are not linked to each other, and thus
are less sensitive for detecting small deviations or dif-
ferences between the signals. In contrast, the novel
approach of DRP is designed to be sensitive for such
small deviations and, therefore, outperforms the stan-
dard measures considered here. The usefulness of the
DRP approach is limited to such research questions
where we are sure to have identical or very similar
(strongly coupled) systems or dynamics and are inter-
ested in the deviations. It would not make much sense to
apply it for noisy data. In the following, we will demon-
strate the use of this novel approach of detecting small
deviations between different data sets for the practical
application in SHM.

4 Application of difference recurrence plots
on ultrasonic-guided wave data

We use publicly available data of guided ultrasonic
waves on a plate of a composite material (CFRP, car-
bon fibre-reinforced polymer), with reversible damages
available on [23], cf. [24, 25]. The specificities of these
data are:

– taken on an approximately 0.5m × 0.5m CFRP plate
with two rows, each of six piezo transducers, one at
the top and one at the bottom of the plate (cf. Fig. 7
with the four transducers used in this paper);

– each transducer sent once and all transducers receive
(except for double paths—sending and receiving is
interchangeable);

– guided ultrasonic waves with mean frequencies
between 40kHz and 260kHz (in 20kHz steps);

– signals digitised with 10MHz;
– measurements were taken at varying temperature

changes, ascending and descending between ≈ 20◦
and ≈ 60◦ (Fig. 8) in ≈ 0.5K steps;

– measurements with varying temperatures were taken
without and with four different reversible damages
(represented by an aluminium disc temporarily fixed
on the surface of the plate by a tacky tape);

– measurement time series are 1.3ms long, and thus
with 13,000 data points. In this paper (as in [3]), we
use the portion from 0.3ms up to the end, 1.3ms. Pro-
cessed time series are thus 1ms, 10,000 data points
long.

4.1 Evaluation goals and RQA parameter
determination (training)

The goal of our investigations of difference recurrence
plots (DRPs) for the continuous baseline update of
guided ultrasonic waves is to find features that provide
great changes between time series if a defect appears
and only small changes for (small) temperature changes
(c.f. Sect. 2). The available data contains measurement
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Fig. 7 Specimen with transducers, sound paths and defects
used for training, i.e. RQA parameter determination
(T1–T7, defect D24, right hand side) and test, i.e. evalu-
ation (T6–T12, defect D04, left hand side)

Fig. 8 Course of temperatures for guided ultrasonic wave
measurements in [23]; dots represent the temperature values
of measurements evaluated in this paper

series at varying temperatures without and measure-
ment series at varying temperatures with defects. Our
approach based on these data is as follows:

– We decided that 5K temperature steps (cf. dots in
Fig. 8) represent temperature steps that may occur in
potential later use when measuring every x minutes
during use of, e.g. an aircraft.

– A DRP compares two time series with ≈ 5K tem-
perature difference, either both without defect , or the
first without and the second with defect . To do the
latter, the first measurement is taken out of the no
defect measurement series and the second out of the
defect measurement series. These two compared mea-
surements were thus in reality not taken several min-
utes after each other, but indeed on different days.
We consider the temperature difference here the most
important difference.

Fig. 9 Temperatures used for training (determination of
RQA parameters); difference recurrence plots are com-
puted between time series taken at subsequent temperatures
(either both without defect or the first without and the sec-
ond with defect)

– The aim is to find a feature out of the DRPs that has
great differences in value for no defect–defect time
series compared to no defect–no defect time series.

– We decided to investigate merely RR out of DRPs,
i.e. the portion of recurrence points to all points of a
plot (pre-investigations showed that RR suffices).

We choose RQA parameters—embedding dimension,
delay, and recurrence threshold—in a data-driven way
[26–28], i.e. we look for the parameter set that serves
our goal best (instead of determining the parameters
beforehand). A training-test approach is applied: best
parameters are determined on one data set and these
parameters are applied (i.e. tested) on a different data
set. The training data set are the signals of trans-
ducer path T1–T7 without and with defect D24, for
test we use the transducer path T6–T12 without and
with defect D04 (Fig. 7).

For training, we choose 10K steps of temperatures
ascending and descending once between ≈ 20◦ and ≈
50◦ (Fig. 9). The lower amount of time series saves com-
putational cost for training.

DRPs are computed for 12 (two times six) time series
pairs: time series no. 0 and 1, 1 and 2, and so on (Fig. 9),
each of the second time series either without or with
defect. Out of these DRPs, m = 6 RRb values are com-
puted for no defect–no defect pairs and m = 6 RRd for
no defect–defect pairs. Results are defined to be best if
the following maximum is reached:

max
l=1...L

(∣
∣
∣
∣

∑
(RRb − RRd)

m

∣
∣
∣
∣ − 3σb

)

(7)

over L parameter sets. The L parameter sets result from
the chosen variation of the (in this case, for the feature
recurrence rate) three RQA parameters, see below. RR
for each combination of parameters is computed and
the parameter set chosen, for which maximum Eq. (7) is
achieved. The RR of DRPs no defect–defect shall differ
as much as possible from those of DRPs no defect–no
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defect . The standard deviation σb of the six RR val-
ues for no defect–no defect is a penalty and must not
be too high. If σb were too high, the individual values
of RRb would vary and it would be difficult to find a
common threshold to distinguish between whether or
not a defect occurred, though the individual differences
between RRb and RRd might be high. In empirical tri-
als, a weighting of 3 of σb turned out to deliver good
results.

We determine the maximum of Eq. (7) over a wide
range of the RQA parameters:

– The recurrence threshold ε is varied in a way that
RR of almost 0 and almost 1 is achieved.

– With a mean frequency of the sending pulse of 40kHz
and a digitisation frequency of 10MHz, one period is
covered by approximately 250 data points. Initially,
a maximum delay of 200 (corresponding to 0.02ms)
has been chosen to cover clearly more than half a
period. A step of 20 (corresponding to 0.002ms; less
than one-tenth of a period) is considered sufficient.

– Embedding dimension has initially been varied from
1 to 20 (in steps of 1).

When computing the maximum, Eq. (7), it turns out
that embedding dimension and delay reach their max-
ima d = 20 and τ = 200 (corresponding to 0.02ms). An
increase of delay to 260 still showed τ = 200 as opti-
mum. An increase of embedding dimension to 30 and
finally to 40 revealed that d = 40 indeed delivers best
results. No further increase of the embedding dimension
is investigated due to the short length of the embedded
time series (cf. Sect. 4.2).

Thus, d = 40 and τ = 200 are identified as opti-
mum embedding parameters; in addition, an optimum
recurrence threshold of ε = 0.3 is determined.

4.2 Evaluation (test) results

We have determined the optimum RQA parameters for
the feature RR out of DRPs in a training like manner
at time series of transducer path T1–T7 without and
with defect D24.

Evaluation (test) is now performed at guided ultra-
sonic wave signals of transducer path T6–T12 without
and with defect D04 (Fig. 7).

For benchmark, we start with the simple feature max-
imum of each time series [3]. Time series out of two
cycles of ascending and descending temperatures are
taken and for one temperature step in this cycle the
defect D04 is introduced, e.g. at ≈ 21◦ (Fig. 10). In
reality, for our investigations we take the time series up
to—for this example—21◦ out of the data of no defect
measurements and the time series from ≈ 26◦ on out of
the data of measurements with defect D04 present.

For continuous baseline update, we want to compare
a current measurement with a previous one (the base-
line). Thus, we calculate the percentage change between

the feature, here the maximum, of two subsequent mea-
surements up to the point when the defect occurs. Fol-
lowing the nomenclature in [3], we use signal discrep-
ancy, SD , for a percentaged change in the following.

To remind about the continuous baseline update, as
long as only small changes between two subsequent
measurements occur, the current measurement becomes
the new baseline. Once the first large signal discrep-
ancy (percentaged change) occurs (here: the maximum
clearly decreases), the previous measurement is kept as
baseline. Thus, for all measurements above ≈ 26◦ (right
of the vertical line in Fig. 11), the signal discrepancy
SD is computed between the last time series without
defect—the baseline—and the current measurement.
This way, the SDs stay large (Fig. 11, right of the ver-
tical line).

The signal discrepancies for on one hand no defect–no
defect and on the other hand no defect–defect are
clearly different: already this very simple feature shows
the occurrence of a defect.

[3] showed that RR out of standard, univariate RPs
outperforms the feature maximum. RQA parameters

Fig. 10 Feature maximum out of time series at different
temperatures without defect up to ≈ 21◦ and with defect
D04 from ≈ 26◦ on. The maximum clearly decreases once a
defect occurs

Fig. 11 Signal discrepancy (percentaged change) between
time series maxima at different temperatures without defect
up to ≈ 21◦ and with defect D04 from ≈ 26◦ on. The max-
imum clearly increases once a defect occurs
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Fig. 12 Recurrence rate per time series at different temperatures without defect up to ≈ 21◦ and with defect D04 from
≈ 26◦ on (left) and signal discrepancies between each pair of subsequent RR (right)

Fig. 13 Time series and
corresponding distance
plots both without defect at
temperatures ≈ 46◦ and ≈
51◦
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were determined similarly to the way described in Sub-
sect. 4.1; Eq. (7) to find the optimum parameters was
also applied, only the used RRs were those of single RPs
(without and with defect). Signal discrepancies were
computed in the same way as for the feature maximum
(Fig. 12).

The signal discrepancy from no defect to defect is
higher for the feature maximum than for RR (Fig. 11
vs. 12, first value right of the vertical line). However,
the proportion of this value to the maximum signal
discrepancy between two subsequent time series no
defect–no defect (left of the vertical line in Figs. 11
and 12) is crucial: this is the basis for setting a thresh-
old to distinguish between no defect–no defect and no
defect–defect time series, i.e. for detecting defects. This
proportion is—for defect occurrence at this tempera-
ture jump—slightly better for RRs from single RPs
than for the feature maximum.

The results above, taken from [3], handle features
taken per time series and its signal discrepancies to
compare two time series. This study treats results of
RR of DRPs as bivariate feature, which directly com-
pares two time series. These have been computed on

two subsequent time series of transducer path T6–T12
of the same 30 varying temperature (Fig. 8) time series
for which maximum and single RP RRs have been com-
puted above. Defect D04 was introduced at tempera-
ture 26◦.

The training has been used to find RQA parameters
that lead to the largest difference of RRs between DRPs
of no defect–no defect time series on one hand and no
defect–defect time series on the other hand, both with
temperature differences of ≈ 10K (Subsect. 4.1).

With these parameters, the distance plots of two no
defect–no defect time series of transducer pair T6–T12
are so similar (Fig. 13) that its difference (Fig. 14 left
hand side) is smaller than the determined recurrence
threshold; RR is almost 1 (Fig. 14 right hand side). We
have chosen here the temperature step from ≈ 46◦ to
≈ 51◦, which leads to the lowest RR of 0.998; for all
other investigated temperature steps, RR > 0.999. In
this evaluation, the temperature has, thus, practically
no influence on the time series.

The situation changes completely when comparing
distance plots of time series no defect–defect for a tem-
perature step of ≈ 5K, here our standard example of a
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Fig. 14 Difference of
distances (left) and its
thresholded version (DRP)
of two time series measured
without defect at ≈ 46◦ and
≈ 51◦

measurement at ≈ 21◦ without defect and a measure-
ment at ≈ 26◦ with defect (Fig. 15). The resulting DRP
(Fig. 16, left hand side) contains much larger differences
than the one for no defect–no defect (Fig. 13, left, same
scale used). The resulting DRP (Fig. 16, right hand
side) shows an RR smaller than 0.2; the differences of
the distances are relatively large except for the last half

tenth of a microsecond or so. Note that the embedded
time series are small (0.22ms) compared to the original
time series (1ms) due to the large embedding dimension
d = 40.

This massive reduction of RR decreases a bit when
comparing measurements with defects at further tem-
peratures to the measurement without defect at 21◦

Fig. 15 Time series and
corresponding distance
plots without defect at ≈
21◦ and with defect at ≈
26◦

Fig. 16 Difference of
distances (left) and its
thresholded version (the
difference recurrence plot)
of a time series measured
without defect at ≈ 21◦ and
one with defect at ≈ 26◦
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Fig. 17 Recurrence rate of DRPs between time series at
different temperatures without defect up to ≈ 21◦ and with
defect D04 from ≈ 26◦ on. Massive decrease of RR once a
defect occurs

(the baseline) (Fig. 17, RR values right of the vertical
line).

We use next the difference of the RR to full recur-
rence, 1 − RR (Fig. 18), to get a presentation more
similar to that of the signal discrepancies of univariate
features maximum or RR from standard RP. The max-
imum of 1 − RR for no defect–no defect time series is
0.23%, the value for the first change from no defect to
defect is 81.6%. This is clearly better than the signal
discrepancies for feature maximum (Fig. 11) and RR
from standard RPs (Fig. 12 right).

Going one step further, we look now at other tem-
perature steps than from ≈ 21◦ to ≈ 26◦ for the first
appearance of the defect. Again, it is important to com-
pare

– the signal discrepancy for the last measurement with-
out defect and the first measurement with defect at
an ≈ 5K temperature difference of the features max-
imum as well as standard RP recurrence rate with

– the maximum signal discrepancy between the fea-
tures of two subsequent time series (≈ 5K tempera-
ture difference), both without defect.

Fig. 18 1 minus recurrence rate of DRPs between time
series at different temperatures without defect up to ≈ 21◦

and with defect D04 from ≈ 26◦ on

Similarly, for DRPs, we compare

– RR of a DRP of the last measurement without defect
and the first measurement with defect, ≈ 5K temper-
ature difference with

– the maximum RR of a DRP of two subsequent mea-
surements without defect (≈ 5K temperature differ-
ence).

We do these comparisons for the temperature steps
from ≈ 21◦ to ≈ 26◦, ≈ 31◦ to ≈ 36◦, ≈ 41◦ to ≈ 46◦,
≈ 51◦ to ≈ 41◦, ≈ 41◦ to ≈ 31◦ and ≈ 31◦ to ≈ 21◦,
thus also on descending temperatures (cf. Fig. 8).

Signal discrepancies of features maximum and RR of
standard RPs show similar performance (Fig. 19 and
20). The scales in the figures are different, but the key
value is the ratio between the signal discrepancies of
no defect–defect and no defect–no defect , which can be
seen to be similar.

The situation massively improves for 1 − RR for
DRPs (Fig 21).

A summarising comparison can be achieved directly
with the ratio

SDnodef − SDdef

SDnodef − SDnodef
(8)

of feature maximum and RR of standard RPs, respec-
tively, and

RRnodef-def

RRnodef-nodef
(9)

of DRPs (Fig. 22). The very slight improvement
through RR of standard RPs compared to feature
maximum can still be seen; remarkable is, however,
the hugely improved ratio for RR of DRPs, which is
between 300 and 400, compared to values between 10

Fig. 19 Signal discrepancies between feature maximum of
two subsequent time series (≈ 5K temperature change):
maximum of signal discrepancy of all subsequent time series
both without defect (smaller values, empty circles) and
signal discrepancy between the last measurement without
defect and the first measurement with defect (greater val-
ues, filled circles; temperatures given at horizontal axis)
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Fig. 20 Signal discrepancies between the recurrence rate of
standard RPs of two subsequent time series (≈ 5K temper-
ature change): maximum of signal discrepancy of all subse-
quent time series both without defect (smaller values, empty
squares) and signal discrepancy between the last measure-
ment without defect and the first measurement with defect
(greater values, filled squares; temperatures given at the
horizontal axis)

Fig. 21 Recurrence rate of difference RPs of two subse-
quent time series (≈ 5K temperature change): maximum of
1 − RR of all subsequent time series both without defect
(smaller values, empty triangles) and 1 − RR of DRP
between the last measurement without defect and the first
measurement with defect (greater values, filled triangles;
temperatures given at horizontal axis)

and 20 for standard RP RR and feature maximum
(Fig. 22).

DRPs have thus shown for this application that
they are a useful means to differentiate between two
kinds of small differences between time series. In this
application—damage detection in a composite plate
using guided ultrasonic waves—they can clearly sep-
arate between on one hand differences between time
series of two measurements both without defect but
with temperature difference and, on the other hand,
between time series of a measurement without defect
and one measurement with defect and temperature dif-
ference. So, DRPs help for this application to distin-
guish damages from temperature differences.

Fig. 22 Ratios between signal discrepancies no
defect–defect and maximum signal discrepancy no defect–no
defect for features maximum and RR of standard RPs, and
ratio between RR of difference RPs no defect–defect and
no defect–no defect (maximum value for the latter). Ratios
for RR of standard RPs very slightly, ratios of RR of DRPs
hugely better than for feature maximum

5 Conclusion

Specific research questions require modifications in the
RP approach. When interested in studying small differ-
ences between time series, the well-known approaches
of RP-based coupling analyses are not suitable, because
they are too sensitive to identify smallest similarities or
couplings. Our novel approach based on RPs of differ-
ences in the signals’ distance matrices enables us to
detect such small deviations. In this study, we have
demonstrated the potential of this difference RP (DRP)
by studying the increasing deviations within a proto-
typical model system which is slightly disturbed by a
small systematic external signal. Compared to stan-
dard approaches (Pearson correlation, power spectra,
wavelet, cross and joint recurrence analyses), the DRP
approach was superior in detecting such small distor-
tions in a static test model and also during continuously
increasing deviations.

The reason for this better performance is the tai-
lored design of the new distance measure used in the
RP. Instead of testing the null hypothesis that the sys-
tems are not linked to each other, the null hypothesis is
that the systems are identical. For such a test, all devi-
ations in the geometry of the phase space trajectories
are used (i.e. also differences of far away states and not
only states in the neighbourhood of the reference state).
Alternative measures for testing the modified hypothe-
sis could be applied and compared in future analysis.

The application of this novel approach for struc-
tural health monitoring using guided ultrasonic waves
is promising. Guided ultrasonic waves can be used to
detect damages, in this example in a composite plate.
The challenge is to distinguish damages from the effect
that varying temperature has. We show that RP param-
eters can be chosen such that
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– DRPs have a very high recurrence when they are
derived from two time series coming from measure-
ments at different temperatures, but both without
damage,

– DRPs have a largely reduced recurrence when they
are derived from one time series from a measurement
without defect and from one time series from a mea-
surement with defect and at different temperature.

The novel DRPs approach has practical applications
in engineering and other fields where the detection of
slight differences is used for diagnostic purposes.

Data availability statement This manuscript has associ-
ated data in a data repository. [Authors’ comment: Matlab
Code for computations in chapter 3 and Python Code for
RQA computations in chapter 4 can be found at Zenodo
https://doi.org/10.5281/zenodo.7229221.]
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